File: gemm_interface.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (351 lines) | stat: -rw-r--r-- 17,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
Tests the high-level GEMM interface
"""

from math import ceil
import unittest

import cutlass
import cutlass.utils.datatypes as datatypes
from cutlass.backend.utils.device import device_cc
from utils import ExpectException


class GemmEquivalence:
    """
    Helper class for testing the equivalence of different constructions of the Gemm interface
    """
    def __init__(self, element_A, element_B, element_C, element_D, element_accumulator,
                 layout_A, layout_B, layout_C, alignment_A, alignment_B, alignment_C):
        self.element_A = element_A
        self.element_B = element_B
        self.element_C = element_C
        self.element_D = element_D
        self.element_accumulator = element_accumulator
        self.layout_A = layout_A
        self.layout_B = layout_B
        self.layout_C = layout_C
        self.alignment_A = alignment_A
        self.alignment_B = alignment_B
        self.alignment_C = alignment_C
        self.plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_C,
                                    element_D=element_D, element_accumulator=element_accumulator,
                                    layout_A=layout_A, layout_B=layout_B, layout_C=layout_C)
        self.op = self.plan.construct(alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C)

    def _plans_equal(self, other_plan) -> bool:
        """
        Compares whether two plans are equal

        :param other_plan: plan to compare against the default GEMM
        :type other_plan: cutlass.op.Gemm

        :return: whether `other_plan` is equivalent to `self.plan`
        :rtype: bool
        """
        other_op = other_plan.construct(alignment_A=self.alignment_A, alignment_B=self.alignment_B, alignment_C=self.alignment_C)

        # Compare whether the operations are equal by comparing the C++ code that would be emitted for them
        return self.op.rt_module.emit() == other_op.rt_module.emit()

    def generic_test(self):
        """
        Tests the equivalence of various constructions of the Gemm interface when using CUTLASS data types
        and layouts for constructing the Gemm interface
        """
        if not datatypes.is_numpy_available():
            return

        # Test when specifying all parameters
        plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C,
                                  element_D=self.element_D, element_accumulator=self.element_accumulator,
                                  layout_A=self.layout_A, layout_B=self.layout_B, layout_C=self.layout_C)
        assert self._plans_equal(plan_other)

        # Test when specifying all parameters but A
        plan_other = cutlass.op.Gemm(element_B=self.element_B, element_C=self.element_C,
                                  element_D=self.element_D, element_accumulator=self.element_accumulator,
                                  layout_B=self.layout_B, layout_C=self.layout_C,
                                  element=self.element_A, layout=self.layout_A)
        assert self._plans_equal(plan_other)

        # Test when specifying all parameters but A and B as tensors and using generic element and output
        # Only run this test if the layouts and types for A and B are equal.
        if self.element_A == self.element_B and self.layout_A == self.layout_B:
            plan_other = cutlass.op.Gemm(element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator,
                                      layout_C=self.layout_C, element=self.element_A, layout=self.layout_A)
            assert self._plans_equal(plan_other)

        # Test without explicit accumulator. Only run if the type of C and the accumulator.
        if self.element_C == self.element_accumulator:
            plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C,
                                      element_D=self.element_D, layout_A=self.layout_A, layout_B=self.layout_B,
                                      layout_C=self.layout_C)
            assert self._plans_equal(plan_other)

        # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same.
        if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D
            and self.element_A == self.element_accumulator and
            self.layout_A == self.layout_B and self.layout_A == self.layout_C):
            plan_other = cutlass.op.Gemm(element=self.element_A, layout=self.layout_A)
            assert self._plans_equal(plan_other)

    def numpy_test(self):
        """
        Tests the equivalence of various constructions of the Gemm interface when using numpy as a frontend
        """
        if not datatypes.is_numpy_available():
            return

        import numpy as np
        type_A = datatypes.numpy_type(self.element_A)
        type_B = datatypes.numpy_type(self.element_B)
        type_C = datatypes.numpy_type(self.element_C)
        type_D = datatypes.numpy_type(self.element_D)
        type_accum = datatypes.numpy_type(self.element_accumulator)

        layout_to_order = {
            cutlass.LayoutType.RowMajor: 'C',
            cutlass.LayoutType.ColumnMajor: 'F'
        }
        size = (2, 2)
        A = np.zeros(size, order=layout_to_order[self.layout_A], dtype=type_A)
        B = np.zeros(size, order=layout_to_order[self.layout_B], dtype=type_B)
        C = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_C)
        D = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_D)

