1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Profiler based on the cuda events
"""
import re
import subprocess
from cuda import cuda, cudart
import numpy as np
from cutlass import CUTLASS_PATH
from cutlass.backend.library import DataTypeSize
from cutlass.op.op import OperationBase
from cutlass.shape import GemmCoord
from cutlass.utils.datatypes import is_numpy_tensor
class GpuTimer:
def __init__(self) -> None:
self.events = [
cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1],
cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1],
]
def start(self, stream=cuda.CUstream(0)):
(err,) = cuda.cuEventRecord(self.events[0], stream)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
def stop(self, stream=cuda.CUstream(0)):
(err,) = cuda.cuEventRecord(self.events[1], stream)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
pass
def stop_and_wait(self, stream=cuda.CUstream(0)):
self.stop(stream)
if stream:
(err,) = cuda.cuStreamSynchronize(stream)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
else:
(err,) = cudart.cudaDeviceSynchronize()
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
def duration(self, iterations=1):
err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1])
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
return duration / float(iterations)
class CUDAEventProfiler:
def __init__(self, op: OperationBase, warmup_iterations: int=500, iterations: int=500, *args, **kwargs) -> None:
self.arguments = op.run(*args, **kwargs)
self.operation = op.operation
self.warmup_iterations = warmup_iterations
self.iterations = iterations
self.timer = GpuTimer()
#
# Cutlass Python Interface Profiler
#
def __call__(self):
for _ in range(self.warmup_iterations):
self.operation.run(self.arguments)
self.timer.start()
for _ in range(self.iterations):
self.operation.run(self.arguments)
self.timer.stop_and_wait()
runtime = self.timer.duration(self.iterations)
return runtime
#
# CUTLASS Profiler
#
def run_cutlass_profiler(self):
alpha = 1.0
beta = 1.0
profiler_path = CUTLASS_PATH + "/build/tools/profiler/cutlass_profiler"
kernel_name = self.operation.procedural_name()
verification_providers = "device"
provider = "cutlass"
problem_size = self.arguments.problem_size
if "cutlass3x" in kernel_name:
# cutlass3x generator only have column-major output
layout_name = self.operation.layout_name_3x()
if layout_name[-1] == "t":
new_layout_name = "".join(["n" for l in layout_name if l == "t" or "t"])
problem_size = GemmCoord(problem_size.n, problem_size.m, problem_size.k)
kernel_name = kernel_name.replace(layout_name, new_layout_name)
batch_count = self.arguments.batch_count
cmd = f"{profiler_path} --kernels={kernel_name} --verification-providers={verification_providers} " \
f"--providers={provider} --m={problem_size.m()} --n={problem_size.n()} --k={problem_size.k()} " \
f"--batch_count={batch_count} --alpha={alpha} --beta={beta} "\
f"--warmup-iterations={self.warmup_iterations} --profiling-iterations={self.iterations}"
result = subprocess.getoutput(cmd)
m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result)
runtime = float(m.group("runtime"))
m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result)
bytes = int(m.group("bytes"))
m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result)
flops = int(m.group("flops"))
# check if the problem size matches
assert bytes == self.bytes(problem_size, batch_count, beta)
assert flops == self.flops(problem_size, batch_count, beta)
return runtime
def bytes(self, problem_size, batch_count=1, beta=0.0):
m = problem_size.m()
n = problem_size.n()
k = problem_size.k()
bytes = (
(DataTypeSize[self.operation.A.element] * m // 8) * k
+ (DataTypeSize[self.operation.B.element] * n // 8) * k
+ (DataTypeSize[self.operation.C.element] * m // 8) * n
)
if beta != 0:
bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n
bytes *= batch_count
return bytes
def flops(self, problem_size, batch_count=1, beta=0.0):
m = problem_size.m()
n = problem_size.n()
k = problem_size.k()
flops_ = (m * n * k) * 2 * batch_count
if beta != 0:
flops_ += m * n * batch_count * 2
return flops_
|