1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Utilities for generating source for building a PyTorch CUDA extension that using a CUTLASS kernel.
If specified, the extension can be JIT compiled via PyTorch's ``cpp_extension.load`` method.
Example usage with JIT compilation:
.. highlight:: python
.. code-block:: python
plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass_library.LayoutType.RowMajor)
op = plan.construct()
mod = cutlass.emit.pytorch(op, 'cutlass_gemm', 80, jit=True)
# Generate inputs for the GEMM
A, B, C = [torch.ones((512, 512)).to('cuda') for _ in range(3)]
# Run the module
D = mod.run(A, B, C)
Example usage without JIT compilation:
.. highlight:: python
.. code-block:: python
plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass.LayoutType.RowMajor)
op = plan.construct()
cutlass.emit.pytorch(op, 'cutlass_gemm', 80, jit=False, sourcedir='output')
After this call, the directory ``output`` contains ``setup.py``,
``cutlass_gemm.cpp``, and ``cutlass_gemm_kernel.cu``. The module can be built from
within ``output`` by running: ``TORCH_CUDA_ARCH_LIST="8.0" python setup.py develop --user``.
The module can later be used in Python via:
.. highlight:: python
.. code-block:: python
import torch
import cutlass_gemm
# Generate inputs for the GEMM
A, B, C = [torch.ones((512, 512)).to('cuda') for _ in range(3)]
# Run the module
D = cutlass_gemm.run(A, B, C)
"""
import logging
import os
from cutlass_library import ConvKind, ConvKindNames, DataType, SubstituteTemplate
from cutlass import CUTLASS_PATH, logger, swizzle
from cutlass.backend.gemm_operation import GemmOperationGrouped, GemmOperationUniversal
from cutlass.backend.conv2d_operation import Conv2dOperation
from cutlass.backend.library import ApiVersion
from cutlass.emit import common
from cutlass.utils.datatypes import is_torch_available
if is_torch_available():
import torch
_PYTORCH_CUDA_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cutlass/util/device_memory.h"
// helper function allocating the memory
void* device_memory_allocation(size_t size, int device_id=0) {
if (size > 0) {
torch::Device device(torch::kCUDA, device_id);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
torch::TensorOptions options = torch::TensorOptions().dtype(torch::kI8).device(device);
at::Tensor device_tensor = torch::empty({(long)size,}, options);
return reinterpret_cast<void*>(device_tensor.data_ptr());
} else {
return nullptr;
}
}
${includes}
${declaration}
${impl}
"""
_PYTORCH_GEMM_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <pybind11/stl.h>
// CUDA forward declarations
at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, float alpha=1.f, float beta=0.f);
// C++ interface
at::Tensor ${name}(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, float alpha=1.f, float beta=0.f) {
return ${name}_kernel(A, B, C, alpha, beta);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("run", py::overload_cast<const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>, float, float>(&${name}), py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("alpha") = 1.f, py::arg("beta") = 0.f);
}
"""
_PYTORCH_GROUPED_GEMM_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <pybind11/stl.h>
// CUDA forward declarations
std::vector<at::Tensor> ${name}_kernel(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C=at::nullopt, float alpha=1.f, float beta=0.f);
// C++ interface
std::vector<at::Tensor> ${name}(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C=at::nullopt, float alpha=1.f, float beta=0.f) {
return ${name}_kernel(A, B, C, alpha, beta);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("run", py::overload_cast<const std::vector<at::Tensor>&, const std::vector<at::Tensor>&, at::optional<const std::vector<at::Tensor>>, float, float>(&${name}),
py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("alpha") = 1.f, py::arg("beta") = 0.f);
}
"""
_PYTORCH_CONV2D_FPROP_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <pybind11/stl.h>
// CUDA forward declarations
at::Tensor ${name}_kernel(
const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1},
float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1);
