1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
/*******************************************************************************
Copyright (c) 2015-2022 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_api.h"
#include "uvm_global.h"
#include "uvm_gpu_replayable_faults.h"
#include "uvm_tools_init.h"
#include "uvm_lock.h"
#include "uvm_test.h"
#include "uvm_va_space.h"
#include "uvm_va_space_mm.h"
#include "uvm_va_range.h"
#include "uvm_va_block.h"
#include "uvm_tools.h"
#include "uvm_common.h"
#include "uvm_linux_ioctl.h"
#include "uvm_hmm.h"
#include "uvm_mem.h"
#include "uvm_kvmalloc.h"
#define NVIDIA_UVM_DEVICE_NAME "nvidia-uvm"
static dev_t g_uvm_base_dev;
static struct cdev g_uvm_cdev;
static const struct file_operations uvm_fops;
bool uvm_file_is_nvidia_uvm(struct file *filp)
{
return (filp != NULL) && (filp->f_op == &uvm_fops);
}
uvm_fd_type_t uvm_fd_type(struct file *filp, void **ptr_val)
{
unsigned long uptr;
uvm_fd_type_t type;
void *ptr;
UVM_ASSERT(uvm_file_is_nvidia_uvm(filp));
uptr = atomic_long_read_acquire((atomic_long_t *) (&filp->private_data));
type = (uvm_fd_type_t)(uptr & UVM_FD_TYPE_MASK);
ptr = (void *)(uptr & ~UVM_FD_TYPE_MASK);
BUILD_BUG_ON(UVM_FD_COUNT > UVM_FD_TYPE_MASK + 1);
switch (type) {
case UVM_FD_UNINITIALIZED:
case UVM_FD_INITIALIZING:
UVM_ASSERT(!ptr);
break;
case UVM_FD_VA_SPACE:
UVM_ASSERT(ptr);
BUILD_BUG_ON(__alignof__(uvm_va_space_t) < (1UL << UVM_FD_TYPE_BITS));
break;
case UVM_FD_MM:
UVM_ASSERT(ptr);
BUILD_BUG_ON(__alignof__(struct file) < (1UL << UVM_FD_TYPE_BITS));
break;
default:
UVM_ASSERT(0);
}
if (ptr_val)
*ptr_val = ptr;
return type;
}
void *uvm_fd_get_type(struct file *filp, uvm_fd_type_t type)
{
void *ptr;
UVM_ASSERT(uvm_file_is_nvidia_uvm(filp));
if (uvm_fd_type(filp, &ptr) == type)
return ptr;
else
return NULL;
}
static NV_STATUS uvm_api_mm_initialize(UVM_MM_INITIALIZE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space;
uvm_va_space_mm_t *va_space_mm;
struct file *uvm_file;
uvm_fd_type_t old_fd_type;
struct mm_struct *mm;
NV_STATUS status;
uvm_file = fget(params->uvmFd);
if (!uvm_file_is_nvidia_uvm(uvm_file)) {
status = NV_ERR_INVALID_ARGUMENT;
goto err;
}
if (uvm_fd_type(uvm_file, (void **)&va_space) != UVM_FD_VA_SPACE) {
status = NV_ERR_INVALID_ARGUMENT;
goto err;
}
// Tell userspace the MM FD is not required and it may be released
// with no loss of functionality.
if (!uvm_va_space_mm_enabled(va_space)) {
status = NV_WARN_NOTHING_TO_DO;
goto err;
}
old_fd_type = nv_atomic_long_cmpxchg((atomic_long_t *)&filp->private_data,
UVM_FD_UNINITIALIZED,
UVM_FD_INITIALIZING);
old_fd_type &= UVM_FD_TYPE_MASK;
if (old_fd_type != UVM_FD_UNINITIALIZED) {
status = NV_ERR_IN_USE;
goto err;
}
va_space_mm = &va_space->va_space_mm;
uvm_spin_lock(&va_space_mm->lock);
switch (va_space->va_space_mm.state) {
// We only allow the va_space_mm to be initialised once. If
// userspace passed the UVM FD to another process it is up to
// userspace to ensure it also passes the UVM MM FD that
// initialised the va_space_mm or arranges some other way to keep
// a reference on the FD.
case UVM_VA_SPACE_MM_STATE_ALIVE:
status = NV_ERR_INVALID_STATE;
goto err_release_unlock;
break;
// Once userspace has released the va_space_mm the GPU is
// effectively dead and no new work can be started. We don't
// support re-initializing once userspace has closed the FD.
case UVM_VA_SPACE_MM_STATE_RELEASED:
status = NV_ERR_PAGE_TABLE_NOT_AVAIL;
goto err_release_unlock;
break;
// Keep the warnings at bay
case UVM_VA_SPACE_MM_STATE_UNINITIALIZED:
mm = va_space->va_space_mm.mm;
if (!mm || !mmget_not_zero(mm)) {
status = NV_ERR_PAGE_TABLE_NOT_AVAIL;
goto err_release_unlock;
}
va_space_mm->state = UVM_VA_SPACE_MM_STATE_ALIVE;
break;
default:
UVM_ASSERT(0);
break;
}
uvm_spin_unlock(&va_space_mm->lock);
atomic_long_set_release((atomic_long_t *)&filp->private_data, (long)uvm_file | UVM_FD_MM);
return NV_OK;
err_release_unlock:
uvm_spin_unlock(&va_space_mm->lock);
atomic_long_set_release((atomic_long_t *)&filp->private_data, UVM_FD_UNINITIALIZED);
err:
if (uvm_file)
fput(uvm_file);
return status;
}
// Called when opening /dev/nvidia-uvm. This code doesn't take any UVM locks, so
// there's no need to acquire g_uvm_global.pm.lock, but if that changes the PM
// lock will need to be taken.
static int uvm_open(struct inode *inode, struct file *filp)
{
struct address_space *mapping;
NV_STATUS status = uvm_global_get_status();
if (status != NV_OK)
return -nv_status_to_errno(status);
mapping = uvm_kvmalloc(sizeof(*mapping));
if (!mapping)
return -ENOMEM;
// By default all struct files on the same inode share the same
// address_space structure (the inode's) across all processes. This means
// unmap_mapping_range would unmap virtual mappings across all processes on
// that inode.
