1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Tests the high-level Conv2d interface
"""
from math import ceil
import unittest
import cutlass
import cutlass.utils.datatypes as datatypes
from cutlass.backend.utils.device import device_cc
from utils import ExpectException
import os
class Conv2dEquivalence:
"""
Helper class for testing the equivalence of different constructions of the Conv2d interface
"""
def __init__(self, conv_kind, element_A, element_B, element_C, element_D, element_accumulator,
alignment_A, alignment_B, alignment_C):
self.element_A = element_A
self.element_B = element_B
self.element_C = element_C
self.element_D = element_D
self.element_accumulator = element_accumulator
self.alignment_A = alignment_A
self.alignment_B = alignment_B
self.alignment_C = alignment_C
self.conv_kind = conv_kind
self.plan = cutlass.op.Conv2d(
kind=self.conv_kind, element_A=element_A, element_B=element_B, element_C=element_C,
element_D=element_D, element_accumulator=element_accumulator)
self.op = self.plan.construct(
alignment_A=self.alignment_A, alignment_B=self.alignment_B,
alignment_C=self.alignment_C)
def _plans_equal(self, other_plan) -> bool:
"""
Compares whether two plans are equal
:param other_plan: plan to compare against the default Conv2d
:type other_plan: cutlass.op.Conv2d
:return: whether `other_plan` is equivalent to `self.plan`
:rtype: bool
"""
other_op = other_plan.construct(
alignment_A=self.alignment_A, alignment_B=self.alignment_B,
alignment_C=self.alignment_C)
return self.op.rt_module.emit() == other_op.rt_module.emit()
def generic_test(self):
"""
Tests the equivalence of various constructions of the Conv2d interface when using CUTLASS data types
and layouts for constructing the Conv2d interface
"""
if not datatypes.is_numpy_available():
return
# Test when specifying all parameters
plan_other = cutlass.op.Conv2d(
kind=self.conv_kind,
element_A=self.element_A, element_B=self.element_B, element_C=self.element_C,
element_D=self.element_D, element_accumulator=self.element_accumulator)
assert self._plans_equal(plan_other)
# Test when specifying all parameters but A
plan_other = cutlass.op.Conv2d(
kind=self.conv_kind,
element_B=self.element_B, element_C=self.element_C,
element_D=self.element_D, element_accumulator=self.element_accumulator,
element=self.element_A)
assert self._plans_equal(plan_other)
# Test when specifying all parameters but A and B as tensors using generic element and output
plan_other = cutlass.op.Conv2d(
kind=self.conv_kind,
element_C=self.element_C,
element_D=self.element_D, element_accumulator=self.element_accumulator,
element=self.element_A)
assert self._plans_equal(plan_other)
# Test without explicit accumulator. Only run if the type of C and the accumulator are equal
if self.element_C == self.element_accumulator:
plan_other = cutlass.op.Conv2d(
kind=self.conv_kind,
element_C=self.element_C,
element_D=self.element_D,
element=self.element_A)
assert self._plans_equal(plan_other)
# Test with only the generic types. Only rune if the types of A, B, C, and D are the same
if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D
and self.element_A == self.element_accumulator):
plan_other = cutlass.op.Conv2d(kind=self.conv_kind, element=self.element_A)
assert self._plans_equal(plan_other)
def numpy_test(self):
"""
Tests the equivalence of various constructions of the Conv2d interface when using numpy as a frontend
"""
if not datatypes.is_numpy_available():
return
import numpy as np
type_A = datatypes.numpy_type(self.element_A)
type_B = datatypes.numpy_type(self.element_B)
type_C = datatypes.numpy_type(self.element_C)
type_D = datatypes.numpy_type(self.element_D)
type_accum = datatypes.numpy_type(self.element_accumulator)
size = (2, 2)
A = np.zeros(size, dtype=type_A)
B = np.zeros(size, dtype=type_B)
C = np.zeros(size, dtype=type_C)
D = np.zeros(size, dtype=type_D)
return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D)
def torch_test(self):
"""
Tests the equivalence of various constructions of the Conv2d interface when using torch as a frontend
"""
if not datatypes.is_torch_available():
return
import torch
type_A = datatypes.torch_type(self.element_A)
type_B = datatypes.torch_type(self.element_B)
type_C = datatypes.torch_type(self.element_C)
type_D = datatypes.torch_type(self.element_D)
type_accum = datatypes.torch_type(self.element_accumulator)
size = (2, 2)
A = torch.empty(size, dtype=type_A)
B = torch.empty(size, dtype=type_B)
C = torch.empty(size, dtype=type_C)
D = torch.empty(size, dtype=type_D)
return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D)
def tensor_test(self, type_A, type_B, type_C, type_D, type_accum, A, B, C, D):
# Test when specifying all parameters via tensors
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D, element_accumulator=type_accum)
assert self._plans_equal(plan_np)
# Test when specifying all parameters but A as tensors
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A)
assert self._plans_equal(plan_np)
# Test when specifying all parameters but A and B as tensors and using generic element and output
if type_A == type_B:
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, C=C, D=D, element_accumulator=type_accum, element=type_A)
assert self._plans_equal(plan_np)
# Test without explicit accumulator. Only run if the type of C and the accumulator.
if type_C == type_accum:
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D)
assert self._plans_equal(plan_np)
# Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same.
if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum):
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, element=type_A)
assert self._plans_equal(plan_np)
def test_all(self):
"""
Runs all tests on the Gemm interface
"""
self.generic_test()
self.numpy_test()
self.torch_test()
@unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.')
class ConvEquivalenceTest(unittest.TestCase):
"""
Tests the equivalence of different constructions of the Conv2d interface
"""
pass
type2alignment = {
cutlass.DataType.f16: 8,
cutlass.DataType.f32: 4
}
def add_test(conv_kind, element_A, element_B, element_C, element_D, element_accumulator):
test_name = f"test_conv2d_{conv_kind}_{element_A}_{element_B}_{element_C}_{element_D}_{element_accumulator}"
def run(self):
conv2d_eq = Conv2dEquivalence(
conv_kind=conv_kind,
element_A=element_A, element_B=element_B,
element_C=element_C, element_D=element_D,
element_accumulator=element_accumulator,
alignment_A=type2alignment[element_A], alignment_B=type2alignment[element_B],
alignment_C=type2alignment[element_C]
)
conv2d_eq.test_all()
setattr(ConvEquivalenceTest, test_name, run)
for conv_kind in ["fprop", "wgrad", "dgrad"]:
for types in [
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16],
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32],
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f16],
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32],
[cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32]
]:
add_test(conv_kind, types[0], types[1], types[2], types[3], types[4])
@unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.')
class Conv2dErrorTests(unittest.TestCase):
"""
Tests various error scenarios that arise with the high-level Gemm interface
"""
def test_alignment(self):
"""
Tests case in which the alignment specified is unsupported
"""
plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16)
with ExpectException(True, 'Alignment 3 is not supported for F16. The construction should fail.'):
op = plan.construct(alignment_A=3, alignment_B=3, alignment_C=3)
def test_invalid_tile_description(self):
"""
Tests scenarios in which an invalid tile description is provided for a given CC
"""
plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16)
td = plan.tile_descriptions()[0]
td.threadblock_shape=[17, 32, 5]
plan.tile_description = td
with ExpectException(True, 'The threadblock shape is invalid. The compilation should fail.'):
plan.compile()
# Clean up the error message
os.remove("./cutlass_python_compilation_device_error.txt")
if __name__ == '__main__':
unittest.main()
|