1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
from math import prod
import os
import re
import subprocess
import torch
from cutlass_library import (
DataType,
DataTypeSize,
GemmUniversalMode,
LayoutType,
OpcodeClass,
ShortDataTypeNames,
SwizzlingFunctor
)
from cutlass.backend import compiler
from cutlass.backend.gemm_operation import GemmArguments, GemmOperationUniversal
from cutlass.backend.reduction_operation import ReductionArguments, ReductionOperation
from cutlass.shape import GemmCoord, MatrixCoord
from cutlass.utils.datatypes import torch_type
class GemmUniversalLauncher:
def __init__(
self,
operation,
seed=2080,
verification=True,
iterations=500,
compiler_mode= "nvcc",
**kwargs,
) -> None:
self.math_operation = operation.tile_description.math_instruction.math_operation
self.verification = verification
if compiler_mode == "nvcc":
compiler.nvcc()
elif compiler_mode == "nvrtc":
compiler.nvrtc()
else:
raise Exception(f"Unexpected compiler string {compiler_mode}")
op_list = [operation]
if operation.arch < 90:
# Split K via Python is currently only supported for pre-SM90 kernels
self.reduction_operation: ReductionOperation = ReductionOperation(
shape=MatrixCoord(4, 32 * operation.C.alignment),
C=operation.C,
element_accumulator=operation.tile_description.math_instruction.element_accumulator,
element_compute=operation.epilogue_functor.element_epilogue,
epilogue_functor=operation.epilogue_functor,
count=operation.C.alignment,
)
op_list.append(self.reduction_operation)
compiler.add_module(op_list, bypass_cache=False)
self.operation = operation
self.dtype_A = torch_type(operation.A.element if not self.operation.switched else self.operation.B.element)
self.dtype_B = torch_type(operation.B.element if not self.operation.switched else self.operation.A.element)
self.dtype_C = torch_type(operation.C.element)
self.dtype_D = torch_type(operation.epilogue_functor.element_output)
element_size = min(DataTypeSize[operation.A.element], DataTypeSize[operation.B.element])
if element_size == 1:
self.rand_max = 1
self.rand_min = 0
elif element_size <= 8:
self.rand_max = 1
self.rand_min = -1
elif element_size == 16:
self.rand_max = 4
self.rand_min = -4
else:
self.rand_max = 8
self.rand_min = -8
self.seed = seed
self.compute_type = operation.epilogue_functor.element_epilogue
self.accumulator_type = operation.tile_description.math_instruction.element_accumulator
def print_problem_size(self, p, mode, batch_count):
if mode == GemmUniversalMode.Gemm:
mode = "Gemm"
elif mode == GemmUniversalMode.Batched:
mode = "GemmBatched"
elif mode == GemmUniversalMode.GemmSplitKParallel:
mode = "GemmSplitKParallel"
print(f"problem: {p.m}, {p.n}, {p.k}\n batch_count: {batch_count}\n mode: {mode}")
def uniform_init(self, shape, dtype, layout):
size = prod(shape)
if dtype.is_floating_point:
# Initialize data in FP32 and call convert to the data type we desire.
# This is a workaround for the following error that occurs when attempting to
# call uniform_ on a tensor with torch.float8_e4m3fn data:
# RuntimeError: "check_uniform_bounds" not implemented for 'Float8_e4m3fn'
data = torch.ceil(
torch.empty(size=(size,), dtype=torch.float32, device="cuda").uniform_(
self.rand_min - 0.5, self.rand_max - 0.5)
).to(dtype)
else:
# PyTorch does not currently support integer-typed matrix multiplications on GPU.
# Fall back to CPU for integer type references.
data = torch.empty(size=(size,), dtype=dtype, device="cpu").random_(self.rand_min, self.rand_max + 1)
is_fp8 = dtype == getattr(torch, "float8_e4m3fn", -1) or dtype == dtype == getattr(torch, "float8_e5m2", -1)
if dtype == torch.float64 or dtype == torch.float32 or is_fp8:
data = data.to("cpu")
data_ref = data.reshape(shape)
if layout == LayoutType.RowMajor:
data_cutlass = data_ref
else:
data_cutlass = data_ref.transpose(-1, -2).contiguous()
data_cutlass = data_cutlass.to("cuda")