//
// Since the UVM driver uses the mapping offset as the VA of the file's
// process, we need to isolate the mappings to each process.
address_space_init_once(mapping);
mapping->host = inode;
// Some paths in the kernel, for example force_page_cache_readahead which
// can be invoked from user-space via madvise MADV_WILLNEED and fadvise
// POSIX_FADV_WILLNEED, check the function pointers within
// file->f_mapping->a_ops for validity. However, those paths assume that a_ops
// itself is always valid. Handle that by using the inode's a_ops pointer,
// which is what f_mapping->a_ops would point to anyway if we weren't re-
// assigning f_mapping.
mapping->a_ops = inode->i_mapping->a_ops;
#if defined(NV_ADDRESS_SPACE_HAS_BACKING_DEV_INFO)
mapping->backing_dev_info = inode->i_mapping->backing_dev_info;
#endif
filp->private_data = NULL;
filp->f_mapping = mapping;
return NV_OK;
}
static int uvm_open_entry(struct inode *inode, struct file *filp)
{
UVM_ENTRY_RET(uvm_open(inode, filp));
}
static void uvm_release_deferred(void *data)
{
uvm_va_space_t *va_space = data;
// Since this function is only scheduled to run when uvm_release() fails
// to trylock-acquire the pm.lock, the following acquisition attempt
// is expected to block this thread, and cause it to remain blocked until
// uvm_resume() releases the lock. As a result, the deferred release
// kthread queue may stall for long periods of time.
uvm_down_read(&g_uvm_global.pm.lock);
uvm_va_space_destroy(va_space);
uvm_up_read(&g_uvm_global.pm.lock);
}
static void uvm_mm_release(struct file *filp, struct file *uvm_file)
{
uvm_va_space_t *va_space = uvm_va_space_get(uvm_file);
uvm_va_space_mm_t *va_space_mm = &va_space->va_space_mm;
struct mm_struct *mm = va_space_mm->mm;
if (uvm_va_space_mm_enabled(va_space)) {
uvm_va_space_mm_unregister(va_space);
if (uvm_va_space_mm_enabled(va_space))
uvm_mmput(mm);
va_space_mm->mm = NULL;
fput(uvm_file);
}
}
static int uvm_release(struct inode *inode, struct file *filp)
{
void *ptr;
uvm_va_space_t *va_space;
uvm_fd_type_t fd_type;
int ret;
fd_type = uvm_fd_type(filp, &ptr);
UVM_ASSERT(fd_type != UVM_FD_INITIALIZING);
if (fd_type == UVM_FD_UNINITIALIZED) {
uvm_kvfree(filp->f_mapping);
return 0;
}
else if (fd_type == UVM_FD_MM) {
uvm_kvfree(filp->f_mapping);
uvm_mm_release(filp, (struct file *)ptr);
return 0;
}
UVM_ASSERT(fd_type == UVM_FD_VA_SPACE);
va_space = (uvm_va_space_t *)ptr;
filp->private_data = NULL;
filp->f_mapping = NULL;
// Because the kernel discards the status code returned from this release
// callback, early exit in case of a pm.lock acquisition failure is not
// an option. Instead, the teardown work normally performed synchronously
// needs to be scheduled to run after uvm_resume() releases the lock.
if (uvm_down_read_trylock(&g_uvm_global.pm.lock)) {
uvm_va_space_destroy(va_space);
uvm_up_read(&g_uvm_global.pm.lock);
}
else {
// Remove references to this inode from the address_space. This isn't
// strictly necessary, as any CPU mappings of this file have already
// been destroyed, and va_space->mapping won't be used again. Still,
// the va_space survives the inode if its destruction is deferred, in
// which case the references are rendered stale.
address_space_init_once(va_space->mapping);
nv_kthread_q_item_init(&va_space->deferred_release_q_item, uvm_release_deferred, va_space);
ret = nv_kthread_q_schedule_q_item(&g_uvm_global.deferred_release_q, &va_space->deferred_release_q_item);
UVM_ASSERT(ret != 0);
}
return 0;
}
static int uvm_release_entry(struct inode *inode, struct file *filp)
{
UVM_ENTRY_RET(uvm_release(inode, filp));
}
static void uvm_destroy_vma_managed(struct vm_area_struct *vma, bool make_zombie)
{
uvm_va_range_t *va_range, *va_range_next;
NvU64 size = 0;
uvm_assert_rwsem_locked_write(&uvm_va_space_get(vma->vm_file)->lock);
uvm_for_each_va_range_in_vma_safe(va_range, va_range_next, vma) {
// On exit_mmap (process teardown), current->mm is cleared so
// uvm_va_range_vma_current would return NULL.
