File: common.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (265 lines) | stat: -rw-r--r-- 10,566 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
Common utilities for emitting CUTLASS kernels
"""

import cutlass

# Strings used for printing information about the generation of emitted scripts
_AUTOGEN_STR = f"This file was automatically generated by the CUTLASS {cutlass.__version__} Python interface (https://github.com/nvidia/cutlass/python)"


_CSTYLE_AUTOGEN_COMMENT = f"""// {_AUTOGEN_STR}
"""


_PYSTYLE_AUTOGEN_COMMENT = f"""# {_AUTOGEN_STR}
"""

_CUTLASS_KERNEL_ARGS_2x = """
  typename DeviceKernel::Arguments arguments {
      cutlass::gemm::GemmUniversalMode::kGemm,
      {M, N, K},                                        // problem size
      1,
      {alpha, beta},
      A, B, C, D,
      0, 0, 0, 0,                                       // batch strides
      DeviceKernel::LayoutA::packed({M, K}).stride(0),  // lda
      DeviceKernel::LayoutB::packed({K, N}).stride(0),  // ldb
      DeviceKernel::LayoutC::packed({M, N}).stride(0),  // ldc
      DeviceKernel::LayoutC::packed({M, N}).stride(0)   // ldd
  };
"""

_CUTLASS_KERNEL_ARGS_2x_STREAM_K = """
  typename DeviceKernel::Arguments arguments {
      cutlass::gemm::GemmUniversalMode::kGemm,
      {M, N, K},                                        // problem size
      1,
      {alpha, beta},
      A, B, C, D,
      0, 0, 0, 0,                                       // batch strides
      DeviceKernel::LayoutA::packed({M, K}).stride(0),  // lda
      DeviceKernel::LayoutB::packed({K, N}).stride(0),  // ldb
      DeviceKernel::LayoutC::packed({M, N}).stride(0),  // ldc
      DeviceKernel::LayoutC::packed({M, N}).stride(0),  // ldd
      -1                                                // avail_sms
  };
"""

_CUTLASS_KERNEL_RUN_GEMM_2x = """
using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute;

cutlass::Status ${name}_kernel_run(int M, int N, int K,
                        const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D,
                        ElementCompute alpha, ElementCompute beta) {
  ${args}
  size_t workspace_size = DeviceKernel::get_workspace_size(arguments);
  cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

  DeviceKernel gemm_op;
  cutlass::Status status = gemm_op.initialize(arguments,
                                              workspace.get(),
                                              nullptr);     // CUDA stream

  if (status != cutlass::Status::kSuccess) {
    return status;
  }

  status = gemm_op();
  return status;
}
"""

_CUTLASS_KERNEL_RUN_GEMM_3x = """
using StrideA = typename DeviceKernel::GemmKernel::StrideA;
using StrideB = typename DeviceKernel::GemmKernel::StrideB;
using StrideC = typename DeviceKernel::GemmKernel::StrideC;
using StrideD = typename DeviceKernel::GemmKernel::StrideD;

using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute;

cutlass::Status ${name}_kernel_run(
        int M, int N, int K, int L,
        const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D,
        ElementCompute alpha, ElementCompute beta, const cutlass::KernelHardwareInfo& hw_info) {

  typename DeviceKernel::Arguments arguments{
      cutlass::gemm::GemmUniversalMode::kGemm,
      {M, N, K, L},                                                              // problem size
      A,                                                                         // ptrA
      cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)),    // stride A
      B,                                                                         // ptrB
      cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L)),    // stride B
      {
        C,                                                                       // ptrC
        cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L)),  // stride C
        D,                                                                       // ptrD
        cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L)),  // stride D
        {alpha, beta},
      },
      hw_info
  };

  size_t workspace_size = DeviceKernel::get_workspace_size(arguments);
  cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

  DeviceKernel gemm_op;
  cutlass::Status status = gemm_op.run(arguments,
                                       workspace.get(),
                                       nullptr);     // CUDA stream

  return status;
}
"""


