File: array.cu

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (261 lines) | stat: -rw-r--r-- 7,365 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/***************************************************************************************************
 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/*! \file
    \brief Statically sized array of elements that accommodates all CUTLASS-supported numeric types
           and is safe to use in a union.
*/

#include "../common/cutlass_unit_test.h"

#include "cutlass/array.h"
#include "cutlass/util/device_memory.h"
#pragma warning( disable : 4800)
/////////////////////////////////////////////////////////////////////////////////////////////////

namespace test {
namespace core {

/// Each thread clears its array and writes to global memory. No PRMT instructions should
/// be generated if Array<T, N> is a multiple of 32 bits.
template <typename T, int N>
__global__ void test_array_clear(cutlass::Array<T, N> *ptr) {

  cutlass::Array<T, N> storage;

  storage.clear();

  ptr[threadIdx.x] = storage;
}

/// Each thread writes its thread index into the elements of its array and then writes the result
/// to global memory.
template <typename T, int N>
__global__ void test_array_threadid(cutlass::Array<T, N> *ptr) {

  cutlass::Array<T, N> storage;

  CUTLASS_PRAGMA_UNROLL
  for (int i = 0; i < N; ++i) {
    storage.at(i) = T(int(threadIdx.x));
  }

  ptr[threadIdx.x] = storage;
}

/// Each thread writes its thread index into the elements of its array and then writes the result
/// to global memory.
template <typename T, int N>
__global__ void test_array_sequence(cutlass::Array<T, N> *ptr) {

  cutlass::Array<T, N> storage;

  CUTLASS_PRAGMA_UNROLL
  for (int i = 0; i < N; ++i) {
    storage.at(i) = T(i);
  }

  ptr[threadIdx.x] = storage;
}

} // namespace core
} // namespace test

/////////////////////////////////////////////////////////////////////////////////////////////////

template <typename T, int N>
class TestArray {
public:

  //
  // Data members
  //

  /// Number of threads
  int const kThreads = 32;

  typedef cutlass::Array<T, N> ArrayTy;


  //
  // Methods
  //

  /// Ctor
  TestArray() {

  }

  /// Runs the test
  void run() {

    /// Device memory containing output
    cutlass::device_memory::allocation< ArrayTy > output(kThreads);
    std::vector< ArrayTy > output_host(kThreads);

    dim3 grid(1,1);
    dim3 block(kThreads, 1, 1);

    test::core::test_array_clear<<< grid, block >>>(output.get());

    cudaError_t result = cudaDeviceSynchronize();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    //
    // Verify contains all zeros
    //

    cutlass::device_memory::copy_to_host(output_host.data(), output.get(), kThreads);

    result = cudaGetLastError();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    char const *ptr_host = reinterpret_cast<char const *>(output_host.data());
    for (int i = 0; i < sizeof(ArrayTy) * kThreads; ++i) {
      EXPECT_FALSE(ptr_host[i]);
    }

    //
    // Verify each element contains the low bits of the thread Id
    //

    test::core::test_array_threadid<<< grid, block >>>(output.get());

    result = cudaDeviceSynchronize();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    cutlass::device_memory::copy_to_host(output_host.data(), output.get(), kThreads);

    result = cudaGetLastError();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    for (int i = 0; i < kThreads; ++i) {
      T tid = T(i);

      ArrayTy thread = output_host.at(i);

      // Element-wise access
      for (int j = 0; j < N; ++j) {
        EXPECT_TRUE(tid == thread[j]);
      }

      // Iterator access
      for (auto it = thread.begin(); it != thread.end(); ++it) {
        EXPECT_TRUE(tid == *it);
      }

      // Range-based for
      for (auto const & x : thread) {
        EXPECT_TRUE(tid == x);
      }
    }

    //
    // Verify each element
    //

    test::core::test_array_sequence<<< grid, block >>>(output.get());

    result = cudaDeviceSynchronize();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    cutlass::device_memory::copy_to_host(output_host.data(), output.get(), kThreads);

    result = cudaGetLastError();
    ASSERT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result);

    for (int i = 0; i < kThreads; ++i) {

      ArrayTy thread = output_host.at(i);

      // Element-wise access
      for (int j = 0; j < N; ++j) {
        T got = T(j);
        EXPECT_TRUE(got == thread[j]);
      }

      // Iterator access
      int j = 0;
      for (auto it = thread.begin(); it != thread.end(); ++it, ++j) {
        T got = T(j);
        EXPECT_TRUE(got == *it);
      }

      // Range-based for
      j = 0;
      for (auto const & x : thread) {
        T got = T(j);
        EXPECT_TRUE(got == x);
        ++j;
      }
    }
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Array, Int8x16) {
  TestArray<int8_t, 16>().run();
}

TEST(Array, Int32x4) {
  TestArray<int, 4>().run();
}

#if __CUDA_ARCH__ >= 520
TEST(Array, Float16x8) {
  TestArray<cutlass::half_t, 8>().run();
}
#endif

TEST(Array, FloatBF16x8) {
  TestArray<cutlass::bfloat16_t, 8>().run();
}

TEST(Array, FloatTF32x4) {
  TestArray<cutlass::tfloat32_t, 4>().run();
}

TEST(Array, Float32x4) {
  TestArray<float, 4>().run();
}

TEST(Array, Int4x32) {
  TestArray<cutlass::int4b_t, 32>().run();
}

TEST(Array, Uint4x32) {
  TestArray<cutlass::uint4b_t, 32>().run();
}

TEST(Array, Bin1x128) {
  TestArray<cutlass::bin1_t, 128>().run();
}

/////////////////////////////////////////////////////////////////////////////////////////////////