UVM_ASSERT(uvm_va_range_vma(va_range) == vma);
UVM_ASSERT(va_range->node.start >= vma->vm_start);
UVM_ASSERT(va_range->node.end < vma->vm_end);
size += uvm_va_range_size(va_range);
if (make_zombie)
uvm_va_range_zombify(va_range);
else
uvm_va_range_destroy(va_range, NULL);
}
if (vma->vm_private_data) {
uvm_vma_wrapper_destroy(vma->vm_private_data);
vma->vm_private_data = NULL;
}
UVM_ASSERT(size == vma->vm_end - vma->vm_start);
}
static void uvm_destroy_vma_semaphore_pool(struct vm_area_struct *vma)
{
uvm_va_space_t *va_space;
uvm_va_range_t *va_range;
va_space = uvm_va_space_get(vma->vm_file);
uvm_assert_rwsem_locked(&va_space->lock);
va_range = uvm_va_range_find(va_space, vma->vm_start);
UVM_ASSERT(va_range &&
va_range->node.start == vma->vm_start &&
va_range->node.end + 1 == vma->vm_end &&
va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL);
uvm_mem_unmap_cpu_user(va_range->semaphore_pool.mem);
}
// If a fault handler is not set, paths like handle_pte_fault in older kernels
// assume the memory is anonymous. That would make debugging this failure harder
// so we force it to fail instead.
static vm_fault_t uvm_vm_fault_sigbus(struct vm_area_struct *vma, struct vm_fault *vmf)
{
UVM_DBG_PRINT_RL("Fault to address 0x%lx in disabled vma\n", nv_page_fault_va(vmf));
return VM_FAULT_SIGBUS;
}
static vm_fault_t uvm_vm_fault_sigbus_entry(struct vm_area_struct *vma, struct vm_fault *vmf)
{
UVM_ENTRY_RET(uvm_vm_fault_sigbus(vma, vmf));
}
static vm_fault_t uvm_vm_fault_sigbus_wrapper(struct vm_fault *vmf)
{
#if defined(NV_VM_OPS_FAULT_REMOVED_VMA_ARG)
return uvm_vm_fault_sigbus(vmf->vma, vmf);
#else
return uvm_vm_fault_sigbus(NULL, vmf);
#endif
}
static vm_fault_t uvm_vm_fault_sigbus_wrapper_entry(struct vm_fault *vmf)
{
UVM_ENTRY_RET(uvm_vm_fault_sigbus_wrapper(vmf));
}
static struct vm_operations_struct uvm_vm_ops_disabled =
{
#if defined(NV_VM_OPS_FAULT_REMOVED_VMA_ARG)
.fault = uvm_vm_fault_sigbus_wrapper_entry
#else
.fault = uvm_vm_fault_sigbus_entry
#endif
};
static void uvm_disable_vma(struct vm_area_struct *vma)
{
// In the case of fork, the kernel has already copied the old PTEs over to
// the child process, so an access in the child might succeed instead of
// causing a fault. To force a fault we'll unmap it directly here.
//
// Note that since the unmap works on file offset, not virtual address, this
// unmaps both the old and new vmas.
//
// In the case of a move (mremap), the kernel will copy the PTEs over later,
// so it doesn't matter if we unmap here. However, the new vma's open will
// immediately be followed by a close on the old vma. We call
// unmap_mapping_range for the close, which also unmaps the new vma because
// they have the same file offset.
unmap_mapping_range(vma->vm_file->f_mapping,
vma->vm_pgoff << PAGE_SHIFT,
vma->vm_end - vma->vm_start,
1);
vma->vm_ops = &uvm_vm_ops_disabled;
if (vma->vm_private_data) {
uvm_vma_wrapper_destroy(vma->vm_private_data);
vma->vm_private_data = NULL;
}
}
// We can't return an error from uvm_vm_open so on failed splits
// we'll disable *both* vmas. This isn't great behavior for the
// user, but we don't have many options. We could leave the old VA
// range in place but that breaks the model of vmas always
// completely covering VA ranges. We'd have to be very careful
// handling later splits and closes of both that partially-covered
// VA range, and of the vmas which might or might not cover it any
// more.
//
// A failure likely means we're in OOM territory, so this should not
// be common by any means, and the process might die anyway.
static void uvm_vm_open_failure(struct vm_area_struct *original,
struct vm_area_struct *new)
{
uvm_va_space_t *va_space = uvm_va_space_get(new->vm_file);
static const bool make_zombie = false;
UVM_ASSERT(va_space == uvm_va_space_get(original->vm_file));
uvm_assert_rwsem_locked_write(&va_space->lock);
uvm_destroy_vma_managed(original, make_zombie);
uvm_disable_vma(original);
uvm_disable_vma(new);
}
// vm_ops->open cases:
//
// 1) Parent vma is dup'd (fork)
// This is undefined behavior in the UVM Programming Model. For convenience
// the parent will continue operating properly, but the child is not
// guaranteed access to the range.
//
// 2) Original vma is split (munmap, mprotect, mremap, mbind, etc)
// The UVM Programming Model supports mbind always and supports mprotect if
// HMM is present. Supporting either of those means all such splitting cases
// must be handled. This involves splitting the va_range covering the split
// location. Note that the kernel will never merge us back on two counts: we
// set VM_MIXEDMAP and we have a ->close callback.
//
// 3) Original vma is moved (mremap)
// This is undefined behavior in the UVM Programming Model. We'll get an open
// on the new vma in which we disable operations on the new vma, then a close
// on the old vma.
//
// Note that since we set VM_DONTEXPAND on the vma we're guaranteed that the vma
// will never increase in size, only shrink/split.
static void uvm_vm_open_managed(struct vm_area_struct *vma)
{
uvm_va_space_t *va_space = uvm_va_space_get(vma->vm_file);
uvm_va_range_t *va_range;
struct vm_area_struct *original;
NV_STATUS status;
NvU64 new_end;
// This is slightly ugly. We need to know the parent vma of this new one,
// but we can't use the range tree to look up the original because that
// doesn't handle a vma move operation.
//
// However, all of the old vma's fields have been copied into the new vma,
// and open of the new vma is always called before close of the old (in
// cases where close will be called immediately afterwards, like move).
