1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Classes containing valid operations for a given compute capability and data types.
"""
from itertools import combinations_with_replacement
import logging
from cuda import __version__
import cutlass_library
from cutlass_library.library import ConvKind, IteratorAlgorithm, StrideSupport, GroupMode
import cutlass
from cutlass.utils.check import valid_stage_count
from cutlass.utils.datatypes import td_from_profiler_td, td_from_profiler_op
_generator_ccs = [50, 60, 61, 70, 75, 80, 90]
# Strip any additional information from the CUDA version
_cuda_version = __version__.split("rc")[0]
class KernelsForDataType:
"""
Container class for keeping track of kernels that correspond to a particular combination
of data types for operands A, B, and accumulator
"""
def __init__(self, datatype_comb: tuple, layout_comb: tuple):
self.datatype_comb = datatype_comb
self.layout_comb = layout_comb
self.math_operations = set()
# Dictionary mapping from alignment (int) to a list of kernels that fit the alignment
# constraint for the data type combination
self.kernels_by_alignment = {}
def add(self, operation):
"""
Add an operation to the list of supported kernels
"""
alignment_key = f"{operation.A.alignment} {operation.B.alignment} {operation.C.alignment}"
if alignment_key not in self.kernels_by_alignment:
self.kernels_by_alignment[alignment_key] = []
self.kernels_by_alignment[alignment_key].append(operation)
self.math_operations.add(operation.tile_description.math_instruction.math_operation)
def alignments(self, operand: str):
"""
Returns an unsorted list of alignments supported by this data type combination
:param operand: identifier of operand in question (e.g., A, B, C)
:type operand: str
:return: unsorted list of alignments supported by this data type combination
:rtype: list
"""
operand_idx = self._operand_idx(operand)
return [int(key.split(" ")[operand_idx]) for key in self.kernels_by_alignment.keys()]
@property
def all_operations(self):
"""
Returns a list of all operations supported by this data type combination
:return: list of all operations supported by this data type combination
:rtype: list
"""
ops = []
for _, alignment_ops in self.kernels_by_alignment.items():
ops.extend(alignment_ops)
return ops
def default_operation(self, math_operation: cutlass.MathOperation):
key = sorted(list(self.kernels_by_alignment.keys()))[0]
kernels = self.kernels_by_alignment[key]
if math_operation is not None:
kernels = [x for x in kernels if x.tile_description.math_instruction.math_operation == math_operation]
return kernels[0]
def operations(self, alignment_A: int, alignment_B: int, alignment_C: int, math_operation: cutlass.MathOperation):
"""
Returns operations satisfying the alignment constraints
:param alignment_A: alignment constraint of operations to return
:type alignment_A: int
:param alignment_B: alignment constraint of operations to return
:type alignment_B: int
:param alignment_C: alignment constraint of operations to return
:type alignment_C: int
:param math_operation: math operation to consider
:type math_operation: cutlass.MathOperation
:return: list of operations
:rtype: list
"""
key = f"{alignment_A} {alignment_B} {alignment_C}"
if key not in self.kernels_by_alignment:
og_key = key
# Reconcile A, B, and C alignments by trying to align to the minimum
min_alignment = min(alignment_A, alignment_B, alignment_C)
key = f"{min_alignment} {min_alignment} {min_alignment}"
if key not in self.kernels_by_alignment:
