File: gemm_batched.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (134 lines) | stat: -rw-r--r-- 4,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
High-level tests for running batched GEMMs
"""

from functools import partial
import logging
from math import prod
import unittest

import cutlass
from cutlass.backend.utils.device import device_cc
import torch

from utils import LayoutCombination

cutlass.set_log_level(logging.WARNING)

torch.manual_seed(2023)


def pytorch_reference(A, B, C, alpha, beta):
    # Get the batch count. Assume that any of A, B, and C
    # with a batch dimension ahve matching batch count. Thus,
    # we break out of the loop once we have found the first
    # tensor containing a batch dimension.
    batch_count = (1,)
    for tensor in [A, B, C]:
        if len(tensor.shape) > 2:
            batch_count = tensor.shape[:-2]
            break

    int_batch_count = prod(batch_count)

    def add_batch(tensor):
        if len(tensor.shape) == 2:
            return tensor.unsqueeze(0).repeat(int_batch_count, 1, 1)
        else:
            return tensor.reshape(-1, tensor.size(-2), tensor.size(-1))

    # Reshape tensors to have batch dimension
    A = add_batch(A)
    B = add_batch(B)
    C = add_batch(C)

    ret = (torch.bmm(A, B) * alpha) + (C * beta)
    reshape_vals = batch_count + C.shape[-2:]
    return ret.reshape(*reshape_vals)


def initialize(rows, cols, batch):
    tensor = torch.randint(-3, 3, size=(rows*cols*prod(batch),), device='cuda').half()
    if len(batch) > 0 and prod(batch) > 1:
        reshape_vals = batch + (rows, cols)
        return tensor.reshape(*reshape_vals)
    else:
        return tensor.reshape(rows, cols)


class GemmF16Batched(unittest.TestCase):
    def run_batched(self, batch_count: tuple, batch_A: bool, batch_B: bool, batch_C: bool):
        M = 512
        N = 256
        K = 128
        alpha = 1.
        beta = 2.

        A = initialize(M, K, batch_count if batch_A else (1,))
        B = initialize(K, N, batch_count if batch_B else (1,))
        C = initialize(M, N, batch_count if batch_C else (1,))
        D = initialize(M, N, batch_count)

        plan = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=cutlass.DataType.f32)
        plan.run(A, B, C, D, alpha, beta)
        reference = pytorch_reference(A, B, C, alpha, beta)
        assert reference.equal(D)

    def test_batched_ABC(self):
        self.run_batched((3,), True, True, True)
        self.run_batched((2, 3), True, True, True)

    def test_batched_AB(self):
        self.run_batched((3,), True, True, False)
        self.run_batched((2, 3), True, True, False)

    def test_batched_AC(self):
        self.run_batched((3,), True, False, True)
        self.run_batched((2, 3), True, False, True)

    def test_batched_BC(self):
        self.run_batched((3,), False, True, True)
        self.run_batched((2, 3), False, True, True)

    def test_batched_A(self):
        self.run_batched((3,), True, False, False)
        self.run_batched((2, 3), True, False, False)

    def test_batched_B(self):
        self.run_batched((3,), False, True, False)
        self.run_batched((2, 3), False, True, False)

if __name__ == '__main__':
    unittest.main()