// C++ interface
at::Tensor ${name}(
const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1},
float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1) {
return ${name}_kernel(A, B, C, stride, padding, dilation, alpha, beta, split_k_mode, split_k_slices);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("run",
py::overload_cast<
const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>,
std::tuple<int, int>, std::tuple<int, int>, std::tuple<int, int>, float, float, std::string, int>(
&${name}), py::arg("A"), py::arg("B"), py::arg("C") = nullptr,
py::arg("stride") = std::make_tuple(1, 1), py::arg("padding") = std::make_tuple(1, 1), py::arg("dilation") = std::make_tuple(1, 1),
py::arg("alpha") = 1.f, py::arg("beta") = 0.f,
py::arg("split_k_mode") = "serial", py::arg("split_k_slices") = 1);
}
"""
_PYTORCH_CONV2D_GRAD_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <pybind11/stl.h>
// CUDA forward declarations
at::Tensor ${name}_kernel(
std::tuple<int, int, int, int> result_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1},
float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1);
// C++ interface
at::Tensor ${name}(
std::tuple<int, int, int, int> result_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1},
float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1) {
return ${name}_kernel(result_size, A, B, C, stride, padding, dilation, alpha, beta, split_k_mode, split_k_slices);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("run",
py::overload_cast<
std::tuple<int, int, int, int>, const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>,
std::tuple<int, int>, std::tuple<int, int>, std::tuple<int, int>, float, float, std::string, int>(
&${name}), py::arg("result_size"), py::arg("A"), py::arg("B"), py::arg("C") = nullptr,
py::arg("stride") = std::make_tuple(1, 1), py::arg("padding") = std::make_tuple(1, 1), py::arg("dilation") = std::make_tuple(1, 1),
py::arg("alpha") = 1.f, py::arg("beta") = 0.f,
py::arg("split_k_mode") = "serial", py::arg("split_k_slices") = 1);
}
"""
_PYTORCH_GEMM_INCLUDES = {
ApiVersion.v2x: """
#include "cutlass/gemm/device/gemm_universal.h"
""",
ApiVersion.v3x: """
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/util/packed_stride.hpp"
""",
}
_PYTORCH_GROUPED_GEMM_INCLUDES = """
#include "cutlass/gemm/kernel/default_gemm_grouped.h"
#include "cutlass/gemm/device/gemm_grouped.h"
"""
_PYTORCH_CONV2D_INCLUDES = """
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/kernel/default_conv2d_dgrad.h"
#include "cutlass/conv/kernel/default_conv2d_wgrad.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
"""
_CUTLASS_TYPE_TO_TORCH_TYPE = {
DataType.f16: "torch::kF16",
DataType.f32: "torch::kF32",
DataType.f64: "torch::kF64",
DataType.s8: "torch::I8",
DataType.s32: "torch::I32",
}
_PYTORCH_GEMM_IMPL_TEMPLATE_2x = (
common._CUTLASS_KERNEL_RUN_GEMM_2x
+ """
at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C, float alpha, float beta) {
int M = A.size(0);
int N = B.size(1);
int K = A.size(1);
typename DeviceKernel::ElementC* ptrC = (C == at::nullopt) ?
nullptr :
reinterpret_cast<typename DeviceKernel::ElementC*>(C->contiguous().data_ptr());
at::Tensor D = B.new_empty({M, N}, ${torch_type_C});
cutlass::Status status = ${name}_kernel_run(M, N, K,
reinterpret_cast<typename DeviceKernel::ElementA*>(A.contiguous().data_ptr()),
reinterpret_cast<typename DeviceKernel::ElementB*>(B.contiguous().data_ptr()),
ptrC,
reinterpret_cast<typename DeviceKernel::ElementC*>(D.contiguous().data_ptr()),
ElementCompute(alpha), ElementCompute(beta));
TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed");
return D;
}
"""
)
_PYTORCH_GEMM_IMPL_TEMPLATE_3x = (
common._CUTLASS_KERNEL_RUN_GEMM_3x
+ """
bool hw_info_queried = false;
cutlass::KernelHardwareInfo hw_info;
at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C, float alpha, float beta) {
int M = A.size(0);
int N = B.size(1);
int K = A.size(1);
int L = 1;
// Query hardware info if we haven't already
if (!hw_info_queried) {
hw_info.device_id = 0;
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
}
typename DeviceKernel::ElementC* ptrC = (C == at::nullopt) ?