        # Test when specifying all parameters via tensors
        plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=type_accum)
        assert self._plans_equal(plan_np)

        # Test when specifying all parameters but A as tensors
        plan_np = cutlass.op.Gemm(B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A, layout_A=self.layout_A)
        assert self._plans_equal(plan_np)

        # Test when specifying all parameters but A and B as tensors and using generic element and output
        # Only run this test if the layouts and types for A and B are equal.
        if type_A == type_B and self.layout_A == self.layout_B:
            plan_np = cutlass.op.Gemm(C=C, D=D, element_accumulator=type_accum, element=type_A, layout=self.layout_A)
            assert self._plans_equal(plan_np)

        # Test without explicit accumulator. Only run if the type of C and the accumulator.
        if type_C == type_accum:
            plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D)
            assert self._plans_equal(plan_np)

        # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same.
        if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum and
            self.layout_A == self.layout_B and self.layout_A == self.layout_C):
            plan_np = cutlass.op.Gemm(element=type_A, layout=self.layout_A)
            assert self._plans_equal(plan_np)

    def test_all(self):
        """
        Runs all tests on the Gemm interface
        """
        self.generic_test()
        self.numpy_test()


class GemmEquivalenceTest(unittest.TestCase):
    """
    Tests the equivalence of different constructions of the Gemm interface
    """
    @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.")
    def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_8_8_8(self):
        gemm_eq = GemmEquivalence(
                element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16,
                element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16,
                layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor,
                alignment_A=8, alignment_B=8, alignment_C=8)
        gemm_eq.test_all()

    @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.")
    def test_gemm_equivalence_f16_f16_f16_f16_f32_ntn_8_8_8(self):
        gemm_eq = GemmEquivalence(
                element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16,
                element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32,
                layout_A=cutlass.LayoutType.ColumnMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.ColumnMajor,
                alignment_A=8, alignment_B=8, alignment_C=8)
        gemm_eq.test_all()

    @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.")
    def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_4_4_4(self):
        gemm_eq = GemmEquivalence(
                element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16,
                element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16,
                layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor,
                alignment_A=8, alignment_B=8, alignment_C=8)
        gemm_eq.test_all()

    @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for F64 Tensor Core tests.")
    def test_gemm_equivalence_f64_f64_f64_f64_f64_tnt_1_1_1(self):
        gemm_eq = GemmEquivalence(
                element_A=cutlass.DataType.f64, element_B=cutlass.DataType.f64, element_C=cutlass.DataType.f64,
                element_D=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64,
                layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.ColumnMajor, layout_C=cutlass.LayoutType.RowMajor,
                alignment_A=1, alignment_B=1, alignment_C=1)
        gemm_eq.test_all()


class GemmErrorTests(unittest.TestCase):
    """
    Tests various error scenarios that arise with the high-level Gemm interface
    """

    def test_alignment(self):
        """
        Tests case in which the alignment specified is unsupported
        """
        plan = cutlass.op.Gemm(element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor)

        with ExpectException(True, 'Alignment 16 is not supported for F16. The construction should fail.'):
            op = plan.construct(alignment_A=16, alignment_B=16, alignment_C=16)

    def test_tensorop_availability(self):
        """
        Tests case in which only SIMT operations are available but TensorOp is requested
        """
        cc = device_cc()

