File: gemm.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (715 lines) | stat: -rw-r--r-- 32,082 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
    Ease-of-use interface for constructing, compiling, and running GEMMs.

    The ``Gemm`` interface is meant to allow one to easily instantiate, compile, and run
    GEMM operations in CUTLASS via Python, without specifying many configuration parameters.
    Under the hood, the interface will select sensible default parameters for the many template
    parameters for CUTLASS GEMMs.

    Note: optimal performance is not to be expected from this interface. To achieve optimal
    performance, one should specify and tune each configuration parameter.

    The simplest example of using this interface is the following:

    .. highlight:: python
    .. code-block:: python

        # A, B, C, and D are torch/numpy/cupy tensor objects
        plan = cutlass.op.Gemm(A, B, C, D)
        plan.run()


    One can also use the interface by specifying data types of operands at construction
    and using different tensor objects with these data types at runtime:

    .. highlight:: python
    .. code-block:: python

        # The following is shorthand for:
        #        cutlass.op.Gemm(element_A=torch.float32, element_B=torch.float32,
        #                        element_C=torch.float32, element_D=torch.float32,
        #                        element_accumulator=torch.float32,
        #                        layout=cutlass.LayoutType.RowMajor)
        plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass.LayoutType.RowMajor)

        A0 = torch.rand((128, 256), device='cuda')
        B0 = torch.rand((256, 64), device='cuda')
        C0 = torch.zeros((128, 64), device='cuda')
        D0 = torch.zeros((128, 64), device.'cuda')
        plan.run(A0, B0, C0, D0)

        A = torch.rand((32, 128), device='cuda')
        B = torch.rand((128, 256), device='cuda')
        C = torch.zeros((32, 256), device='cuda')
        D = torch.zeros((32, 256), device.'cuda')
        plan.run(A1, B1, C1, D1)

    The interface additionally enables one to decouple the compilation of the underlying CUTLASS
    kernel from its execution:

    .. highlight:: python
    .. code-block:: python

        plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor)
        plan.compile()

        # Do other work...

        plan.run(A0, B0, C0, D0)

        # Do other work...

        plan.run(A1, B1, C1, D1)

    Elementwise activation functions are easily fused to the GEMM via the interface:

    .. highlight:: python
    .. code-block:: python

        plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor)
        plan.activation = cutlass.epilogue.relu

    Operations can also be run asynchronously:

    .. highlight:: python
    .. code-block:: python

        plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor)
        args = plan.run()

        # Do other work...

        args.sync()
"""

from math import prod

from cuda import cuda
from cutlass_library import (
    DataType,
    DataTypeSize,
    GemmUniversalMode,
)

import cutlass
from cutlass import epilogue, swizzle
from cutlass.backend import compiler
from cutlass.backend.evt import EpilogueFunctorVisitor
from cutlass.backend.gemm_operation import GemmArguments, GemmOperationUniversal
from cutlass.backend.library import TensorDescription, TileDescription
from cutlass.op.op import OperationBase
from cutlass.shape import GemmCoord
from cutlass.utils import check, datatypes


class Gemm(OperationBase):
    """
    Constructs a ``Gemm`` object.

    The data types and layouts of operands A, B, and C, along with the data type of output D
    and that used for accumulation, are bound to the ``Gemm`` object throughout its lifetime --
    these are not to be changed after a ``Gemm`` has been constructed.

    The constructor has optional parameters for flexibly setting these parameters. The following
    constructors are equivalent:

    .. highlight:: python
    .. code-block:: python

        # Use F32 for A, B, C, D, and accumulation. All operands are row major.

        # Use the generic ``element`` and ``layout`` parameters to concisely set all data types and layouts
        # for operands to the same values.
        Gemm(element=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor)

        # Explicitly specify the data types to use for A, B, C, and D. Use the generic ``layout``.
        Gemm(element_A=cutlass.DataType.f32, element_B=cutlass.DataType.f32, element_C=cutlass.DataType.f32,
            element_D=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor)

        # Set the data types and elements from existing tensors. Note that one can use different tensors when
        # executing GEMM via the ``run()`` method than passed in here (though those passed in to ``run()`` must
        # have the same data type and layout as those passed in here).
        # A, B, C, and D are row-major torch.Tensor objects of type torch.float32
        Gemm(A=A, B=B, C=C, D=D)