nullptr :
reinterpret_cast<typename DeviceKernel::ElementC*>(C->contiguous().data_ptr());
at::Tensor D = B.new_empty({M, N}, ${torch_type_C});
cutlass::Status status = ${name}_kernel_run(M, N, K, L,
reinterpret_cast<typename DeviceKernel::ElementA*>(A.contiguous().data_ptr()),
reinterpret_cast<typename DeviceKernel::ElementB*>(B.contiguous().data_ptr()),
ptrC,
reinterpret_cast<typename DeviceKernel::ElementC*>(D.contiguous().data_ptr()),
ElementCompute(alpha), ElementCompute(beta),
hw_info);
TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed");
return D;
}
"""
)
_PYTORCH_GROUPED_GEMM_IMPL_TEMPLATE = (
common._CUTLASS_KERNEL_RUN_GROUPED_GEMM_2x
+ """
std::vector<at::Tensor> ${name}_kernel(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C, float alpha, float beta) {
size_t num = A.size();
// To avoid performing many small cudaMallocs and host-to-device copies,
// we serialize the grouped GEMM arguments on the host, allocate one
// large chunk of device memory, and perform a single cudaMemcpy to
// copy the host data to the device. Allocation overheads could be
// avoided by using a memory pool.
// Calculate the total size of the data to be copied from host to device
size_t total_size = sizeof(cutlass::gemm::GemmCoord) +
sizeof(DeviceKernel::ElementA*) +
sizeof(DeviceKernel::ElementB*) +
sizeof(DeviceKernel::ElementC*) +
sizeof(DeviceKernel::ElementC*) +
sizeof(int64_t) +
sizeof(int64_t) +
sizeof(int64_t);
total_size *= num;
// num * sizeof(cutlass::gemm::GemmCoord) may leave one at a non-multiple
// of sizeof(DeviceKernel::ElementA*) (which will be 64 on a 64-bit system).
// To ensure that we don't end up having misaligned loads in the kernel,
// we pad to the nearest multiple of 8.
//
// Note that, even on a 32-bit system (for which sizeof(X*) will not equal
// sizeof(int64_t)), only padding between the list of GemmCoords and the
// list of ptr_As is sufficient because the set of four equal-length lists of pointers
// (A*, B*, C*, D*) will ensure that the first list of int64_ts will always
// start on a multiple of 8.
int64_t padding = 8 - (total_size % 8);
total_size += padding;
uint8_t* host_data = new uint8_t[total_size];
cutlass::DeviceAllocation<uint8_t> device_data(total_size);
uint8_t* start = host_data;
cutlass::gemm::GemmCoord* problem_sizes_host = reinterpret_cast<cutlass::gemm::GemmCoord*>(start);
// Apply the padding after the list of GemmCoords
start += num * sizeof(cutlass::gemm::GemmCoord) + padding;
int64_t ptr_A_offset = start - host_data;
DeviceKernel::ElementA** ptr_A_host = reinterpret_cast<DeviceKernel::ElementA**>(start);
start += num * sizeof(DeviceKernel::ElementA*);
int64_t ptr_B_offset = start - host_data;
DeviceKernel::ElementB** ptr_B_host = reinterpret_cast<DeviceKernel::ElementB**>(start);
start += num * sizeof(DeviceKernel::ElementB*);
int64_t ptr_C_offset = start - host_data;
DeviceKernel::ElementC** ptr_C_host = reinterpret_cast<DeviceKernel::ElementC**>(start);
start += num * sizeof(DeviceKernel::ElementC*);
int64_t ptr_D_offset = start - host_data;
DeviceKernel::ElementC** ptr_D_host = reinterpret_cast<DeviceKernel::ElementC**>(start);
start += num * sizeof(DeviceKernel::ElementC*);
int64_t lda_offset = start - host_data;
int64_t* lda_host = reinterpret_cast<int64_t*>(start);
start += num * sizeof(int64_t);
int64_t ldb_offset = start - host_data;
int64_t* ldb_host = reinterpret_cast<int64_t*>(start);
start += num * sizeof(int64_t);
int64_t ldc_offset = start - host_data;
int64_t* ldc_host = reinterpret_cast<int64_t*>(start);
start += num * sizeof(int64_t);
std::vector<at::Tensor> D(num);
bool need_C = (C != at::nullopt) && (beta != 0.f);
for (size_t i = 0; i < num; ++i) {
int M = A[i].size(0);
int N = B[i].size(1);
int K = A[i].size(1);
*(problem_sizes_host + i) = {M, N, K};
*(ptr_A_host + i) = reinterpret_cast<typename DeviceKernel::ElementA*>(A[i].contiguous().data_ptr());