# As of this writing, few operations in PyTorch are supported with FP8 data.
# Thus, we perform computation in FP32 for FP8 reference checks.
if is_fp8:
data_ref = data_ref.to(torch.float32)
return data_cutlass, data_ref
def reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta):
# If any tensor is on CPU, place all tensors on CPU unless only
# tensor C is on CPU
# Handle mixed-input cases by casting to the larger data type and overriding
# to whatever the data type of the larger type is
if self.dtype_A != self.dtype_B:
if DataTypeSize[self.operation.A.element] < DataTypeSize[self.operation.B.element]:
tensor_A = tensor_A.to(self.dtype_B).to(tensor_B.device)
else:
tensor_B = tensor_B.to(self.dtype_A).to(tensor_A.device)
devices = [x.device.type for x in [tensor_A, tensor_B]]
if tensor_C is not None:
devices.append(tensor_C.device.type)
if "cpu" in devices and devices != ["cuda", "cuda", "cpu"]:
device = torch.device("cpu")
else:
device = tensor_A.device
tensor_A = tensor_A.to(device)
tensor_B = tensor_B.to(device)
if tensor_C is not None:
tensor_C = tensor_C.to(device)
dtype = torch_type(self.compute_type)
alpha_torch = torch.tensor([alpha], device=device).to(dtype)
beta_torch = torch.tensor([beta], device=device).to(dtype)
tmp = tensor_A @ tensor_B
tensor_D_ref = (alpha_torch * tmp)
if tensor_C is not None:
tensor_D_ref += (tensor_C * beta_torch)
return tensor_D_ref.to(self.dtype_D)
def run(self, mode, problem_size, batch_count=1, split_k_slices=1, alpha=1.0, beta=0.0):
torch.random.manual_seed(self.seed)
# Assign an actual batch count in cases where we are not running in batched mode.
# This is to differentiate between the number of split K slices and the batch count,
# which are overloaded within the single `batch_count` variable.
if mode == GemmUniversalMode.Batched:
true_batch_count = batch_count
else:
true_batch_count = 1
def transpose(layout):
if layout == LayoutType.RowMajor:
return LayoutType.ColumnMajor
else:
return LayoutType.RowMajor
tensor_A, tensor_A_ref = self.uniform_init(
(true_batch_count, problem_size.m, problem_size.k),
self.dtype_A,
self.operation.A.layout if not self.operation.switched else transpose(self.operation.B.layout),
)
tensor_B, tensor_B_ref = self.uniform_init(
(true_batch_count, problem_size.k, problem_size.n),
self.dtype_B,
self.operation.B.layout if not self.operation.switched else transpose(self.operation.A.layout),
)
if self.dtype_C is not None:
tensor_C, tensor_C_ref = self.uniform_init(
(true_batch_count, problem_size.m, problem_size.n),
self.dtype_C,
self.operation.C.layout if not self.operation.switched else transpose(self.operation.C.layout),
)
else:
tensor_C = None
tensor_C_ref = None
tensor_D, _ = self.uniform_init(
(true_batch_count, problem_size.m, problem_size.n),
self.dtype_D,
self.operation.C.layout if not self.operation.switched else transpose(self.operation.C.layout),
)
tensor_D = torch.zeros_like(tensor_D)
if self.compute_type in [DataType.s8, DataType.s32, DataType.u8, DataType.u32]:
alpha = int(alpha)
beta = int(beta)
#
# Launch kernel
#
arguments = GemmArguments(
operation=self.operation,
problem_size=problem_size,
A=tensor_A,
B=tensor_B,
C=tensor_C,
D=tensor_D,
output_op=self.operation.epilogue_type(alpha, beta),
gemm_mode=mode,
split_k_slices=split_k_slices,
batch=batch_count,
)
if mode == GemmUniversalMode.GemmSplitKParallel:
reduction_arguments = ReductionArguments(
self.reduction_operation,
problem_size=[problem_size.m, problem_size.n],
partitions=split_k_slices,
workspace=arguments.ptr_D,
destination=tensor_D,
source=tensor_C,
output_op=self.reduction_operation.epilogue_type(alpha, beta),
)
self.operation.run(arguments)