        # Use the generic ``element`` and explicitly specify the layouts to use for A, B, and C (layout of D is
        # the same as that for D, at present)
        Gemm(element=cutlass.DataType.f32, layout_A=cutlass.LayoutType.RowMajor,
            layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor)

        # Explicitly specify the data type and layout for only some of A, B, C, and D. Unspecified data types
        # and layouts will inherit those passed in via the generic ``element`` and ``layout``
        Gemm(element_A=cutlass.DataType.f32, layout_B=cutlass.LayoutType.RowMajor,
            element=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor)

    The order of precedence for the setting of the data type and layout for a given operand/output is as follows:
        1) If the tensor type is specified (e.g., ``A``), use the data type and layout inferred from this tensor
        2) Otherwise, if the data type/layout (e.g., ``element_A``, ``layout_A``) is specified, use those
        3) Otherwise, use the generic values (e.g., ``element``, ``layout``)

    :param cc: compute capability of device for which kernels should be compiled. For example, if running on H100, this should be set to 90
    :type cc: int
    :param kernel_cc: compute capability of kernels to generate. For example, if running on SM90, but desiring to use a CUTLASS 2.x-style Ampere kernel, this should be set to 80
    :type kernel_cc: int
    :param A: tensor representing data type and layout of operand A
    :param B: tensor representing data type and layout of operand B
    :param C: tensor representing data type and layout of operand C
    :param D: tensor representing data type and layout of operand D
    :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B
    :param beta: scalar parameter beta from GEMM operation that scales operand C
    :param element_accumulator: data type to be used in accumulation of the product of operands A and B
    :type element_accumulator: cutlass.DataType
    :param element: generic data type to be used for operands A, B, C, D, as well as the accumulation data type
    :type element: cutlass.DataType
    :param layout: generic layout type to be used for operands A, B, C, and D
    :type layout: cutlass.LayoutType
    :param element_A: data type to be used for operand A
    :type element_A: cutlass.DataType
    :param element_B: data type to be used for operand B
    :type element_B: cutlass.DataType
    :param element_C: data type to be used for operand C
    :type element_C: cutlass.DataType
    :param element_D: data type to be used for operand D
    :type element_D: cutlass.DataType
    :param layout_A: layout of operand A
    :type layout_A: cutlass.LayoutType
    :param layout_B: layout of operand B
    :type layout_B: cutlass.LayoutType
    :param layout_C: layout of operand C
    :type layout_C: cutlass.LayoutType
    :param layout_D: layout of operand D
    :type layout_D: cutlass.LayoutType
    """

    def __init__(
        self, A=None, B=None, C=None, D=None,
        alpha=1.0, beta=0.0, element_accumulator=None,
        element=None, layout=None,
        element_A=None, element_B=None, element_C=None, element_D=None,
        layout_A=None, layout_B=None, layout_C=None,
        cc: int = None, kernel_cc: int = None
    ):
        super().__init__(cc=cc, kernel_cc=kernel_cc)
        self.name = "gemm"
        self.compiled = False

        elements = []
        layouts = []

        # Check that at least one of the following is set for each tensor (illustrated assuming tensor A):
        # ``A``, ``element_A``, ``element`` and ``A``, ``layout_A``, ``layout``
        for elt, lay, tens, name in zip([element_A, element_B, element_C, element_D],
                                        [layout_A, layout_B, layout_C, layout_C],
                                        [A, B, C, D],
                                        ["A", "B", "C", "D"]):
            if elt is not None and tens is not None:
                raise Exception(f'Must not specify both element_{name} and tensor {name}')
            if lay is not None and tens is not None:
                raise Exception(f'Must not specify both layout_{name} and tensor {name}')
            if elt is None and tens is None and element is None:
                raise Exception(f'Must specify one of element_{name}, tensor {name}, or generic element.')
            if lay is None and tens is None and layout is None:
                raise Exception(f'Must specify one of layout_{name}, tensor {name}, or generic layout.')