*(ptr_B_host + i) = reinterpret_cast<typename DeviceKernel::ElementB*>(B[i].contiguous().data_ptr());
if (need_C) {
*(ptr_C_host + i) = reinterpret_cast<typename DeviceKernel::ElementC*>(C->at(i).contiguous().data_ptr());
}
else {
*(ptr_C_host + i) = nullptr;
}
D[i] = B[i].new_empty({M, N}, ${torch_type_C});
*(ptr_D_host + i) = reinterpret_cast<typename DeviceKernel::ElementC*>(D[i].contiguous().data_ptr());
*(lda_host + i) = DeviceKernel::LayoutA::packed({M, K}).stride(0);
*(ldb_host + i) = DeviceKernel::LayoutB::packed({K, N}).stride(0);
*(ldc_host + i) = DeviceKernel::LayoutC::packed({M, N}).stride(0);
}
device_data.copy_from_host(host_data);
cutlass::Status status = ${name}_kernel_run(
num,
reinterpret_cast<cutlass::gemm::GemmCoord*>(device_data.get()),
reinterpret_cast<DeviceKernel::ElementA**>(device_data.get() + ptr_A_offset),
reinterpret_cast<DeviceKernel::ElementB**>(device_data.get() + ptr_B_offset),
reinterpret_cast<DeviceKernel::ElementC**>(device_data.get() + ptr_C_offset),
reinterpret_cast<DeviceKernel::ElementC**>(device_data.get() + ptr_D_offset),
reinterpret_cast<int64_t*>(device_data.get() + lda_offset),
reinterpret_cast<int64_t*>(device_data.get() + ldb_offset),
reinterpret_cast<int64_t*>(device_data.get() + ldc_offset),
reinterpret_cast<int64_t*>(device_data.get() + ldc_offset),
ElementCompute(alpha), ElementCompute(beta));
delete[] host_data;
TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed");
return D;
}
"""
)
_PYTORCH_CONV2D_IMPL_TEMPLATE_2x = """
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cutlass::Status status = ${name}_kernel_run(
&problem_size,
reinterpret_cast<typename UnderlyingKernel::ElementA*>(A.data_ptr()),
reinterpret_cast<typename UnderlyingKernel::ElementB*>(B.data_ptr()),
ptrC,
reinterpret_cast<typename UnderlyingKernel::ElementC*>(D.data_ptr()),
alpha, beta,
split_k_mode, stream, B.device().index());
TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed");
return D;
}
"""
_PYTORCH_CONV2D_FPROP_IMPL_TEMPLATE_2x = (
common._CUTLASS_KERNEL_RUN_CONV2D_2x
+ """
at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1},
float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) {
int N, H, W, C_, K, R, S, P, Q;
N = A.size(0);
C_ = A.size(1);
H = A.size(2);
W = A.size(3);
K = B.size(0);
R = B.size(2);
S = B.size(3);
cutlass::conv::Conv2dProblemSize problem_size(
cutlass::Tensor4DCoord(N, H, W, C_),
cutlass::Tensor4DCoord(K, R, S, C_),
cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)),
cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)),
cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)),
cutlass::conv::Mode::kCrossCorrelation,
split_k_slices
);
P = problem_size.P;
Q = problem_size.Q;
typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ?
nullptr :
reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr());
torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast);
at::Tensor D = torch::zeros({N, K, P, Q}, options);
""" + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x
)
_PYTORCH_CONV2D_DGRAD_IMPL_TEMPLATE_2x = (
common._CUTLASS_KERNEL_RUN_CONV2D_2x
+ """
at::Tensor ${name}_kernel(std::tuple<int, int, int, int> input_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1) {
int N, H, W, C_, K, R, S;
N = std::get<0>(input_size);
C_ = std::get<1>(input_size);
H = std::get<2>(input_size);
W = std::get<3>(input_size);
K = B.size(0);
R = B.size(2);
S = B.size(3);
cutlass::conv::Conv2dProblemSize problem_size(
cutlass::Tensor4DCoord(N, H, W, C_),
cutlass::Tensor4DCoord(K, R, S, C_),
cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)),
cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)),
cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)),
cutlass::conv::Mode::kCrossCorrelation,
split_k_slices
);
typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ?
