1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Base operation used for defining high-level CUTLASS operations (e.g., GEMM, Conv2d)
"""
from bisect import bisect_left
from cutlass_library import (
DataType,
DataTypeSize,
MathOperation,
OperationKind,
SharedMemPerCC
)
import cutlass
from cutlass import get_option_registry
from cutlass.backend.evt import EpilogueFunctorVisitor
from cutlass.backend.utils.device import device_cc
from cutlass.epilogue import get_activations, get_activation_epilogue, identity
from cutlass.library_defaults import KernelsForDataType, _generator_ccs
from cutlass.swizzle import get_swizzling_functors
from cutlass.utils import datatypes, check
class OperationBase:
"""
Base operation used for defining high-level CUTLASS operations (e.g., GEMM, Conv2d)
"""
def __init__(self, cc: int = None, kernel_cc: int = None, operation_kind = OperationKind.Gemm):
"""
:param cc: compute capability of device for which kernels should be compiled. For example, if running on H100, this should be set to 90
:type cc: int
:param kernel_cc: compute capability of kernels to generate. For example, if running on SM90, but desiring to use a CUTLASS 2.x-style Ampere kernel, this should be set to 80
:type kernel_cc: int
:param operation_kind: class of operation that will be performed (e.g., GEMM, Conv)
:type operation_kind: cutlass_library.OperationKind
"""
self.operation_kind = operation_kind
self.cc = cc if cc is not None else device_cc()
self.specified_kernel_cc = kernel_cc is not None
self.current_cc = kernel_cc if kernel_cc is not None else self._find_closest_cc(self.cc)
self.tile_description = None
self._math_operation = None
self.options = get_option_registry().options_for_cc(self.current_cc, operation_kind)
if self.options is None:
raise Exception(f"Invalid or unsupported compute capability: {self.current_cc}")
# Default activation function: identity
self._activation = identity
def _find_closest_cc(self, cc: int) -> int:
"""
Returns the closest CC in _generator_ccs less than or equal to `cc`
:param cc: compute capability to query
:type cc: int
:returns: closest CC in _generator_ccs less than or equal to `cc`
:rtype: int
"""
if cc in _generator_ccs:
return cc
# Find closest CC lower than this CC
idx = bisect_left(_generator_ccs, cc)
if idx == 0:
raise Exception(f'No valid CC to fall back to for {cc}')
return _generator_ccs[idx-1]
def activations(self) -> list:
"""
Returns possible activation functions that can be used
:return: list of activation functions that can be used
:rtype: list
"""
return get_activations()
def swizzling_functors(self) -> list:
"""
Returns possible swizzling functions that can be used
:return: list of swizzling functions that can be used
:rtype: list
"""
return get_swizzling_functors()
def _reset_options(self, cc: int):
"""
Resets the kernel options based on cc
:param cc: compute capability to reset to
:type cc: int
"""
if cc != self.current_cc:
if cc not in _generator_ccs:
raise Exception(f'Invalid CC for CUTLASS kernels: {cc}.')
self.current_cc = cc
self.options = get_option_registry().options_for_cc(self.current_cc, self.operation_kind)
def _verify_scalar(self, scalar, ref_scalar, ref_dtype, name):
"""
Verifies the following properties:
1) Either ``scalar`` or ``ref_scakar`` must be set (i.e., not ``None``)
2) If ``scalar`` is not ``None``, its datatype must match matches the current version
set by the plan (i.e., those in ``ref_dtype``)
If either of these properties does not hold, an exception is raised. If these properties hold and
``scalar`` is not ``None``, ``scalar`` is returned. Otherwise, ``ref_scalar`` is returned.
:param scalar: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in
:type scalar: numpy/cupy/torch scalar
:param ref_scalar: object representing a tensor passed in on construction of this object, or ``None`` if no tensor was passed in
:type ref_scalar: numpy/cupy/torch scalar
:param ref_dtype: data type for the scalar that this object was initialized to
:param name: identifier of the scalar to verify. Used in raising exceptions
:type name: str
:return: valid scalar to use
:rtype: numpy/cupy/torch scalar
"""
if scalar is None:
if ref_scalar is None:
raise Exception(f"Scalar {name} must be set.")
return ref_scalar
if hasattr(scalar, "dtype"):
dtype = datatypes.library_type(scalar.dtype)
if dtype != ref_dtype:
raise Exception(
f"Tensor {name} with type {dtype} does not match expected type {ref_dtype}."