            elt_to_set = None
            lay_to_set = None
            if tens is not None:
                elt_to_set, lay_to_set = datatypes.get_datatype_and_layout(tens)
            else:
                elt_to_set = elt if elt is not None else element
                lay_to_set = lay if lay is not None else layout

            elements.append(datatypes.library_type(elt_to_set))
            layouts.append(lay_to_set)

        self._element_a, self._element_b, self._element_c, self._element_d = elements
        self._layout_a, self._layout_b, self._layout_c, self._layout_d = layouts

        if element_accumulator is None:
            self._element_accumulator = self._element_c
        else:
            self._element_accumulator = datatypes.library_type(element_accumulator)

        self.A = A
        self.B = B
        self.C = C
        self.D = D

        self.alpha = alpha
        self.beta = beta

        self.epilogue_functor = None
        self.op_class = None
        self._tile_description = None

        self._reset_operations()

        self._swizzling_functor = cutlass.swizzle.IdentitySwizzle1

    def _reset_operations(self, reset_epilogue: bool = True):
        # Set the default op class
        datatype_comb = (self._element_a, self._element_b, self._element_accumulator)
        layout_comb = (self._layout_a, self._layout_b)

        self.possible_op_classes = self.options.supporting_opclasses(
            self._element_a, self._element_b, self._element_accumulator,
            self._layout_a, self._layout_b, self._math_operation)

        if cutlass.OpcodeClass.TensorOp in self.possible_op_classes:
            self.opclass = cutlass.OpcodeClass.TensorOp
        elif cutlass.OpcodeClass.Simt in self.possible_op_classes:
            self.opclass = cutlass.OpcodeClass.Simt
        else:
            if self._math_operation is not None:
                math_op_str = f' and math operation {self._math_operation}'
            else:
                math_op_str = ''

            raise Exception(f'No kernel configuration found for supported data type and layout '
                            f'combination {datatype_comb}x{layout_comb}{math_op_str}')

        if reset_epilogue:
            self._reset_epilogue_functor_activation(cutlass.epilogue.identity)

    @property
    def swizzling_functor(self):
        """
        Returns the type of the swizzling functor currently being used by the GEMM

        :return: swizzing functor type
        """
        return self._swizzling_functor

    @swizzling_functor.setter
    def swizzling_functor(self, swizzling_functor):
        """
        Sets the swizzling functor to the type specified by `swizzling_functor`
        """
        if swizzling_functor == cutlass.swizzle.ThreadblockSwizzleStreamK:
            if self.op_class == cutlass.OpcodeClass.Simt:
                raise Exception('ThreadblockSwizzleStreamK is currently only supported with opcode class TensorOp')

            if self.current_cc == 90:
                raise Exception('ThreadblockSwizzleStreamK is currently unsupported on SM90')
        self._swizzling_functor = swizzling_functor

    #
    # Tile description Related
    #

    @property
    def tile_description(self) -> TileDescription:
        """
        Returns the tile description
        """
        return self._tile_description

    @tile_description.setter
    def tile_description(
        self, td=None):
        """
        Set the tile description

        :param td: tile description
        :type td: cutlass.backend.TileDescription, or a dict with keys
                  {
                      "threadblock_shape": [int, int, int],
                      "warp_count": [int, int, int],
                      "stages": int,
                      "instruction_shape": [int, int, int] (optional),
                      "cluster_shape": [int, int, int] (optional)
                  }
        """
        if td is None:
            return
        if isinstance(td, dict):
            if self._tile_description is None:
                op = self.possible_operations.default_operation(self._math_operation)
                self._tile_description = datatypes.td_from_profiler_op(op)
            td = self._tile_description.clone_and_update(td)

        valid, msg = self._valid_tile_description(td)
        if valid:
            self._tile_description = td
        else:
            raise Exception(msg)

    def _valid_tile_description(self, td: TileDescription) -> tuple:
        """
        Checks whether the provided tile description is valid for the given compute capability. At present,
        this checks the following:

        - Does the tile description use a number of stages supported by the compute capability in question?
        - Does the tile size requested fit within shared memory?
        - Are cluster dimensions outside the valid range requested for a given architecture (e.g.,
          more non-unit cluster dimensions for pre-SM90 architectures)?
        - Is the kernel schedule being used supported on the architecture in question?