// vma->vm_private_data will thus still point to the original vma that we
// set in mmap or open.
//
// Things to watch out for here:
// - For splits, the old vma hasn't been adjusted yet so its vm_start and
// vm_end region will overlap with this vma's start and end.
//
// - For splits and moves, the new vma has not yet been inserted into the
// mm's list so vma->vm_prev and vma->vm_next cannot be used, nor will
// the new vma show up in find_vma and friends.
original = ((uvm_vma_wrapper_t*)vma->vm_private_data)->vma;
vma->vm_private_data = NULL;
// On fork or move we want to simply disable the new vma
if (vma->vm_mm != original->vm_mm ||
(vma->vm_start != original->vm_start && vma->vm_end != original->vm_end)) {
uvm_disable_vma(vma);
return;
}
// At this point we are guaranteed that the mmap_lock is held in write
// mode.
uvm_record_lock_mmap_lock_write(current->mm);
// Split vmas should always fall entirely within the old one, and be on one
// side.
UVM_ASSERT(vma->vm_start >= original->vm_start && vma->vm_end <= original->vm_end);
UVM_ASSERT(vma->vm_start == original->vm_start || vma->vm_end == original->vm_end);
// The vma is splitting, so create a new range under this vma if necessary.
// The kernel handles splits in the middle of the vma by doing two separate
// splits so we just have to handle one vma splitting in two here.
if (vma->vm_start == original->vm_start)
new_end = vma->vm_end - 1; // Left split (new_end is inclusive)
else
new_end = vma->vm_start - 1; // Right split (new_end is inclusive)
uvm_va_space_down_write(va_space);
vma->vm_private_data = uvm_vma_wrapper_alloc(vma);
if (!vma->vm_private_data) {
uvm_vm_open_failure(original, vma);
goto out;
}
// There can be multiple va_ranges under the vma already. Check if one spans
// the new split boundary. If so, split it.
va_range = uvm_va_range_find(va_space, new_end);
UVM_ASSERT(va_range);
UVM_ASSERT(uvm_va_range_vma_current(va_range) == original);
if (va_range->node.end != new_end) {
status = uvm_va_range_split(va_range, new_end, NULL);
if (status != NV_OK) {
UVM_DBG_PRINT("Failed to split VA range, destroying both: %s. "
"original vma [0x%lx, 0x%lx) new vma [0x%lx, 0x%lx)\n",
nvstatusToString(status),
original->vm_start, original->vm_end,
vma->vm_start, vma->vm_end);
uvm_vm_open_failure(original, vma);
goto out;
}
}
// Point va_ranges to the new vma
uvm_for_each_va_range_in_vma(va_range, vma) {
UVM_ASSERT(uvm_va_range_vma_current(va_range) == original);
va_range->managed.vma_wrapper = vma->vm_private_data;
}
out:
uvm_va_space_up_write(va_space);
uvm_record_unlock_mmap_lock_write(current->mm);
}
static void uvm_vm_open_managed_entry(struct vm_area_struct *vma)
{
UVM_ENTRY_VOID(uvm_vm_open_managed(vma));
}
static void uvm_vm_close_managed(struct vm_area_struct *vma)
{
uvm_va_space_t *va_space = uvm_va_space_get(vma->vm_file);
bool make_zombie = false;
if (current->mm != NULL)
uvm_record_lock_mmap_lock_write(current->mm);
// current->mm will be NULL on process teardown, in which case we have
// special handling.
if (current->mm == NULL) {
make_zombie = (va_space->initialization_flags & UVM_INIT_FLAGS_MULTI_PROCESS_SHARING_MODE);
if (!make_zombie) {
// If we're not in multi-process mode, then we want to stop all user
// channels before unmapping the managed allocations to avoid
// spurious MMU faults in the system log. If we have a va_space_mm
// then this must've already happened as part of
// uvm_va_space_mm_shutdown. Otherwise we need to handle it here.
if (uvm_va_space_mm_enabled(va_space) && current->mm == va_space->va_space_mm.mm) {
UVM_ASSERT(atomic_read(&va_space->user_channels_stopped));
}
else {
// Stopping channels involves making RM calls, so we have to do
// that with the VA space lock in read mode.
uvm_va_space_down_read_rm(va_space);
if (!atomic_read(&va_space->user_channels_stopped))
uvm_va_space_stop_all_user_channels(va_space);
uvm_va_space_up_read_rm(va_space);
}
}
}
// See uvm_mmap for why we need this in addition to mmap_lock
uvm_va_space_down_write(va_space);
uvm_destroy_vma_managed(vma, make_zombie);
uvm_va_space_up_write(va_space);
if (current->mm != NULL)
uvm_record_unlock_mmap_lock_write(current->mm);
}
static void uvm_vm_close_managed_entry(struct vm_area_struct *vma)
{
UVM_ENTRY_VOID(uvm_vm_close_managed(vma));
}
static vm_fault_t uvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
uvm_va_space_t *va_space = uvm_va_space_get(vma->vm_file);
return uvm_va_space_cpu_fault_managed(va_space, vma, vmf);
}
static vm_fault_t uvm_vm_fault_entry(struct vm_area_struct *vma, struct vm_fault *vmf)
{
UVM_ENTRY_RET(uvm_vm_fault(vma, vmf));
}
static vm_fault_t uvm_vm_fault_wrapper(struct vm_fault *vmf)
{
#if defined(NV_VM_OPS_FAULT_REMOVED_VMA_ARG)
return uvm_vm_fault(vmf->vma, vmf);
#else
return uvm_vm_fault(NULL, vmf);
#endif
}
static vm_fault_t uvm_vm_fault_wrapper_entry(struct vm_fault *vmf)
{
UVM_ENTRY_RET(uvm_vm_fault_wrapper(vmf));
}
static struct vm_operations_struct uvm_vm_ops_managed =
{
.open = uvm_vm_open_managed_entry,
.close = uvm_vm_close_managed_entry,
#if defined(NV_VM_OPS_FAULT_REMOVED_VMA_ARG)
.fault = uvm_vm_fault_wrapper_entry,
.page_mkwrite = uvm_vm_fault_wrapper_entry,
#else
.fault = uvm_vm_fault_entry,
.page_mkwrite = uvm_vm_fault_entry,
#endif
};
// vm operations on semaphore pool allocations only control CPU mappings. Unmapping GPUs,
// freeing the allocation, and destroying the va_range are handled by UVM_FREE.