)
return scalar
def _verify_tensor(self, tensor, ref_tensor, ref_dtype, ref_layout, name):
"""
Verifies the following properties:
If ref_dtype is not void:
1) Either ``tensor`` or ``ref_tensor`` must be set (i.e., not ``None``)
2) If ``tensor`` is not ``None``, its datatype and layout must match matches the current versions
set by the plan (i.e., those in ``ref_dtype`` and ``ref_layout``)
If ref_dtype is void:
Neither ``tensor`` nor ``ref_tensor`` are set
If either of these properties does not hold, an exception is raised. If these properties hold and
``tensor`` is not ``None``, ``tensor`` is returned. Otherwise, ``ref_tensor`` is returned.
:param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in
:type tensor: numpy/cupy/torch array/tensor object
:param ref_tensor: object representing a tensor passed in on construction of this object, or ``None`` if no tensor was passed in
:type ref_tensor: numpy/cupy/torch array/tensor object
:param ref_dtype: data type for the tensor that this object was initialized to
:param ref_layout: layout for the tensor that this object was initialized to
:param name: identifier of the tensor to verify. Used in raising exceptions
:type name: str
:return: valid tensor object to use
:rtype: numpy/cupy/torch array/tensor object
"""
if ref_dtype == DataType.void:
if tensor is not None or ref_tensor is not None:
raise Exception("Operands with element DataType.void must not be provided a tensor")
return None
if tensor is None:
if ref_tensor is None:
raise Exception(f"Tensor {name} must be set.")
return ref_tensor
self._verify_type_and_layout(tensor, ref_dtype, ref_layout, name)
return tensor
@property
def opclass(self) -> cutlass.OpcodeClass:
"""
Returns the opcode class currently in use
:return: opcode class currently in use
:rtype: cutlass.OpcodeClass
"""
return self.op_class
@opclass.setter
def opclass(self, oc: cutlass.OpcodeClass):
if isinstance(oc, str):
oc = datatypes.getattr_enum(cutlass.OpcodeClass, oc)
if oc in self.possible_op_classes:
self.op_class = oc
else:
raise Exception(
f'Unsupported operation class {oc} for CC {self.cc} and data type combination '
f'({self._element_a}, {self._element_b}, {self._element_accumulator}) and '
f'layout combination ({self._layout_a}, {self._layout_b}).')
# Changing the op class also changes the possible operations available. Reset these.
self.possible_operations = self.options.operations(
self.op_class, self._element_a, self._element_b,
self._element_accumulator, self._layout_a, self._layout_b, self._math_operation)
# Changing the op class changes the elements per access in the epilogue. Reset this.
if self.epilogue_functor is not None:
self.epilogue_functor = self._reset_epilogue_functor_alignment(self._elements_per_access(), self.epilogue_functor)
@property
def math_operation(self) -> cutlass.MathOperation:
"""
Returns the math operation currently in use
:return: math operation currently in use
:rtype: cutlass.MathOperation
"""
return self._math_operation
@math_operation.setter
def math_operation(self, mo: cutlass.MathOperation):
if isinstance(mo, str):
mo = datatypes.getattr_enum(cutlass.MathOperation, mo)
if not self.specified_kernel_cc:
if self.current_cc == 90:
# CUTLASS 3.0 kernels do not use different math operations. If one is specified, we
# revert to using a CUTLASS 2.x kernel by using SM80-tagged kernels.
cutlass.logger.warning("Reverting to using SM80-tagged kernel. Opclass may change.")
self._reset_options(80)
self._reset_operations(reset_epilogue=False)
elif self.current_cc == 90:
raise Exception("CUTLASS 3.0 kernels do not use different math operations. "
"To use 2.x kernels with a specific math operation, do not set the `kernel_cc`"
"parameter when constructing the plan.")
self._math_operation = mo
self._reset_operations()
def _elements_per_access(self):
if self.op_class == cutlass.OpcodeClass.Simt:
return 1
elif self._element_c != DataType.void:
return 128 // DataTypeSize[self._element_c]
else:
return 128 // max(self.possible_operations.alignments("C"))
def _create_epilogue_functor_activation(self, activation):
"""
Returns the epilogue functor with given activation function
"""
if self.epilogue_functor is None:
elements_per_access = self._elements_per_access()
else:
elements_per_access = self.epilogue_functor.epilogue_vector_length
if not self.specified_kernel_cc:
if self.current_cc == 90 and activation != identity:
# CUTLASS 3.0 kernels in Python currently only support identity activation. If one requests a non-identity activation,
# revert to using a CUTLASS 2.x kernel by using SM80-tagged kernels.
cutlass.logger.warning("Reverting to using SM80-tagged kernel. Opclass may change.")