        :param td: tile description to validate
        :type td: cutlass.backend.TileDescription
        :return: tuple in which the first element is a bool indicating that the tile description is valid
                 and the second element is a string providing an optional error message.
        :rtype: tuple
        """
        valid, msg = check.valid_stage_count(self.cc, self.current_cc, td, self._element_c, self._element_d)
        if not valid:
            return (valid, msg)

        valid, msg = check.valid_cluster_shape(self.current_cc, td.cluster_shape)
        if not valid:
            return (valid, msg)

        valid, msg = check.valid_schedule(self.current_cc, td.kernel_schedule, td.epilogue_schedule, td.tile_scheduler)
        return valid, msg

    def tile_descriptions(self) -> list:
        """
        Returns a list of valid tile descriptions for the operations

        :returns: list of valid tile descriptions for the operations
        :rtype: list
        """
        tds = [datatypes.td_from_profiler_op(op) for op in self.possible_operations.all_operations]
        if self._math_operation is not None:
            tds = [td for td in tds if td.tile_description.math_instruction == self._math_operation]
        return tds

    def construct(
        self, tile_description: TileDescription = None,
        alignment_A: int = None, alignment_B: int = None, alignment_C: int = None) -> GemmOperationUniversal:
        """
        Constructs a ``cutlass.backend.GemmUniversalOperation`` based on the input parameters and current
        kernel specification of the ``Gemm`` object.

        :param tile_description: tile description specifying shapes and operand types to use in the kernel
        :type tile_description: cutlass.backend.TileDescription
        :param alignment_A: alignment of operand A
        :type alignment_A: int
        :param alignment_B: alignment of operand B
        :type alignment_B: int
        :param alignment_C: alignment of operand C
        :type alignment_C: int

        :return: operation that was constructed
        :rtype: cutlass.backend.GemmOperationUniversal
        """
        alignment_pref_A = min(128 // DataTypeSize[self._element_a], max(self.possible_operations.alignments("A")))
        alignment_pref_B = min(128 // DataTypeSize[self._element_b], max(self.possible_operations.alignments("B")))
        alignment_A = check.alignment_or_default(alignment_A, alignment_pref_A)
        alignment_B = check.alignment_or_default(alignment_B, alignment_pref_B)

        tensor_A = TensorDescription(self._element_a, self._layout_a, alignment_A)
        tensor_B = TensorDescription(self._element_b, self._layout_b, alignment_B)

        if alignment_C is None:
            alignment_C = max(self.possible_operations.alignments("C"))
            if self._element_c != DataType.void:
                alignment_C = min(128 // DataTypeSize[self._element_c], alignment_C)

        if tile_description is None:
            if self._tile_description is None:
                op = self.possible_operations.operations(alignment_A, alignment_B, alignment_C, self._math_operation)[0]
                tile_description = datatypes.td_from_profiler_op(op)

                # The selected op may have lower alignment than that determined above, so we must
                # reset alignment here.
                alignment_C = op.C.alignment
            else:
                tile_description = self._tile_description
        else:
            valid, err_str = self._valid_tile_description(tile_description)
            if not valid:
                raise Exception(f"Invalid tile description. {err_str}")
            self._tile_description = tile_description

        tensor_C = TensorDescription(self._element_c, self._layout_c, alignment_C)
        self.epilogue_functor = self._reset_epilogue_functor_alignment(alignment_C, self.epilogue_functor)

        operation = GemmOperationUniversal(
            arch=self.current_cc,
            tile_description=tile_description,
            A=tensor_A, B=tensor_B, C=tensor_C,
            epilogue_functor=self.epilogue_functor,
            swizzling_functor=self._swizzling_functor,
        )

        return operation

    def compile(self, tile_description: TileDescription = None,
                alignment_A: int = None, alignment_B: int = None, alignment_C: int = None,
                print_module: bool = False) -> cutlass.backend.GemmOperationUniversal:
        """
        Emits and compiles the kernel currently specified. If ``tile_description`` and any
        of the ``alignment`` parameters are set, the kernel will be chosen using this
        tile description and alignments. Otherwise, a default tile description and alignment
        will be used.

        :param tile_description: tile description specifying shapes and operand types to use in the kernel
        :type tile_description: cutlass.backend.TileDescription
        :param alignment_A: alignment of operand A
        :type alignment_A: int
        :param alignment_B: alignment of operand B
        :type alignment_B: int
        :param alignment_C: alignment of operand C
        :type alignment_C: int
        :param print_module: whether to print the emitted C++ code
        :type print_module: bool

        :return: operation that was compiled
        :rtype: cutlass.backend.GemmOperationUniversal
        """
        self.operation = self.construct(tile_description, alignment_A, alignment_B, alignment_C)

        if print_module:
            print(self.operation.rt_module.emit())

        compiler.add_module([self.operation,])
        return self.operation

    def _verify_rank(self, tensor):
        """
        Verifies that ``tensor`` has rank greater than 1

        :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in
        :type tensor: numpy/cupy/torch array/tensor object
        """
        if len(tensor.shape) < 2:
            raise Exception(f"Tensors must be of rank greater than 1. Received tensor of shape: {tensor.shape}")

    def _get_batch_count(self, A, B, C, D) -> int:
        """
        Returns the batch count specified by the tensors A, B, C, and D and verifies that these
        tensors match in batch size. Presence of a batch dimension is detected by one of the
        tensors being rank 3. If a batch dimension is present, it must be present in one of
        operands A, B, or C (but need not be in all), and must be present in D.