static void uvm_vm_open_semaphore_pool(struct vm_area_struct *vma)
{
struct vm_area_struct *origin_vma = (struct vm_area_struct *)vma->vm_private_data;
uvm_va_space_t *va_space = uvm_va_space_get(origin_vma->vm_file);
uvm_va_range_t *va_range;
bool is_fork = (vma->vm_mm != origin_vma->vm_mm);
NV_STATUS status;
uvm_record_lock_mmap_lock_write(current->mm);
uvm_va_space_down_write(va_space);
va_range = uvm_va_range_find(va_space, origin_vma->vm_start);
UVM_ASSERT(va_range);
UVM_ASSERT_MSG(va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL &&
va_range->node.start == origin_vma->vm_start &&
va_range->node.end + 1 == origin_vma->vm_end,
"origin vma [0x%llx, 0x%llx); va_range [0x%llx, 0x%llx) type %d\n",
(NvU64)origin_vma->vm_start, (NvU64)origin_vma->vm_end, va_range->node.start,
va_range->node.end + 1, va_range->type);
// Semaphore pool vmas do not have vma wrappers, but some functions will
// assume vm_private_data is a wrapper.
vma->vm_private_data = NULL;
#if defined(VM_WIPEONFORK)
nv_vm_flags_set(vma, VM_WIPEONFORK);
#endif
if (is_fork) {
// If we forked, leave the parent vma alone.
uvm_disable_vma(vma);
// uvm_disable_vma unmaps in the parent as well; clear the uvm_mem CPU
// user mapping metadata and then remap.
uvm_mem_unmap_cpu_user(va_range->semaphore_pool.mem);
status = uvm_mem_map_cpu_user(va_range->semaphore_pool.mem, va_range->va_space, origin_vma);
if (status != NV_OK) {
UVM_DBG_PRINT("Failed to remap semaphore pool to CPU for parent after fork; status = %d (%s)",
status, nvstatusToString(status));
origin_vma->vm_ops = &uvm_vm_ops_disabled;
}
}
else {
origin_vma->vm_private_data = NULL;
origin_vma->vm_ops = &uvm_vm_ops_disabled;
vma->vm_ops = &uvm_vm_ops_disabled;
uvm_mem_unmap_cpu_user(va_range->semaphore_pool.mem);
}
uvm_va_space_up_write(va_space);
uvm_record_unlock_mmap_lock_write(current->mm);
}
static void uvm_vm_open_semaphore_pool_entry(struct vm_area_struct *vma)
{
UVM_ENTRY_VOID(uvm_vm_open_semaphore_pool(vma));
}
// vm operations on semaphore pool allocations only control CPU mappings. Unmapping GPUs,
// freeing the allocation, and destroying the va_range are handled by UVM_FREE.
static void uvm_vm_close_semaphore_pool(struct vm_area_struct *vma)
{
uvm_va_space_t *va_space = uvm_va_space_get(vma->vm_file);
if (current->mm != NULL)
uvm_record_lock_mmap_lock_write(current->mm);
uvm_va_space_down_read(va_space);
uvm_destroy_vma_semaphore_pool(vma);
uvm_va_space_up_read(va_space);
if (current->mm != NULL)
uvm_record_unlock_mmap_lock_write(current->mm);
}
static void uvm_vm_close_semaphore_pool_entry(struct vm_area_struct *vma)
{
UVM_ENTRY_VOID(uvm_vm_close_semaphore_pool(vma));
}
static struct vm_operations_struct uvm_vm_ops_semaphore_pool =
{
.open = uvm_vm_open_semaphore_pool_entry,
.close = uvm_vm_close_semaphore_pool_entry,
#if defined(NV_VM_OPS_FAULT_REMOVED_VMA_ARG)
.fault = uvm_vm_fault_sigbus_wrapper_entry,
#else
.fault = uvm_vm_fault_sigbus_entry,
#endif
};
static int uvm_mmap(struct file *filp, struct vm_area_struct *vma)
{
uvm_va_space_t *va_space;
uvm_va_range_t *va_range;
NV_STATUS status = uvm_global_get_status();
int ret = 0;
bool vma_wrapper_allocated = false;
if (status != NV_OK)
return -nv_status_to_errno(status);
va_space = uvm_fd_va_space(filp);
if (!va_space)
return -EBADFD;
// When the VA space is associated with an mm, all vmas under the VA space
// must come from that mm.
if (uvm_va_space_mm_enabled(va_space)) {
UVM_ASSERT(va_space->va_space_mm.mm);
if (va_space->va_space_mm.mm != current->mm)
return -EOPNOTSUPP;
}
// UVM mappings are required to set offset == VA. This simplifies things
// since we don't have to worry about address aliasing (except for fork,
// handled separately) and it makes unmap_mapping_range simpler.
if (vma->vm_start != (vma->vm_pgoff << PAGE_SHIFT)) {
UVM_DBG_PRINT_RL("vm_start 0x%lx != vm_pgoff 0x%lx\n", vma->vm_start, vma->vm_pgoff << PAGE_SHIFT);
return -EINVAL;
}
// Enforce shared read/writable mappings so we get all fault callbacks
// without the kernel doing COW behind our backs. The user can still call
// mprotect to change protections, but that will only hurt user space.
if ((vma->vm_flags & (VM_SHARED|VM_READ|VM_WRITE)) !=
(VM_SHARED|VM_READ|VM_WRITE)) {
UVM_DBG_PRINT_RL("User requested non-shared or non-writable mapping\n");
return -EINVAL;
}
// If the PM lock cannot be acquired, disable the VMA and report success
// to the caller. The caller is expected to determine whether the
// map operation succeeded via an ioctl() call. This is necessary to
// safely handle MAP_FIXED, which needs to complete atomically to prevent
// the loss of the virtual address range.