# Finally, go through all available alignment combinations and find
# one for which all values are less than those passed in.
key = None
alignments = sorted([(int(x) for x in k.split(" ")) for k in self.kernels_by_alignment.keys()], reverse=True)
for align_A, align_B, align_C in alignments:
if align_A <= alignment_A and align_B <= alignment_B and align_C <= alignment_C:
key = f"{align_A} {align_B} {align_C}"
break
if key is None:
raise Exception(
f"No operations of alignment {og_key} found for data type and layout "
f"combination {self.datatype_comb} {self.layout_comb}. Compatible alignments "
f"are {self.kernels_by_alignment.keys()}"
)
ops = self.kernels_by_alignment[key]
if math_operation is not None:
ops = [op for op in ops if op.tile_description.math_instruction.math_operation == math_operation]
return ops
def _operand_idx(self, key: str) -> int:
operand_list = ["A", "B", "C"]
if key not in operand_list:
raise Exception(f"Unexpected operand {operand}")
return operand_list.index(key)
def find_alignment(self, shape: tuple, layout: cutlass.LayoutType, operand=str) -> int:
"""
Returns the most preferable alignment for a given shape and layout
:param shape: extent of each dimension of the tensor
:type shape: tuple
:param layout: layout of the tensor
:type layout: cutlass.LayoutType
:param operand: descriptor of the operand in question
:type operand: str
:return: maximum alignment supported by the data type combination and tensor size
:rtype: int
"""
operand_idx = self._operand_idx(operand)
# Determine the leading dimension of the shape
if layout == cutlass.LayoutType.ColumnMajor:
ld = shape[-2]
elif layout == cutlass.LayoutType.RowMajor:
ld = shape[-1]
elif layout == cutlass.LayoutType.TensorNHWC:
ld = shape[-1]
else:
raise Exception(f"Unexpected or unsupported layout {layout}")
for alignments in sorted(list(self.kernels_by_alignment.keys()), reverse=True):
alignment = int(alignments.split(" ")[operand_idx])
if ld % alignment == 0:
return alignment
# Default to alignment of 1 if no others match
return 1
def sort(self):
"""
Sorts each list of kernels in `kernels_by_alignment` in descending order of threadblock shape
"""
key = lambda op: (
op.tile_description.threadblock_shape[0]
* op.tile_description.threadblock_shape[1]
* op.tile_description.threadblock_shape[2]
)
for alignment in self.kernels_by_alignment.keys():
self.kernels_by_alignment[alignment].sort(key=key, reverse=True)
def supports_math_operation(self, math_operation: cutlass.MathOperation) -> bool:
"""
Returns whether `math_operation` is supported by at least one operation.
:param math_operation: math operation to consider
:type math_operation: cutlass.MathOperation
:return: whether math_operation is supported by at least one operation
:rtype: bool
"""
return math_operation is None or math_operation in self.math_operations
class ArchOptions:
"""
Structure for keeping track of kernels available on a given compute capability
:param target_cc: compute capability of the device on which kernels will be run
:type target_cc: int
:param kernel_cc: compute capability of the kernels to generate
:type kernel_cc: int
:param operation_kind: type of operation to register
:type operation_kind: cutlass_library.OperationKind
:param gemm_kinds: types of GEMM operations that can be included
:type gemm_kinds: list
:param allowed_math_operations: types of primitive math operations allowed
:type allowed_math_operations: list
"""
def __init__(
self,
target_cc: int,
kernel_cc: int,
operation_kind: cutlass_library.OperationKind,
gemm_kinds: list,
allowed_math_operations: list = [
cutlass_library.MathOperation.multiply_add,
cutlass_library.MathOperation.multiply_add_saturate,
cutlass_library.MathOperation.multiply_add_mixed_input_upcast,
cutlass_library.MathOperation.multiply_add_fast_f32
]
):
self.cc = kernel_cc
# Dictionary with following structure:
# Key: OpcodeClass
# Value: Dictionary with the following structure:
# Key: tuple of ((DataType, DataType, DataType), (LayoutType, LayoutType, LayoutType),
# representing ((element_a, element_b, element_accumulator), (layout_a, layout_b))
# Value: KernelsForDataType
self.operations_by_opclass = {}
self.op_class = None
self.allowed_math_operations = allowed_math_operations
# Identify the method within CUTLASS generator script that generates kernel
# descriptions for the target CC
generate_function_name = "GenerateSM" + str(kernel_cc)
if not hasattr(cutlass_library.generator, generate_function_name):
cutlass.logger.warning(f"No generator found for architecture {kernel_cc}")
return
generate_function = getattr(cutlass_library.generator, generate_function_name)
# Initialize a default manifest and populate it with valid kernel descriptions
# for the target CC
args = [
"--kernels=all",
f"--log-level={logging.getLevelName(cutlass.logger.level)}"
]
manifest_args = cutlass_library.generator.define_parser().parse_args(args)
manifest = cutlass_library.manifest.Manifest(manifest_args)
generate_function(manifest, _cuda_version)
if operation_kind not in manifest.operations:
# No kernels generated for this architecture, this could be because the CUDA
# toolkit is insufficient to support operations in this CC
cutlass.logger.warning(f"No operations of type {operation_kind} found for CC {kernel_cc}")
return
# Only one CC should be returned, given the setup above of calling only the generation scripts
# for a given CC
if len(manifest.operations[operation_kind].keys()) != 1 or kernel_cc not in manifest.operations[operation_kind]:
raise Exception(f"Error finding kernels for SM{kernel_cc}. Check that your CUDA toolkit version "
"is sufficient for the architecture in question.")