_CUTLASS_KERNEL_RUN_GROUPED_GEMM_2x = """
using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute;

int threadblock_count = DeviceKernel::sufficient();

cutlass::Status ${name}_kernel_run(int problem_count, cutlass::gemm::GemmCoord* problem_sizes,
                        DeviceKernel::ElementA** A, DeviceKernel::ElementB** B, DeviceKernel::ElementC** C, DeviceKernel::ElementC** D,
                        int64_t* lda, int64_t* ldb, int64_t* ldc, int64_t* ldd,
                        ElementCompute alpha, ElementCompute beta) {

  typename DeviceKernel::Arguments arguments {
    problem_sizes,
    problem_count,
    threadblock_count,
    {alpha, beta},
    A, B, C, D,
    lda, ldb, ldc, ldd
  };

  size_t workspace_size = DeviceKernel::get_workspace_size(arguments);
  cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

  DeviceKernel gemm_op;
  cutlass::Status status = gemm_op.initialize(arguments,
                                              workspace.get(),
                                              nullptr);     // CUDA stream

  if (status != cutlass::Status::kSuccess) {
    return status;
  }

  status = gemm_op();
  return status;
}
"""


_CUTLASS_KERNEL_RUN_CONV2D_2x = """

using UnderlyingKernel = typename DeviceKernel::UnderlyingKernel;
namespace {
using TensorRefA = typename UnderlyingKernel::TensorRefA;
using TensorRefB = typename UnderlyingKernel::TensorRefB;
using TensorRefC = typename UnderlyingKernel::TensorRefC;
using ElementCompute = typename UnderlyingKernel::EpilogueOutputOp::ElementCompute;
}

template<typename TensorRef, typename Element>
TensorRef get_tensor_ref(cutlass::Tensor4DCoord tensor_coord, Element* ptr){
  cutlass::layout::TensorNHWC layout = cutlass::layout::TensorNHWC::packed(tensor_coord);
  TensorRef tensor_ref(ptr, layout);
  return tensor_ref;
}

cutlass::Status ${name}_kernel_run(cutlass::conv::Conv2dProblemSize* problem_size,
                        UnderlyingKernel::ElementA* A, UnderlyingKernel::ElementB* B,
                        UnderlyingKernel::ElementC* C, UnderlyingKernel::ElementC* D,
                        ElementCompute alpha, ElementCompute beta, std::string split_k_mode,
                        cudaStream_t stream, int device_id=0) {
  // create the tensor references
  cutlass::Tensor4DCoord tensor_coord_A = cutlass::conv::implicit_gemm_tensor_a_extent(
    cutlass::conv::Operator::k${conv_kind_name}, *problem_size
  );
  cutlass::Tensor4DCoord tensor_coord_B = cutlass::conv::implicit_gemm_tensor_b_extent(
    cutlass::conv::Operator::k${conv_kind_name}, *problem_size
  );
  cutlass::Tensor4DCoord tensor_coord_C = cutlass::conv::implicit_gemm_tensor_c_extent(
    cutlass::conv::Operator::k${conv_kind_name}, *problem_size
  );

  TensorRefA tensor_ref_A = get_tensor_ref<TensorRefA, UnderlyingKernel::ElementA>(tensor_coord_A, A);
  TensorRefB tensor_ref_B = get_tensor_ref<TensorRefB, UnderlyingKernel::ElementB>(tensor_coord_B, B);
  TensorRefC tensor_ref_C = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, C);
  TensorRefC tensor_ref_D = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, D);

  cutlass::conv::SplitKMode mode;
  if (split_k_mode == "serial") {
    mode = cutlass::conv::SplitKMode::kSerial;
  } else if (split_k_mode == "parallel") {
    mode = cutlass::conv::SplitKMode::kParallel;
  } else {
    throw std::runtime_error("Invalid split_k_mode: " + split_k_mode);
  }

  typename DeviceKernel::Arguments arguments{
    *problem_size,
    tensor_ref_A,
    tensor_ref_B,
    tensor_ref_C,
    tensor_ref_D,
    {alpha, beta},
    mode
  };

  DeviceKernel implicit_gemm_op;

  size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);

  void* workspace_ptr = device_memory_allocation(workspace_size, device_id);

  cutlass::Status status = implicit_gemm_op.can_implement(arguments);
  if (status != cutlass::Status::kSuccess) {
    return status;
  }

  status = implicit_gemm_op.initialize(arguments, workspace_ptr, stream);
  if (status != cutlass::Status::kSuccess) {
    return status;
  }

  //
  // Launch initialized CUTLASS kernel
  //
  status = implicit_gemm_op(stream);

  return status;
}
"""