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock)) {
uvm_disable_vma(vma);
return 0;
}
uvm_record_lock_mmap_lock_write(current->mm);
// VM_MIXEDMAP Required to use vm_insert_page
//
// VM_DONTEXPAND mremap can grow a vma in place without giving us any
// callback. We need to prevent this so our ranges stay
// up-to-date with the vma. This flag doesn't prevent
// mremap from moving the mapping elsewhere, nor from
// shrinking it. We can detect both of those cases however
// with vm_ops->open() and vm_ops->close() callbacks.
//
// Using VM_DONTCOPY would be nice, but madvise(MADV_DOFORK) can reset that
// so we have to handle vm_open on fork anyway. We could disable MADV_DOFORK
// with VM_IO, but that causes other mapping issues.
// Make the default behavior be VM_DONTCOPY to avoid the performance impact
// of removing CPU mappings in the parent on fork()+exec(). Users can call
// madvise(MDV_DOFORK) if the child process requires access to the
// allocation.
nv_vm_flags_set(vma, VM_MIXEDMAP | VM_DONTEXPAND | VM_DONTCOPY);
vma->vm_ops = &uvm_vm_ops_managed;
// This identity assignment is needed so uvm_vm_open can find its parent vma
vma->vm_private_data = uvm_vma_wrapper_alloc(vma);
if (!vma->vm_private_data) {
ret = -ENOMEM;
goto out;
}
vma_wrapper_allocated = true;
// The kernel has taken mmap_lock in write mode, but that doesn't prevent
// this va_space from being modified by the GPU fault path or from the ioctl
// path where we don't have this mm for sure, so we have to lock the VA
// space directly.
uvm_va_space_down_write(va_space);
// uvm_va_range_create_mmap will catch collisions. Below are some example
// cases which can cause collisions. There may be others.
// 1) An overlapping range was previously created with an ioctl, for example
// for an external mapping.
// 2) This file was passed to another process via a UNIX domain socket
status = uvm_va_range_create_mmap(va_space, current->mm, vma->vm_private_data, NULL);
if (status == NV_ERR_UVM_ADDRESS_IN_USE) {
// If the mmap is for a semaphore pool, the VA range will have been
// allocated by a previous ioctl, and the mmap just creates the CPU
// mapping.
va_range = uvm_va_range_find(va_space, vma->vm_start);
if (va_range && va_range->node.start == vma->vm_start &&
va_range->node.end + 1 == vma->vm_end &&
va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL) {
uvm_vma_wrapper_destroy(vma->vm_private_data);
vma_wrapper_allocated = false;
vma->vm_private_data = vma;
vma->vm_ops = &uvm_vm_ops_semaphore_pool;
status = uvm_mem_map_cpu_user(va_range->semaphore_pool.mem, va_range->va_space, vma);
}
}
if (status != NV_OK) {
UVM_DBG_PRINT_RL("Failed to create or map VA range for vma [0x%lx, 0x%lx): %s\n",
vma->vm_start, vma->vm_end, nvstatusToString(status));
ret = -nv_status_to_errno(status);
}
uvm_va_space_up_write(va_space);
out:
if (ret != 0 && vma_wrapper_allocated)
uvm_vma_wrapper_destroy(vma->vm_private_data);
uvm_record_unlock_mmap_lock_write(current->mm);
uvm_up_read(&g_uvm_global.pm.lock);
return ret;
}
bool uvm_vma_is_managed(struct vm_area_struct *vma)
{
return vma->vm_ops == &uvm_vm_ops_disabled ||
vma->vm_ops == &uvm_vm_ops_managed ||
vma->vm_ops == &uvm_vm_ops_semaphore_pool;
}
static int uvm_mmap_entry(struct file *filp, struct vm_area_struct *vma)
{
UVM_ENTRY_RET(uvm_mmap(filp, vma));
}
static NV_STATUS uvm_api_initialize(UVM_INITIALIZE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space;
NV_STATUS status;
uvm_fd_type_t old_fd_type;
// Normally we expect private_data == UVM_FD_UNINITIALIZED. However multiple
// threads may call this ioctl concurrently so we have to be careful to
// avoid initializing multiple va_spaces and/or leaking memory. To do this
// we do an atomic compare and swap. Only one thread will observe
// UVM_FD_UNINITIALIZED and that thread will allocate and setup the
// va_space.
//
// Other threads will either see UVM_FD_INITIALIZING or UVM_FD_VA_SPACE. In
// the case of UVM_FD_VA_SPACE we return success if and only if the
// initialization flags match. If another thread is still initializing the
// va_space we return NV_ERR_BUSY_RETRY.