nullptr :
reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr());
torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast);
at::Tensor D = torch::empty({N, C_, H, W}, options);
""" + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x
)
_PYTORCH_CONV2D_WGRAD_IMPL_TEMPLATE_2x = (
common._CUTLASS_KERNEL_RUN_CONV2D_2x
+ """
at::Tensor ${name}_kernel(std::tuple<int, int, int, int> weight_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt,
std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f,
std::string split_k_mode="serial", int split_k_slices=1) {
int N, H, W, C_, K, R, S;
K = std::get<0>(weight_size);
C_ = std::get<1>(weight_size);
R = std::get<2>(weight_size);
S = std::get<3>(weight_size);
N = B.size(0);
H = B.size(2);
W = B.size(3);
cutlass::conv::Conv2dProblemSize problem_size(
cutlass::Tensor4DCoord(N, H, W, C_),
cutlass::Tensor4DCoord(K, R, S, C_),
cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)),
cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)),
cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)),
cutlass::conv::Mode::kCrossCorrelation,
split_k_slices
);
typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ?
nullptr :
reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr());
torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast);
at::Tensor D = torch::empty({K, C_, R, S}, options);
""" + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x
)
_PYTORCH_SETUP_PY = common._PYSTYLE_AUTOGEN_COMMENT + """
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name='${name}',
ext_modules=[
CUDAExtension('${name}', [
'${name}.cpp',
'${name}_kernel.cu',
],
include_dirs=['${cutlass_path}/include', '${cutlass_path}/tools/util/include'],
extra_compile_args=['-std=c++17']
),
],
cmdclass={
'build_ext': BuildExtension
})
"""
def _generate_setup(name: str, sourcedir: str):
"""
Generates a setup.py file for the extension
:param name: name of the module to generate
:type name: str
:param sourcedir: directory to which generated source files should be written
:type sourcedir: str
"""
setup_py_file = os.path.join(sourcedir, "setup.py")
setup_source = SubstituteTemplate(
_PYTORCH_SETUP_PY, {"name": name, "cutlass_path": CUTLASS_PATH}
)
with open(setup_py_file, "w") as outfile:
outfile.write(setup_source)
class _ArchListSetter:
"""
Utility context manager for temporarily setting the value of the ``TORCH_CUDA_ARCH_LIST``
environment variable when building a PyTorch CUDA module.
``TORCH_CUDA_ARCH_LIST`` is a space-delmited list of compute capabilites for which a PyTorch
CUDA module should be compiled.
For example, ``TORCH_CUDA_ARCH_LIST="7.0 8.0"`` would result in the inclusion of
``-gencode=arch=compute_70,code=sm_70`` and ``-gencode=arch=compute_80,code=sm_80`` in the
compilation of the module.
This utility wraps the building of a PyTorch CUDA module with a setting of this environment
variable according to the current compute capability being targetted.
Example usage:
.. highlight:: python
.. code-block:: python
# Temporarily set TORCH_CUDA_ARCH_LIST="8.0"
with _ArchListSetter(80):
# Perform JIT compilation and loading of the module
mod = torch.utils.cpp_extension.load(...)
:param cc: compute capability
:type cc: int
"""
_TORCH_CUDA_ARCH_LIST = "TORCH_CUDA_ARCH_LIST"
def __init__(self, cc: int):
self.cc_str = ".".join(list(str(cc)))
def __enter__(self):
"""
Saves the old value of TORCH_CUDA_ARCH_LIST and reset it to the new value based on ``cc``
"""
self.old_arch_list = os.getenv(_ArchListSetter._TORCH_CUDA_ARCH_LIST)
os.environ[_ArchListSetter._TORCH_CUDA_ARCH_LIST] = self.cc_str
return self
def __exit__(self, exc_type, exc_val, traceback):
"""
Restores the old value of TORCH_CUDA_ARCH_LIST
"""
if self.old_arch_list is None:
del os.environ[_ArchListSetter._TORCH_CUDA_ARCH_LIST]
else:
os.environ[_ArchListSetter._TORCH_CUDA_ARCH_LIST] = self.old_arch_list
def _jit(name: str, cc: int, cpp_file: str, cuda_file: str):
"""
JIT compiles and loads a PyTorch CUDA extension.
