File: conv2d_sm80.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (146 lines) | stat: -rw-r--r-- 6,931 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
Low-level functionality tests for Conv2d opreations on SM80
"""

import logging
import unittest

import cutlass
from cutlass.backend.utils.device import device_cc

from conv2d_test_utils import *


cutlass.set_log_level(logging.WARNING)
cc = 80


@unittest.skipIf(device_cc() < cc, 'Device compute capability is invalid for SM80 tests.')
class Conv2dSm80(unittest.TestCase):
    """
    Wrapper class to which tests will be added dynamically in __main__
    """
    pass


conv_problems = get_conv_problems()


# Tests for optimized & analytic
for conv_kind in ["fprop", "wgrad", "dgrad"]:
    # F16, simt
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="simt", threadblock_shape=[128, 128, 8],
        warp_count=[4, 2, 1], stages=2, instruction_shape=[1, 1, 1])
    # F16, tensor op
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16])
    # F16, tensor op, analytic iterator
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="analytic")
    # F16, tensor op, f32 output
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16])
    # F16, tensor op, different tile description
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 64, 32],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8])
    # F32, simt
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32,
        opclass="simt", threadblock_shape=[128, 128, 8],
        warp_count=[4, 2, 1], stages=4, instruction_shape=[1, 1, 1])
    # Tf32, tensorop
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32,
        opclass="tensor_op", threadblock_shape=[128, 128, 16],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8]
    )
    # Split-K
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="serial",
        split_k_slices=2)
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="parallel",
        split_k_slices=5)
    # Swizzling functor
    add_test(
        Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 64, 32],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8], swizzle=4)

# Tests for few channels and fixed channels
# F16, tensor op, few channels
for c, tb, stage, inst in zip([2, 1],
                                [[128, 128, 64], [128, 128, 32]],
                                [3, 2],
                                [[16, 8, 16], [16, 8, 8]]):
    add_test(
        Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=tb,
        warp_count=[2, 2, 1], stages=stage, instruction_shape=inst, iterator_algorithm="few_channels"
    )
# F16, tensor op, fixed channels
for c in [8, 4, 2]:
    add_test(
        Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
        opclass="tensor_op", threadblock_shape=[128, 128, 64],
        warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="fixed_channels"
    )

# Test activations
for activation in ["relu", "leaky_relu"]:
    for split_k_mode, split_k_slices in zip(["parallel", "serial", "parallel"], [1, 7, 5]):
        add_test(
            Conv2dSm80, cc, "fprop", conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
            opclass="tensor_op", threadblock_shape=[128, 128, 64],
            warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode=split_k_mode,
            split_k_slices=split_k_slices, activation=activation)


if __name__ == '__main__':
    unittest.main()