# Iterate through the available operations for this operation kind and
# find available opclasses and data types
for name, op_list in manifest.operations[operation_kind][kernel_cc].items():
for op in op_list:
if operation_kind == cutlass_library.OperationKind.Gemm:
if op.gemm_kind not in gemm_kinds:
continue
mi = op.tile_description.math_instruction
if mi.math_operation not in self.allowed_math_operations:
continue
# Prune operations that don't fit in shared memory
td = td_from_profiler_op(op)
if not valid_stage_count(target_cc, kernel_cc, td, verbose=False)[0]:
continue
if mi.opcode_class not in self.operations_by_opclass:
self.operations_by_opclass[mi.opcode_class] = {}
datatype_comb = (mi.element_a, mi.element_b, mi.element_accumulator)
layout_comb = (op.A.layout, op.B.layout)
# Register TF32 kernels as F32 to enable F32 -> TF32 conversion + TF32 Tensor Core operations
if datatype_comb == (cutlass_library.DataType.tf32, cutlass_library.DataType.tf32, cutlass_library.DataType.f32):
# TF32 kernels only supported on SM80 and beyond
if self.cc < 80:
continue
elif self.cc == 90:
if (op.A.element != cutlass_library.DataType.f32
or op.B.element != cutlass_library.DataType.f32
or op.C.element != cutlass_library.DataType.f32):
continue
datatype_comb = (cutlass_library.DataType.f32, cutlass_library.DataType.f32, cutlass_library.DataType.f32)
opclass_dict = self.operations_by_opclass[mi.opcode_class]
key = (datatype_comb, layout_comb)
if key not in opclass_dict:
opclass_dict[key] = KernelsForDataType(datatype_comb, layout_comb)
opclass_dict[key].add(op)
# Set the default opclass to TensorOp, if available. Otherwise default to SIMT
if cutlass_library.OpcodeClass.TensorOp in self.operations_by_opclass:
self.op_class = cutlass_library.OpcodeClass.TensorOp
else:
self.op_class = cutlass_library.OpcodeClass.Simt
# The profiler's generator may generate only a limited set of combinations of operands for SIMT kernels.
# Here, we generate additional versions via a generic TileDescription.
if cutlass_library.OpcodeClass.Simt not in self.operations_by_opclass:
self.operations_by_opclass[cutlass_library.OpcodeClass.Simt] = {}
if operation_kind == cutlass_library.OperationKind.Gemm:
types = [
(cutlass_library.DataType.s8, cutlass_library.DataType.s8, cutlass_library.DataType.s8),
(cutlass_library.DataType.s8, cutlass_library.DataType.s8, cutlass_library.DataType.s32),
(cutlass_library.DataType.f16, cutlass_library.DataType.f16, cutlass_library.DataType.f16),
(cutlass_library.DataType.f16, cutlass_library.DataType.f16, cutlass_library.DataType.f32),
(cutlass_library.DataType.f32, cutlass_library.DataType.f32, cutlass_library.DataType.f32),
(cutlass_library.DataType.f64, cutlass_library.DataType.f64, cutlass_library.DataType.f64),
]
# Add FP8 A/B/C
fp8_types = [cutlass_library.DataType.e4m3, cutlass_library.DataType.e5m2]
for type_comb in combinations_with_replacement(fp8_types, 3):
types.append(type_comb)
# Add FP8 A/B with FP32 C
for type_comb in combinations_with_replacement(fp8_types, 2):
types.append(type_comb + (cutlass.DataType.f32,))
layouts = [
(cutlass_library.LayoutType.RowMajor, cutlass_library.LayoutType.RowMajor),
(cutlass_library.LayoutType.RowMajor, cutlass_library.LayoutType.ColumnMajor),
(cutlass_library.LayoutType.ColumnMajor, cutlass_library.LayoutType.RowMajor),
(cutlass_library.LayoutType.ColumnMajor, cutlass_library.LayoutType.ColumnMajor),
]
elif operation_kind == cutlass_library.OperationKind.Conv2d:
types = [
(cutlass_library.DataType.f16, cutlass_library.DataType.f16, cutlass_library.DataType.f16),
(cutlass_library.DataType.f16, cutlass_library.DataType.f16, cutlass_library.DataType.f32),
(cutlass_library.DataType.f32, cutlass_library.DataType.f32, cutlass_library.DataType.f32),
(cutlass_library.DataType.f64, cutlass_library.DataType.f64, cutlass_library.DataType.f64),
]
layouts = [
(cutlass_library.LayoutType.TensorNHWC, cutlass_library.LayoutType.TensorNHWC),
]
else:
raise NotImplementedError(f"Operation kind {operation_kind} is currently unsupported.")
