File: shape.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (184 lines) | stat: -rw-r--r-- 5,715 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
Utilities for expressing shapes
"""

from cutlass_library import (
    ConvMode,
    ConvKind,
    LayoutType
)
from cutlass.backend.c_types import (
    Conv2DProblemSize_,
    GemmCoord_,
    GemmCoordBatched_
)


class MatrixCoord:
    def __init__(self, row, col):
        self._row = row
        self._col = col

    @property
    def row(self):
        return self._row

    @property
    def column(self):
        return self._col

    def leading_dimension(self, layout: LayoutType) -> int:
        """
        Returns the leading dimension for a matrix with layout ``layout`` and shape provided by the MatrixCoord.

        :param layout: layout of matrix
        :type layout: cutlass_library.LayoutType

        :returns: leading dimension
        :rtype: int
        """
        if layout == LayoutType.RowMajor:
            return self._col
        elif layout == LayoutType.ColumnMajor:
            return self._row
        else:
            raise Exception(f'Unsupported layout for leading dimension calculation: {layout}')


class GemmCoord:
    def __init__(self, m: int, n: int, k: int):
        self._m = m
        self._n = n
        self._k = k

    @property
    def m(self) -> int:
        return self._m

    @property
    def n(self) -> int:
        return self._n

    @property
    def k(self) -> int:
        return self._k

    @property
    def mk(self) -> MatrixCoord:
        return MatrixCoord(self._m, self._k)

    @property
    def mn(self) -> MatrixCoord:
        return MatrixCoord(self._m, self._n)

    @property
    def kn(self) -> MatrixCoord:
        return MatrixCoord(self._k, self._n)

    @property
    def ctype(self) -> GemmCoord_:
        return GemmCoord_(self._m, self._n, self._k)

    def batched_ctype(self, batch_count: int) -> GemmCoordBatched_:
        return GemmCoordBatched_(self._m, self._n, self._k, batch_count)


class Conv2DProblemSize:
    def __init__(
        self, n: int, h: int, w: int, c: int,
        k: int, r: int, s: int, c_: int,
        pad_h: int, pad_w: int, stride_h: int, stride_w: int,
        dilation_h: int, dilation_w: int, mode: ConvMode=ConvMode.CrossCorrelation,
        split_k_slices: int=1, groups: int=1):

        self.N = n
        self.H = h
        self.W = w
        self.C = c
        self.K = k
        self.R = r
        self.S = s
        self.pad_h = pad_h
        self.pad_w = pad_w
        self.stride_h = stride_h
        self.stride_w = stride_w
        self.dilation_h = dilation_h
        self.dilation_w = dilation_w
        self.mode = int(mode)
        self.split_k_slices = split_k_slices
        self.groups = groups
        self.P = ((h + pad_h * 2 - r * dilation_h) // stride_h) + 1
        self.Q = ((w + pad_w * 2 - s * dilation_w) // stride_w) + 1

    @property
    def ctype(self) -> Conv2DProblemSize_:
        return Conv2DProblemSize_(self)

    def implicit_gemm_size(self, kind: ConvKind):
        if kind == ConvKind.Fprop:
            return GemmCoord(
                self.N * self.P * self.Q,
                self.K,
                self.R * self.S * self.C // self.groups
            )
        elif kind == ConvKind.Dgrad:
            return GemmCoord(
                self.N * self.H * self.W,
                self.C,
                self.R * self.S * self.K
            )
        elif kind == ConvKind.Wgrad:
            return GemmCoord(
                self.K,
                self.R * self.S * self.C,
                self.N * self.P * self.Q
            )

    @staticmethod
    def from_sizes(input_size, weight_size):
        K, R, S, _ = weight_size
        pad_h = R // 2
        pad_w = S // 2
        stride_h = 1
        stride_w = 1
        dilation_h = 1
        dilation_w = 1
        return Conv2DProblemSize(
            *input_size,
            *weight_size,
            pad_h, pad_w,
            stride_h, stride_w,
            dilation_h, dilation_w
        )