        :param A: tensor A
        :type A: numpy/cupy/torch array/tensor object
        :param B: tensor B
        :type B: numpy/cupy/torch array/tensor object
        :param C: tensor C
        :type C: numpy/cupy/torch array/tensor object
        :param D: tensor D
        :type D: numpy/cupy/torch array/tensor object

        :return: tuple of batch count dimensions
        :rtype: tuple
        """
        A_batch = prod(A.shape[:-2]) if len(A.shape) > 2 else 1
        B_batch = prod(B.shape[:-2]) if len(B.shape) > 2 else 1

        if 1 not in [A_batch, B_batch]:
            if A_batch != B_batch:
                raise Exception(f"Get invalid batch counts: A={A_batch}, B={B_batch}")
        return max(A_batch, B_batch)

    def _get_batch_stride(self, tensor) -> int:
        """
        Returns the batch stride of ``tensor``. If ``tensor`` is only rank-2, batch stride is 0.

        :param tensor: tensor object to process
        :type tensor: numpy/cupy/torch array/tensor object

        :return: stride between each matrix in the batch
        :rtype: int
        """
        if tensor is not None and len(tensor.shape) > 2:
            return tensor.shape[-2] * tensor.shape[-1]
        else:
            return 0

    def _get_problem_args(self, A, B, C, D) -> tuple:
        """
        Returns the problem size and GEMM universal mode to use for the
        given operands.

        :param A: tensor A
        :type A: numpy/cupy/torch array/tensor object
        :param B: tensor B
        :type B: numpy/cupy/torch array/tensor object
        :param C: tensor C
        :type C: numpy/cupy/torch array/tensor object
        :param D: tensor D
        :type D: numpy/cupy/torch array/tensor object

        :return: tuple containing the problem size (cutlass.shape.GemmCoord), the GEMM mode (cutlass.GemmUniversalMode), and the batch count (int)
        :rtype: tuple
        """
        M, K = A.shape[-2:]
        N = B.shape[-1]
        mode = GemmUniversalMode.Gemm

        batch_count = self._get_batch_count(A, B, C, D)
        returned_batch_count = batch_count

        # If we are running a batched GEMM in which there is a nonzero batch stride
        # only for A, then we can fold the batched dimension of A into the M dimension
        # (i.e., (b, m, k) x (k, n) -> (m*b, k) x (k, n)). This works only if both A
        # and C are row major. A similar operation can be performed if only B has a nonzero
        # batch dimension
        if batch_count > 1:
            A_row = self._layout_a == cutlass.LayoutType.RowMajor
            B_row = self._layout_b == cutlass.LayoutType.RowMajor
            C_row = self._layout_c == cutlass.LayoutType.RowMajor

            # Consider a Tensor to be batched if its rank is > 2 and
            # the product of the modes beyond rank 2 equals our pre-determined batch size.
            batched = lambda x : x is None or (len(x.shape) > 2 and prod(x.shape[:-2]) == batch_count)

            if batched(A) and not batched(B) and (C is None or batched(C)) and A_row and C_row:
                M *= batch_count
                returned_batch_count = 1
            elif not batched(A) and batched(B) and (C is None or batched(C)) and not B_row and not C_row:
                N *= batch_count
                returned_batch_count = 1
            else:
                mode = GemmUniversalMode.Batched

        return GemmCoord(M, N, K), mode, returned_batch_count

    def _verify_type_and_layout(self, tensor, ref_type, ref_layout, name):
        """
        Verifies that ``tensor`` has data type ``ref_type`` and layout ``ref_layout``. An exception
        is raised if it does not.