:param name: name of the module to generate
:type name: str
:param cc: compute capability of the device the module should target
:type cc: int
:param cpp_file: path to file containing extension's C++ interface
:type cpp_file: str
:param cuda_file: path to file containing extension's CUDA interface
:type cuda_file: str
:return: loaded PyTorch module
"""
from torch.utils.cpp_extension import load
extra_cuda_cflags = ["-std=c++17"]
if cc == 90:
# PyTorch does not currently add the sm_90a target when compute capability
# 9.0 is set within TORCH_CUDA_ARCH_LIST. Thus, we manually add the sm_90a target.
extra_cuda_cflags.append("-gencode=arch=compute_90a,code=sm_90a")
with _ArchListSetter(cc):
jitmodule = load(
name,
[cpp_file, cuda_file],
extra_cuda_cflags=extra_cuda_cflags,
extra_include_paths=[
os.path.join(CUTLASS_PATH, "include"),
os.path.join(CUTLASS_PATH, "tools/util/include"),
],
verbose=(logger.level == logging.DEBUG)
)
return jitmodule
def _pytorch_gemm(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""):
"""
Generates source for building a PyTorch CUDA module that leverages the CUTLASS GEMM
specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time
compiled, loaded, and returned.
:param op: operation to emit in the module
:param name: name of the module to generate
:type name: str
:param cc: compute capability of the device the module should target
:type cc: int
:param jit: whether the module should be just-in-time compiled
:type jit: bool
:param sourcedir: directory to which generated source files should be written
:type sourcedir: str
:return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise
"""
if sourcedir != "" and not os.path.isdir(sourcedir):
os.makedirs(sourcedir)
cuda_file = os.path.join(sourcedir, name + "_kernel.cu")
extra_kw = {}
if op.api == ApiVersion.v3x:
impl_template = _PYTORCH_GEMM_IMPL_TEMPLATE_3x
else:
impl_template = _PYTORCH_GEMM_IMPL_TEMPLATE_2x
if op.swizzling_functor == swizzle.ThreadblockSwizzleStreamK:
extra_kw["args"] = common._CUTLASS_KERNEL_ARGS_2x_STREAM_K
else:
extra_kw["args"] = common._CUTLASS_KERNEL_ARGS_2x
impl_template = (
_PYTORCH_GEMM_IMPL_TEMPLATE_3x
if op.api == ApiVersion.v3x
else _PYTORCH_GEMM_IMPL_TEMPLATE_2x
)
cuda_impl = SubstituteTemplate(impl_template, {"name": name, **extra_kw})
cuda_source = SubstituteTemplate(
_PYTORCH_CUDA_TEMPLATE,
{
"includes": _PYTORCH_GEMM_INCLUDES[op.api],
"declaration": op.rt_module.emit(),
"procedural_name": op.procedural_name(),
"impl": cuda_impl,
"torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element],
},
)
with open(cuda_file, "w") as outfile:
outfile.write(cuda_source)
cpp_file = os.path.join(sourcedir, name + ".cpp")
cpp_source = SubstituteTemplate(
_PYTORCH_GEMM_CPP_TEMPLATE,
{"name": name, "description": f"CUTLASS {op.procedural_name()} GEMM"},
)
with open(cpp_file, "w") as outfile:
outfile.write(cpp_source)
_generate_setup(name, sourcedir)
if jit:
return _jit(name, cc, cpp_file, cuda_file)
return None
def _pytorch_grouped_gemm(
op, name: str, cc: int, jit: bool = False, sourcedir: str = ""
):
"""
Generates source for building a PyTorch CUDA module that leverages the CUTLASS grouped GEMM
specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time
compiled, loaded, and returned.
:param op: operation to emit in the module
:param name: name of the module to generate
:type name: str
:param cc: compute capability of the device the module should target
:type cc: int
:param jit: whether the module should be just-in-time compiled
:type jit: bool
:param sourcedir: directory to which generated source files should be written
:type sourcedir: str
:return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise
"""
if op.api != ApiVersion.v2x:
raise Exception("Grouped GEMM is currently only supported for CUTLASS 2.x")
if sourcedir != "" and not os.path.isdir(sourcedir):
os.makedirs(sourcedir)
cuda_file = os.path.join(sourcedir, name + "_kernel.cu")
cuda_impl = SubstituteTemplate(_PYTORCH_GROUPED_GEMM_IMPL_TEMPLATE, {"name": name})
cuda_source = SubstituteTemplate(
_PYTORCH_CUDA_TEMPLATE,
{
"includes": _PYTORCH_GROUPED_GEMM_INCLUDES,
"declaration": op.rt_module.emit(),
"procedural_name": op.procedural_name(),
"impl": cuda_impl,
"torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element],
},
)
with open(cuda_file, "w") as outfile:
outfile.write(cuda_source)
cpp_file = os.path.join(sourcedir, name + ".cpp")
cpp_source = SubstituteTemplate(
_PYTORCH_GROUPED_GEMM_CPP_TEMPLATE,
{"name": name, "description": f"CUTLASS {op.procedural_name()} grouped GEMM"},
)
with open(cpp_file, "w") as outfile:
outfile.write(cpp_source)
_generate_setup(name, sourcedir)
if jit:
return _jit(name, cc, cpp_file, cuda_file)
return None
def _pytorch_conv2d(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""):
"""
Generates source for building a PyTorch CUDA module that leverages the CUTLASS Conv2d
specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time
compiled, loaded, and returned.