//
// If va_space initialization fails we return the failure code and reset the
// FD state back to UVM_FD_UNINITIALIZED to allow another initialization
// attempt to be made. This is safe because other threads will have only had
// a chance to observe UVM_FD_INITIALIZING and not UVM_FD_VA_SPACE in this
// case.
old_fd_type = nv_atomic_long_cmpxchg((atomic_long_t *)&filp->private_data,
UVM_FD_UNINITIALIZED, UVM_FD_INITIALIZING);
old_fd_type &= UVM_FD_TYPE_MASK;
if (old_fd_type == UVM_FD_UNINITIALIZED) {
status = uvm_va_space_create(filp->f_mapping, &va_space, params->flags);
if (status != NV_OK) {
atomic_long_set_release((atomic_long_t *)&filp->private_data, UVM_FD_UNINITIALIZED);
return status;
}
atomic_long_set_release((atomic_long_t *)&filp->private_data, (long)va_space | UVM_FD_VA_SPACE);
}
else if (old_fd_type == UVM_FD_VA_SPACE) {
va_space = uvm_va_space_get(filp);
if (params->flags != va_space->initialization_flags)
status = NV_ERR_INVALID_ARGUMENT;
else
status = NV_OK;
}
else if (old_fd_type == UVM_FD_MM) {
status = NV_ERR_INVALID_ARGUMENT;
}
else {
UVM_ASSERT(old_fd_type == UVM_FD_INITIALIZING);
status = NV_ERR_BUSY_RETRY;
}
return status;
}
static NV_STATUS uvm_api_pageable_mem_access(UVM_PAGEABLE_MEM_ACCESS_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
params->pageableMemAccess = uvm_va_space_pageable_mem_access_supported(va_space) ? NV_TRUE : NV_FALSE;
return NV_OK;
}
static long uvm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd)
{
case UVM_DEINITIALIZE:
return 0;
UVM_ROUTE_CMD_STACK_NO_INIT_CHECK(UVM_INITIALIZE, uvm_api_initialize);
UVM_ROUTE_CMD_STACK_NO_INIT_CHECK(UVM_MM_INITIALIZE, uvm_api_mm_initialize);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_PAGEABLE_MEM_ACCESS, uvm_api_pageable_mem_access);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_PAGEABLE_MEM_ACCESS_ON_GPU, uvm_api_pageable_mem_access_on_gpu);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_REGISTER_GPU, uvm_api_register_gpu);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNREGISTER_GPU, uvm_api_unregister_gpu);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_CREATE_RANGE_GROUP, uvm_api_create_range_group);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_DESTROY_RANGE_GROUP, uvm_api_destroy_range_group);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_ENABLE_PEER_ACCESS, uvm_api_enable_peer_access);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_DISABLE_PEER_ACCESS, uvm_api_disable_peer_access);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_SET_RANGE_GROUP, uvm_api_set_range_group);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_CREATE_EXTERNAL_RANGE, uvm_api_create_external_range);
UVM_ROUTE_CMD_ALLOC_INIT_CHECK(UVM_MAP_EXTERNAL_ALLOCATION, uvm_api_map_external_allocation);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_MAP_EXTERNAL_SPARSE, uvm_api_map_external_sparse);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_FREE, uvm_api_free);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_PREVENT_MIGRATION_RANGE_GROUPS, uvm_api_prevent_migration_range_groups);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_ALLOW_MIGRATION_RANGE_GROUPS, uvm_api_allow_migration_range_groups);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_SET_PREFERRED_LOCATION, uvm_api_set_preferred_location);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNSET_PREFERRED_LOCATION, uvm_api_unset_preferred_location);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_SET_ACCESSED_BY, uvm_api_set_accessed_by);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNSET_ACCESSED_BY, uvm_api_unset_accessed_by);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_REGISTER_GPU_VASPACE, uvm_api_register_gpu_va_space);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNREGISTER_GPU_VASPACE, uvm_api_unregister_gpu_va_space);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_REGISTER_CHANNEL, uvm_api_register_channel);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNREGISTER_CHANNEL, uvm_api_unregister_channel);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_ENABLE_READ_DUPLICATION, uvm_api_enable_read_duplication);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_DISABLE_READ_DUPLICATION, uvm_api_disable_read_duplication);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_MIGRATE, uvm_api_migrate);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_ENABLE_SYSTEM_WIDE_ATOMICS, uvm_api_enable_system_wide_atomics);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_DISABLE_SYSTEM_WIDE_ATOMICS, uvm_api_disable_system_wide_atomics);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_TOOLS_READ_PROCESS_MEMORY, uvm_api_tools_read_process_memory);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_TOOLS_WRITE_PROCESS_MEMORY, uvm_api_tools_write_process_memory);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_TOOLS_GET_PROCESSOR_UUID_TABLE, uvm_api_tools_get_processor_uuid_table);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_MAP_DYNAMIC_PARALLELISM_REGION, uvm_api_map_dynamic_parallelism_region);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_UNMAP_EXTERNAL, uvm_api_unmap_external);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_MIGRATE_RANGE_GROUP, uvm_api_migrate_range_group);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_TOOLS_FLUSH_EVENTS, uvm_api_tools_flush_events);
UVM_ROUTE_CMD_ALLOC_INIT_CHECK(UVM_ALLOC_SEMAPHORE_POOL, uvm_api_alloc_semaphore_pool);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_CLEAN_UP_ZOMBIE_RESOURCES, uvm_api_clean_up_zombie_resources);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_POPULATE_PAGEABLE, uvm_api_populate_pageable);
UVM_ROUTE_CMD_STACK_INIT_CHECK(UVM_VALIDATE_VA_RANGE, uvm_api_validate_va_range);
}
// Try the test ioctls if none of the above matched
return uvm_test_ioctl(filp, cmd, arg);
}
static long uvm_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
long ret;
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock))
return -EAGAIN;
ret = uvm_ioctl(filp, cmd, arg);
uvm_up_read(&g_uvm_global.pm.lock);
uvm_thread_assert_all_unlocked();
return ret;
}
static long uvm_unlocked_ioctl_entry(struct file *filp, unsigned int cmd, unsigned long arg)
{
UVM_ENTRY_RET(uvm_unlocked_ioctl(filp, cmd, arg));
}
static const struct file_operations uvm_fops =
{
.open = uvm_open_entry,
.release = uvm_release_entry,
.mmap = uvm_mmap_entry,
.unlocked_ioctl = uvm_unlocked_ioctl_entry,
#if NVCPU_IS_X86_64
.compat_ioctl = uvm_unlocked_ioctl_entry,
#endif
.owner = THIS_MODULE,
};
NV_STATUS uvm_test_register_unload_state_buffer(UVM_TEST_REGISTER_UNLOAD_STATE_BUFFER_PARAMS *params, struct file *filp)
{
long ret;
struct page *page;
NV_STATUS status = NV_OK;
if (!IS_ALIGNED(params->unload_state_buf, sizeof(NvU64)))
return NV_ERR_INVALID_ADDRESS;
// Hold mmap_lock to call get_user_pages(), the UVM locking helper functions
// are not used because unload_state_buf may be a managed memory pointer and
// therefore a locking assertion from the CPU fault handler could be fired.