alignment = 1
epilogue_functor = cutlass_library.EpilogueFunctor.LinearCombination
swizzling_functor = cutlass_library.SwizzlingFunctor.Identity8
for type_comb in types:
for layout_comb in layouts:
comb = (type_comb, layout_comb)
if comb in self.operations_by_opclass[cutlass_library.OpcodeClass.Simt]:
continue
A = cutlass_library.TensorDescription(type_comb[0], layout_comb[0], alignment)
B = cutlass_library.TensorDescription(type_comb[1], layout_comb[1], alignment)
C = cutlass_library.TensorDescription(type_comb[2], cutlass_library.LayoutType.ColumnMajor, alignment)
math_inst = cutlass_library.MathInstruction(
[1, 1, 1],
type_comb[0],
type_comb[1],
type_comb[2],
cutlass_library.OpcodeClass.Simt,
cutlass_library.MathOperation.multiply_add
)
td = cutlass_library.TileDescription(
[128, 128, 8], 2, [4, 2, 1], math_inst, 50, 1024)
# Prune operations that don't fit in shared memory
if not valid_stage_count(target_cc, kernel_cc, td_from_profiler_td(td), verbose=False)[0]:
continue
new_kernels = KernelsForDataType(type_comb, layout_comb)
if operation_kind == cutlass_library.OperationKind.Gemm:
new_operation = cutlass_library.manifest.GemmOperation(
cutlass_library.GemmKind.Universal, td.minimum_compute_capability,
td, A, B, C, type_comb[2], epilogue_functor, swizzling_functor)
new_kernels.add(new_operation)
elif operation_kind == cutlass_library.OperationKind.Conv2d:
for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]:
new_operation = cutlass_library.manifest.Conv2dOperation(
conv_kind, IteratorAlgorithm.Analytic, td.minimum_compute_capability, td,
A, B, C, type_comb[2], StrideSupport.Strided, epilogue_functor, swizzling_functor,
group_mode=GroupMode.SingleGroup
)
new_kernels.add(new_operation)
self.operations_by_opclass[cutlass_library.OpcodeClass.Simt][comb] = new_kernels
# Sort all operations
for oc in self.operations_by_opclass.keys():
for comb in self.operations_by_opclass[oc].keys():
self.operations_by_opclass[oc][comb].sort()
def opclass_supports_combination(
self, op_class: cutlass_library.OpcodeClass, datatype_comb: tuple, layout_comb: tuple, math_operation: cutlass_library.MathOperation
) -> bool:
"""
Returns whether the provided operation class supports the provided data type and layout combination
:param op_class: operation class to consider
:type op_class: cutlass_library.OpcodeClass
:param datatype_comb: tuple of data types for (element_A, element_B, element_accumulator)
:type datatype_comb: tuple[cutlass_library.DataType]
:param layout_comb: tuple of data types for (layout_A, layout_B)
:type layout_comb: tuple[cutlass_library.LayoutType]
:param math_operation: math operation to consider or None if any can be considered
:type math_operation: cutlass.MathOperation
:return: set of operation classes that support the provided data type and layout combination
:rtype: set
"""
if op_class not in self.operations_by_opclass:
raise Exception(f"Unexpected or unsupported operation class {op_class}")
if operations := self.operations_by_opclass[op_class].get((datatype_comb, layout_comb)):
if math_operation is not None:
return operations.supports_math_operation(math_operation)
else:
return True
return False
def supporting_opclasses(
self,
element_a: cutlass_library.DataType,
element_b: cutlass_library.DataType,
element_accumulator: cutlass_library.DataType,
layout_a: cutlass_library.LayoutType,
layout_b: cutlass_library.LayoutType,
math_operation: cutlass_library.MathOperation,