        # F64 Tensor Core operations are only avaiable on devices with CC >= 80
        supports_tensorop_f64 = cc >= 80
        plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f64, layout=cutlass.LayoutType.RowMajor)

        error_msg = f'Incorrectly raised an exception for availability of TensorOp with F64 operands on SM{cc}'
        with ExpectException(not supports_tensorop_f64, error_msg):
            plan.opclass = cutlass.OpcodeClass.TensorOp

        expected_opclass = cutlass.OpcodeClass.TensorOp if supports_tensorop_f64 else cutlass.OpcodeClass.Simt
        assert plan.opclass == expected_opclass, f'Expected opclass to be {expected_opclass}, but received {plan.opclass} for SM{cc}'

    @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for F16 Tensor Core tests.")
    def test_opclass_switch(self):
        """
        Tests cases in which the opcode class in question is switched (e.g., from TensorOp to SIMT)
        """
        plan = cutlass.op.Gemm( element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor)
        assert plan.opclass == cutlass.OpcodeClass.TensorOp

        # Ensure that all tile descriptions have opclass of TensorOp
        for td in plan.tile_descriptions():
            assert td.math_instruction.opcode_class == cutlass.OpcodeClass.TensorOp

        plan.opclass = cutlass.OpcodeClass.Simt

        # Ensure that all tile descriptions have opclass of Simt
        for td in plan.tile_descriptions():
            assert td.math_instruction.opcode_class == cutlass.OpcodeClass.Simt

    def test_invalid_tile_description(self):
        """
        Tests scenarios in which an invalid tile description is provided for a given CC
        """
        cc = device_cc()
        plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor)
        td = plan.tile_descriptions()[0]
        stages = td.stages

        # Zero stage count is valid for SM90+, as this is used to indicate that the builder's auto stage
        # count should be used
        with ExpectException(cc < 90, f'Requested zero stages'):
            td.stages = 0
            plan.construct(td)

        if cc < 90:
            with ExpectException(cc < 80, f'Requested more than 2 stages on SM{cc}'):
                td.stages = 3
                plan.construct(td)
        else:
            original_kschedule = td.kernel_schedule
            original_eschedule = td.epilogue_schedule
            with ExpectException(False, f'Incorrectly flagged an error for insufficient shared memory'):
                td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong
                td.epilogue_schedule = cutlass.EpilogueScheduleType.NoSmemWarpSpecialized
                td.stages = 3
                plan.construct(td)

            # Reset schedules
            td.kernel_schedule = original_kschedule
            td.epilogue_schedule = original_eschedule

        with ExpectException(True, f'Requested too many stages'):
            td.stages = 100
            plan.construct(td)

        # Reset stage count
        td.stages = stages

        cluster_shape = td.cluster_shape
        with ExpectException(cc < 90, f'Requested non-unit cluster shape on SM{cc}'):
            td.cluster_shape = [2, 1, 1]
            plan.construct(td)

        # Reset cluster shape
        td.cluster_shape = cluster_shape

        with ExpectException(cc < 90, f'Requested a non-auto schedule on SM{cc}'):
            td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong
            td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized
            plan.construct(td)

        with ExpectException(True, f'Requested a non-auto kernel schedule with an auto epilogue schedule'):
            td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong
            td.epilogue_schedule = cutlass.EpilogueScheduleType.ScheduleAuto
            plan.construct(td)

        with ExpectException(True, f'Requested an auto kernel schedule with a non-auto epilogue schedule'):
            td.kernel_schedule = cutlass.KernelScheduleType.ScheduleAuto
            td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized
            plan.construct(td)

        with ExpectException(cc < 90, f'Requested a tile scheduler on SM{cc}'):
            td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedCooperative
            td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative
            td.tile_scheduler = cutlass.TileSchedulerType.StreamK
            plan.construct(td)

        # Ensure that all returned tile descriptions are unique
        ops = {}
        for i, td in enumerate(plan.tile_descriptions()):
            op = plan.construct(td)
            code_str = op.rt_module.emit()
            if code_str in ops:
                conflicting_td = ops[code_str]
                assert False, f'Multiple tile descriptions emitted {code_str}\nTile descriptions are:\n{td}\n{conflicting_td}'


if __name__ == '__main__':
    unittest.main()