        :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in
        :type tensor: numpy/cupy/torch array/tensor object
        :param ref_dtype: data type for the tensor that this object was initialized to
        :param ref_layout: layout for the tensor that this object was initialized to
        :param name: identifier of the tensor to verify. Used in raising exceptions
        :type name: str
        """
        dtype, layout = datatypes.get_datatype_and_layout(tensor)
        if dtype != ref_type or layout != ref_layout:
            try:
                # Attempt to transpose the tensor to fit the desired layout
                tensor = tensor.transpose(-1, -2)
            except:
                raise Exception(f'Tensor {name} with type and layout ({dtype}, {layout}) '
                                f'does not match the expected type and '
                                f'layout of ({ref_type}, {ref_layout}) and transpose failed.')

    def run(self, A=None, B=None, C=None, D=None,
            alpha=None, beta=None, sync: bool = True, print_module: bool = False, visitor_args: dict = None,
            stream: cuda.CUstream = cuda.CUstream(0)) -> GemmArguments:
        """
        Runs the kernel currently specified. If it has not already been, the kernel is emitted and
        compiled. Tensors holding operands and outputs of the kernel are sourced either from the
        ``A``, ``B``, ``C``, ``D``, ``alpha``, and ``beta``
        parameters provided in this call, or from those
        passed in on the construction of this object -- one of the two must be specified.

        By default, this call returns only once the kernel has completed. To launch the kernel
        and immediately return, set ``sync=False``. In this case, it is the responsibility of the
        caller to syncrhonize the results of the kernel before attempting to access outputs
        by calling ``sync()`` on the arguments returned from this call.

        :param A: tensor representing data type and layout of operand A
        :param B: tensor representing data type and layout of operand B
        :param C: tensor representing data type and layout of operand C
        :param D: tensor representing data type and layout of operand D
        :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B
        :param beta: scalar parameter beta from GEMM operation that scales operand C
        :param sync: whether the call should wait for the kernel to complete before returning
        :type sync: bool
        :param print_module: whether to print the emitted C++ code
        :type print_module: bool
        :param stream: cuda stream, defaults to cuda.cuda.CUstream(0)
        :type stream: :class:`cuda.cuda.CUstream`

        :return: arguments passed in to the kernel
        :rtype: cutlass.backend.GemmArguments
        """
        super().run_setup()
        A = self._verify_tensor(A, self.A, self._element_a, self._layout_a, "A")
        B = self._verify_tensor(B, self.B, self._element_b, self._layout_b, "B")
        C = self._verify_tensor(C, self.C, self._element_c, self._layout_c, "C")
        D = self._verify_tensor(D, self.D, self._element_d, self._layout_d, "D")
        alpha = self._verify_scalar(alpha, self.alpha, self._element_c, "alpha")
        beta = self._verify_scalar(beta, self.beta, self._element_c, "beta")

        is_void_c = self._element_c == DataType.void

        self._verify_rank(A)
        self._verify_rank(B)
        if not is_void_c:
            self._verify_rank(C)
        self._verify_rank(D)

        alignment_a = self.possible_operations.find_alignment(A.shape, self._layout_a, operand="A")
        alignment_b = self.possible_operations.find_alignment(B.shape, self._layout_b, operand="B")

        # Set C alignment based on D.shape so as to correctly get an alignment with void-C
        # kernels, for which `C` is None.
        alignment_c = self.possible_operations.find_alignment(D.shape, self._layout_c, operand="C")
        self.compile(self._tile_description, alignment_A=alignment_a, alignment_B=alignment_b,
                     alignment_C=alignment_c, print_module=print_module)

        problem_size, mode, batch_count = self._get_problem_args(A, B, C, D)

        if mode == GemmUniversalMode.Gemm or batch_count == 1:
            kwargs = {'split_k_slices': 1}
        else:
            kwargs = {
                'batch': batch_count,
                'batch_strides': {
                    'A': self._get_batch_stride(A),
                    'B': self._get_batch_stride(B),
                    'C': self._get_batch_stride(C),
                    'D': self._get_batch_stride(D)
                }
            }

        kwargs['stream'] = stream

        if isinstance(self.epilogue_functor, EpilogueFunctorVisitor):
            output_op = self.operation.epilogue_type(visitor_args)
        else:
            output_op = self.operation.epilogue_type(alpha, beta)

        arguments = GemmArguments(
            operation=self.operation, problem_size=problem_size,
            A=A, B=B, C=C, D=D,
            output_op=output_op,
            gemm_mode=mode,
            **kwargs
        )

        self.operation.run(arguments)

        if sync:
            arguments.sync()

        return arguments