) -> set:
"""
Returns a set of operation classes that support the provided data type combination
:param element_a: data type of operand A
:type element_a: cutlass_library.DataType
:param element_b: data type of operand B
:type element_b: cutlass_library.DataType
:param element_accumulator: data type of accumulator
:type element_accumulator: cutlass_library.DataType
:param layout_a: layout of operand A
:type layout_a: cutlass_library.LayoutType
:param layout_b: layout of operand B
:type layout_b: cutlass_library.LayoutType
:param math_operation: math operation to consider
:type math_operation: cutlass.MathOperation
:return: set of operation classes that support the provided data type combination
:rtype: set
"""
supporting_op_classes = set()
datatype_comb = (element_a, element_b, element_accumulator)
layout_comb = (layout_a, layout_b)
for op_class in self.operations_by_opclass.keys():
if self.opclass_supports_combination(op_class, datatype_comb, layout_comb, math_operation):
supporting_op_classes.add(op_class)
return supporting_op_classes
def operations(
self,
op_class: cutlass_library.OpcodeClass,
element_a: cutlass_library.DataType,
element_b: cutlass_library.DataType,
element_accumulator: cutlass_library.DataType,
layout_a: cutlass_library.LayoutType,
layout_b: cutlass_library.LayoutType,
math_operation: cutlass_library.MathOperation,
) -> KernelsForDataType:
"""
Returns whether the provided operation class supports the provided data type combination
:param op_class: operation class to consider
:type op_class: cutlass_library.OpcodeClass
:param element_a: data type of operand A
:type element_a: cutlass_library.DataType
:param element_b: data type of operand B
:type element_b: cutlass_library.DataType
:param element_accumulator: data type of accumulator
:type element_accumulator: cutlass_library.DataType
:param layout_a: layout of operand A
:type layout_a: cutlass_library.LayoutType
:param layout_b: layout of operand B
:type layout_b: cutlass_library.LayoutType
:param math_operation: math operation to consider
:type math_operation: cutlass.MathOperation
:return: container of kernels by alignment supported by the provided combination of parameters
:rtype: KernelsForDataType
"""
datatype_comb = (element_a, element_b, element_accumulator)
layout_comb = (layout_a, layout_b)
if not self.opclass_supports_combination(op_class, datatype_comb, layout_comb, math_operation):
raise Exception(
f"Data type layout combination {datatype_comb}, {layout_comb} "
f"is not supported by opcode class {op_class} on CC {self.cc}."
)
return self.operations_by_opclass[op_class][(datatype_comb, layout_comb)]
class OptionRegistry:
"""
Container of all architecture-specific options
:param target_cc: compute capability of the device on which operations will be run
:type target_cc: int
"""
def __init__(self, target_cc: int):
self.registry = {}
gemm_kinds = [cutlass_library.GemmKind.Universal, cutlass_library.GemmKind.Universal3x]
operation_kinds = [cutlass_library.OperationKind.Gemm, cutlass_library.OperationKind.Conv2d]
# Construct options for each CC
for kernel_cc in _generator_ccs:
self.registry[kernel_cc] = {}
for opkind in operation_kinds:
self.registry[kernel_cc][opkind] = ArchOptions(target_cc, kernel_cc, opkind, gemm_kinds)
def options_for_cc(self, cc: int, op_kind=cutlass_library.OperationKind.Gemm) -> ArchOptions:
return self.registry.get(cc, None)[op_kind]
|