:param op: operation to emit in the module
:param name: name of the module to generate
:type name: str
:param cc: compute capability of the device the module should target
:type cc: int
:param jit: whether the module should be just-in-time compiled
:type jit: bool
:param sourcedir: directory to which generated source files should be written
:type sourcedir: str
Note that the when conv kind is `dgrad` or `wgrad`, the size of the input `(N, C, H, W)` or
weight `(K, C, R, S)` should be provided. This is because there are multiple valid solutions
for H/W/R/S given the same P/Q.
:return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise
"""
if sourcedir != "" and not os.path.isdir(sourcedir):
os.makedirs(sourcedir)
cuda_file = os.path.join(sourcedir, name + "_kernel.cu")
extra_kw = {}
if op.conv_kind == ConvKind.Fprop:
impl_template = _PYTORCH_CONV2D_FPROP_IMPL_TEMPLATE_2x
cpp_template = _PYTORCH_CONV2D_FPROP_CPP_TEMPLATE
elif op.conv_kind == ConvKind.Dgrad:
impl_template = _PYTORCH_CONV2D_DGRAD_IMPL_TEMPLATE_2x
cpp_template = _PYTORCH_CONV2D_GRAD_CPP_TEMPLATE
elif op.conv_kind == ConvKind.Wgrad:
impl_template = _PYTORCH_CONV2D_WGRAD_IMPL_TEMPLATE_2x
cpp_template = _PYTORCH_CONV2D_GRAD_CPP_TEMPLATE
extra_kw["conv_kind_name"] = ConvKindNames[op.conv_kind].capitalize()
extra_kw["torch_type_C"] = _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element]
cuda_impl = SubstituteTemplate(impl_template, {"name": name, **extra_kw})
cuda_source = SubstituteTemplate(
_PYTORCH_CUDA_TEMPLATE,
{
"includes": _PYTORCH_CONV2D_INCLUDES,
"declaration": op.rt_module.emit(),
"procedural_name": op.procedural_name(),
"impl": cuda_impl,
"torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element],
},
)
with open(cuda_file, "w") as outfile:
outfile.write(cuda_source)
cpp_file = os.path.join(sourcedir, name + ".cpp")
cpp_source = SubstituteTemplate(
cpp_template,
{"name": name, "description": f"CUTLASS {op.procedural_name()} Conv2d"},
)
with open(cpp_file, "w") as outfile:
outfile.write(cpp_source)
_generate_setup(name, sourcedir)
if jit:
return _jit(name, cc, cpp_file, cuda_file)
return None
def pytorch(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""):
"""
Generates source for building a PyTorch CUDA module that leverages the CUTLASS kernel
specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time
compiled, loaded, and returned.
The result of this method is files within ``sourcedir`` that can be used for building
a PyTorch module.
:param op: operation to emit in the module
:param name: name of the module to generate
:type name: str
:param cc: compute capability of the device the module should target
:type cc: int
:param jit: whether the module should be just-in-time compiled
:type jit: bool
:param sourcedir: directory to which generated source files should be written
:type sourcedir: str
:return: loaded PyTorch module (if ``jit=True``) or None
"""
device_op = op.device_op()
if isinstance(op, GemmOperationUniversal):
return _pytorch_gemm(device_op, name, cc, jit, sourcedir)
elif isinstance(op, GemmOperationGrouped):
return _pytorch_grouped_gemm(device_op, name, cc, jit, sourcedir)
elif isinstance(op, Conv2dOperation):
return _pytorch_conv2d(device_op, name, cc, jit, sourcedir)
else:
raise Exception(
f"Operation type {type(op)} is not currently supported for PyTorch emission."
)
|