nv_mmap_read_lock(current->mm);
ret = NV_PIN_USER_PAGES(params->unload_state_buf, 1, FOLL_WRITE, &page, NULL);
nv_mmap_read_unlock(current->mm);
if (ret < 0)
return errno_to_nv_status(ret);
UVM_ASSERT(ret == 1);
uvm_mutex_lock(&g_uvm_global.global_lock);
if (g_uvm_global.unload_state.ptr) {
NV_UNPIN_USER_PAGE(page);
status = NV_ERR_IN_USE;
goto error;
}
g_uvm_global.unload_state.page = page;
g_uvm_global.unload_state.ptr = (NvU64 *)((char *)kmap(page) + (params->unload_state_buf & ~PAGE_MASK));
*g_uvm_global.unload_state.ptr = 0;
error:
uvm_mutex_unlock(&g_uvm_global.global_lock);
return status;
}
static void uvm_test_unload_state_exit(void)
{
if (g_uvm_global.unload_state.ptr) {
kunmap(g_uvm_global.unload_state.page);
NV_UNPIN_USER_PAGE(g_uvm_global.unload_state.page);
}
}
static int uvm_chardev_create(void)
{
dev_t uvm_dev;
int ret = alloc_chrdev_region(&g_uvm_base_dev,
0,
NVIDIA_UVM_NUM_MINOR_DEVICES,
NVIDIA_UVM_DEVICE_NAME);
if (ret != 0) {
UVM_ERR_PRINT("alloc_chrdev_region failed: %d\n", ret);
return ret;
}
uvm_dev = MKDEV(MAJOR(g_uvm_base_dev), NVIDIA_UVM_PRIMARY_MINOR_NUMBER);
uvm_init_character_device(&g_uvm_cdev, &uvm_fops);
ret = cdev_add(&g_uvm_cdev, uvm_dev, 1);
if (ret != 0) {
UVM_ERR_PRINT("cdev_add (major %u, minor %u) failed: %d\n", MAJOR(uvm_dev), MINOR(uvm_dev), ret);
unregister_chrdev_region(g_uvm_base_dev, NVIDIA_UVM_NUM_MINOR_DEVICES);
return ret;
}
return 0;
}
static void uvm_chardev_exit(void)
{
cdev_del(&g_uvm_cdev);
unregister_chrdev_region(g_uvm_base_dev, NVIDIA_UVM_NUM_MINOR_DEVICES);
}
static int uvm_init(void)
{
bool initialized_globals = false;
bool added_device = false;
int ret;
NV_STATUS status = uvm_global_init();
if (status != NV_OK) {
UVM_ERR_PRINT("uvm_global_init() failed: %s\n", nvstatusToString(status));
ret = -ENODEV;
goto error;
}
initialized_globals = true;
ret = uvm_chardev_create();
if (ret != 0) {
UVM_ERR_PRINT("uvm_chardev_create failed: %d\n", ret);
goto error;
}
added_device = true;
ret = uvm_tools_init(g_uvm_base_dev);
if (ret != 0) {
UVM_ERR_PRINT("uvm_tools_init() failed: %d\n", ret);
goto error;
}
pr_info("Loaded the UVM driver, major device number %d.\n", MAJOR(g_uvm_base_dev));
if (uvm_enable_builtin_tests)
pr_info("Built-in UVM tests are enabled. This is a security risk.\n");
// After Open RM is released, both the enclosing "#if" and this comment
// block should be removed, because the uvm_hmm_is_enabled_system_wide()
// check is both necessary and sufficient for reporting functionality.
// Until that time, however, we need to avoid advertisting UVM's ability to
// enable HMM functionality.
if (uvm_hmm_is_enabled_system_wide())
UVM_INFO_PRINT("HMM (Heterogeneous Memory Management) is enabled in the UVM driver.\n");
return 0;
error:
if (added_device)
uvm_chardev_exit();
if (initialized_globals)
uvm_global_exit();
UVM_ERR_PRINT("uvm init failed: %d\n", ret);
return ret;
}
static int __init uvm_init_entry(void)
{
UVM_ENTRY_RET(uvm_init());
}
static void uvm_exit(void)
{
uvm_tools_exit();
uvm_chardev_exit();
uvm_global_exit();
uvm_test_unload_state_exit();
pr_info("Unloaded the UVM driver.\n");
}
static void __exit uvm_exit_entry(void)
{
UVM_ENTRY_VOID(uvm_exit());
}
module_init(uvm_init_entry);
module_exit(uvm_exit_entry);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_INFO(supported, "external");
MODULE_VERSION(NV_VERSION_STRING);
|