if self._element_c != self._element_d:
raise Exception("CUTLASS 2.x kernels require element C to be the same as element D")
self._reset_options(80)
self._reset_operations(reset_epilogue=False)
elif (self.cc == 90 and self.current_cc != 90 and activation == identity and self._math_operation is None):
# SM80 fallback kernels are currently used. Since an identity activation is requested,
# we can switch back to using SM90 kernels.
self._reset_options(90)
self._reset_operations(reset_epilogue=False)
else:
if self.current_cc == 90 and activation != identity:
raise Exception("Epilogues with elementwise fusion are not currently supported "
"in the Python interface for 3.x kernels. To use 2.x kernels "
"with fused elementwise epilogues, do not set the `kernel_cc` "
"parameter when constructing the plan.")
return get_activation_epilogue(
activation,
self._element_d,
elements_per_access,
self._element_accumulator,
self._element_accumulator,
)
def _reset_epilogue_functor_activation(self, activation):
"""
Set the epilogue functor based on the provided activation function
"""
self.epilogue_functor = self._create_epilogue_functor_activation(activation)
def _reset_epilogue_functor_alignment(self, alignment, epilogue_functor):
"""
Reset the alignment of the current epilogue functor based on alignment C
"""
if isinstance(epilogue_functor, EpilogueFunctorVisitor):
return epilogue_functor
if epilogue_functor is None or not hasattr(epilogue_functor, 'activation_functor'):
# Identity epilogue does not have 'activation_functor'
activation = identity
else:
activation = epilogue_functor.activation_functor
epilogue_functor = get_activation_epilogue(
activation,
self._element_d,
alignment,
self._element_accumulator,
self._element_accumulator,
)
return epilogue_functor
@property
def activation(self):
"""
Returns the type of the current activation function used
"""
if hasattr(self.epilogue_functor, "activation_functor"):
return self.epilogue_functor.activation_functor
else:
return identity
@activation.setter
def activation(self, act):
"""
Sets the type of the activation function to use
Activation can come with a set of arguments
:param act: type of activation function to use
:type act: str or tuple. e.g. "relu", ("leaky_relu", 0.01)
"""
if isinstance(act, tuple):
if isinstance(act[0], str):
act_fn = getattr(cutlass.backend.epilogue, act[0])
else:
act_fn = act[0]
self._reset_epilogue_functor_activation(act_fn)
self._activation_args = act[1]
self._activation = act[0]
else:
if isinstance(act, str):
act = getattr(cutlass.backend.epilogue, act)
self._reset_epilogue_functor_activation(act)
self._activation = act
@property
def epilogue_visitor(self):
"""
Return the epilogue functor
"""
return self.epilogue_functor
@epilogue_visitor.setter
def epilogue_visitor(self, visitor):
"""
Create the epilogue visitor
"""
self.epilogue_functor = EpilogueFunctorVisitor(self.cc, visitor)
# The epilogue_functor may consume too much shared memory
# Reset the possible operations
if self.cc != 90:
# The shared memory is only a concern for sm90 epilogue
# In sm80, the epilogue and mainloop share the shared memory
return
datatype_comb = self.possible_operations.datatype_comb
layout_comb = self.possible_operations.layout_comb
new_possible_operations = KernelsForDataType(datatype_comb, layout_comb)
for operation in self.possible_operations.all_operations:
td = datatypes.td_from_profiler_op(operation)
# Filter invalid epilogue schedules
if td.epilogue_schedule not in [
cutlass.EpilogueScheduleType.TmaWarpSpecialized,
cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative]:
continue
epilogue_smem_bytes = self.epilogue_functor.get_smem_size(td)
# Verify the maximum number of mainloop stages
mainloop_smem_per_stage = check.calculate_smem_usage_per_stage(td, OperationKind.Gemm)
smem_capacity_bytes = SharedMemPerCC[self.cc] << 10
mainloop_stages = (smem_capacity_bytes - epilogue_smem_bytes) // mainloop_smem_per_stage
if mainloop_stages < 2:
# Mainloop stages must >= 2
continue
new_possible_operations.add(operation)
if len(new_possible_operations.all_operations) == 0:
raise RuntimeError(
"The epilogue consumes too much shared memory. "
"No valid tile description is found in the generator.")
self.possible_operations = new_possible_operations
def run_setup(self):
"""
Steps that must be taken before caling `plan.run()`
"""
# Initialize the memory pool if, if not already done
cutlass.get_memory_pool()
|