if mode == GemmUniversalMode.GemmSplitKParallel:
self.reduction_operation.run(reduction_arguments)
passed = True
if self.verification:
if mode == GemmUniversalMode.GemmSplitKParallel:
reduction_arguments.sync()
# Free memory allocated by args because we are not
# calling `arguments.sync()` in this case (which will free memory)
arguments.free()
else:
arguments.sync()
tensor_D_ref = self.reference(
problem_size,
tensor_A_ref,
tensor_B_ref,
tensor_C_ref,
alpha,
beta,
)
tensor_D_ref = tensor_D_ref.to('cuda')
if self.operation.switched or self.operation.C.layout == LayoutType.ColumnMajor:
tensor_D = tensor_D.transpose(-1, -2).contiguous()
passed = tensor_D.equal(tensor_D_ref)
try:
assert passed
except AssertionError:
self.print_problem_size(problem_size, mode, batch_count)
del arguments
if mode == GemmUniversalMode.GemmSplitKParallel:
del reduction_arguments
return passed
def test_all_gemm(operation: "GemmOperationUniversal", testcase="universal", compilation_mode="nvcc"):
passed = True
minimum_operand_element_size = min(
DataTypeSize[operation.A.element], DataTypeSize[operation.B.element]
)
opcode_class = operation.tile_description.math_instruction.opcode_class
if opcode_class == OpcodeClass.Simt:
alignment = 1
else:
alignment = 128 // minimum_operand_element_size
alignment_m = alignment
alignment_n = alignment
alignment_k = alignment
# INT8 alignment constraints
if opcode_class == OpcodeClass.Simt:
A_is_s8 = operation.A.element == DataType.s8
B_is_s8 = operation.B.element == DataType.s8
if A_is_s8 and operation.A.layout == LayoutType.ColumnMajor:
alignment_m = 4
if B_is_s8 == DataType.s8 and operation.A.layout == LayoutType.RowMajor:
alignment_n = 4
if A_is_s8 and B_is_s8 and (operation.A.layout == LayoutType.RowMajor or operation.B.layout == LayoutType.ColumnMajor):
alignment_k = 4
threadblock_k = operation.tile_description.threadblock_shape[2]
assert testcase != "interleaved"
supports_split_k = operation.arch < 90 and not operation.swizzling_functor == SwizzlingFunctor.StreamK
if testcase == "multistage":
modes = [GemmUniversalMode.Gemm]
problem_size_m = [16, 528]
problem_size_n = [16, 528]
problem_size_k = [
threadblock_k,
threadblock_k * operation.tile_description.stages
+ operation.tile_description.math_instruction.instruction_shape[2],
]
problem_alpha = [1.0]
problem_beta = [0.0]
batch_counts = [1]
else:
modes = [GemmUniversalMode.Gemm]
batch_counts = [1, 2, 3, 5, 7]
if supports_split_k:
modes.append(GemmUniversalMode.GemmSplitKParallel)
problem_size_m = [alignment_m, 512 - 3 * alignment_m]
problem_size_n = [alignment_n, 512 - 2 * alignment_n]
if operation.tile_description.stages is None:
stages_for_k_calc = 7
else:
stages_for_k_calc = operation.tile_description.stages
problem_size_k = [
alignment_k,
threadblock_k * stages_for_k_calc - alignment_k,
threadblock_k * stages_for_k_calc * 3 - alignment_k,
]
problem_alpha = [1.0]
problem_beta = [2.0]
testbed = GemmUniversalLauncher(operation, compiler_mode=compilation_mode)
for mode in modes:
for m in problem_size_m:
for n in problem_size_n:
for k in problem_size_k:
for batch_count in batch_counts:
for alpha in problem_alpha:
for beta in problem_beta:
# skip very small K problems
if testcase == "universal":
if k // batch_count < 2 * threadblock_k:
continue
problem_size = GemmCoord(m, n, k)
if supports_split_k:
split_k_slices = batch_count
else:
split_k_slices = 1
overridden_mode = mode
if mode == GemmUniversalMode.Gemm and batch_count > 1:
overridden_mode = GemmUniversalMode.Batched
passed = testbed.run(
overridden_mode,
problem_size,
batch_count,
split_k_slices,
alpha,
beta,
)
if not passed:
return False
return passed
|