1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
|
/*******************************************************************************
Copyright (c) 2015-2023 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "nv_uvm_interface.h"
#include "uvm_api.h"
#include "uvm_channel.h"
#include "uvm_global.h"
#include "uvm_gpu.h"
#include "uvm_gpu_semaphore.h"
#include "uvm_hal.h"
#include "uvm_procfs.h"
#include "uvm_pmm_gpu.h"
#include "uvm_pmm_sysmem.h"
#include "uvm_va_space.h"
#include "uvm_user_channel.h"
#include "uvm_perf_events.h"
#include "uvm_perf_heuristics.h"
#include "uvm_common.h"
#include "ctrl2080mc.h"
#include "nv-kthread-q.h"
#include "uvm_gpu_access_counters.h"
#include "uvm_ats.h"
#include "uvm_test.h"
#include "uvm_conf_computing.h"
#include "uvm_linux.h"
#define UVM_PROC_GPUS_PEER_DIR_NAME "peers"
// The uvm_peer_copy module parameter enables to choose from "phys" or "virt".
// It determines the addressing mode for P2P copies.
#define UVM_PARAM_PEER_COPY_VIRTUAL "virt"
#define UVM_PARAM_PEER_COPY_PHYSICAL "phys"
static char *uvm_peer_copy = UVM_PARAM_PEER_COPY_PHYSICAL;
module_param(uvm_peer_copy, charp, S_IRUGO);
MODULE_PARM_DESC(uvm_peer_copy, "Choose the addressing mode for peer copying, options: "
UVM_PARAM_PEER_COPY_PHYSICAL " [default] or " UVM_PARAM_PEER_COPY_VIRTUAL ". "
"Valid for Ampere+ GPUs.");
static void remove_gpu(uvm_gpu_t *gpu);
static void disable_peer_access(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1);
static NV_STATUS discover_nvlink_peers(uvm_gpu_t *gpu);
static void destroy_nvlink_peers(uvm_gpu_t *gpu);
static uvm_user_channel_t *get_user_channel(uvm_rb_tree_node_t *node)
{
return container_of(node, uvm_user_channel_t, instance_ptr.node);
}
static uvm_gpu_link_type_t get_gpu_link_type(UVM_LINK_TYPE link_type)
{
switch (link_type) {
case UVM_LINK_TYPE_PCIE:
return UVM_GPU_LINK_PCIE;
case UVM_LINK_TYPE_NVLINK_1:
return UVM_GPU_LINK_NVLINK_1;
case UVM_LINK_TYPE_NVLINK_2:
return UVM_GPU_LINK_NVLINK_2;
case UVM_LINK_TYPE_NVLINK_3:
return UVM_GPU_LINK_NVLINK_3;
case UVM_LINK_TYPE_NVLINK_4:
return UVM_GPU_LINK_NVLINK_4;
case UVM_LINK_TYPE_C2C:
return UVM_GPU_LINK_C2C;
default:
return UVM_GPU_LINK_INVALID;
}
}
static void fill_gpu_info(uvm_parent_gpu_t *parent_gpu, const UvmGpuInfo *gpu_info)
{
char uuid_buffer[UVM_GPU_UUID_TEXT_BUFFER_LENGTH];
parent_gpu->rm_info = *gpu_info;
parent_gpu->system_bus.link = get_gpu_link_type(gpu_info->sysmemLink);
UVM_ASSERT(parent_gpu->system_bus.link != UVM_GPU_LINK_INVALID);
parent_gpu->system_bus.link_rate_mbyte_per_s = gpu_info->sysmemLinkRateMBps;
if (gpu_info->systemMemoryWindowSize > 0) {
// memory_window_end is inclusive but uvm_gpu_is_coherent() checks
// memory_window_end > memory_window_start as its condition.
UVM_ASSERT(gpu_info->systemMemoryWindowSize > 1);
parent_gpu->system_bus.memory_window_start = gpu_info->systemMemoryWindowStart;
parent_gpu->system_bus.memory_window_end = gpu_info->systemMemoryWindowStart +
gpu_info->systemMemoryWindowSize - 1;
}
parent_gpu->nvswitch_info.is_nvswitch_connected = gpu_info->connectedToSwitch;
// nvswitch is routed via physical pages, where the upper 13-bits of the
// 47-bit address space holds the routing information for each peer.
// Currently, this is limited to a 16GB framebuffer window size.
if (parent_gpu->nvswitch_info.is_nvswitch_connected)
parent_gpu->nvswitch_info.fabric_memory_window_start = gpu_info->nvswitchMemoryWindowStart;
format_uuid_to_buffer(uuid_buffer, sizeof(uuid_buffer), &parent_gpu->uuid);
snprintf(parent_gpu->name,
sizeof(parent_gpu->name),
"ID %u: %s: %s",
uvm_id_value(parent_gpu->id),
parent_gpu->rm_info.name,
uuid_buffer);
}
static NV_STATUS get_gpu_caps(uvm_gpu_t *gpu)
{
NV_STATUS status;
UvmGpuCaps gpu_caps;
memset(&gpu_caps, 0, sizeof(gpu_caps));
status = uvm_rm_locked_call(nvUvmInterfaceQueryCaps(uvm_gpu_device_handle(gpu), &gpu_caps));
if (status != NV_OK)
return status;
if (gpu_caps.numaEnabled) {
UVM_ASSERT(uvm_gpu_is_coherent(gpu->parent));
gpu->mem_info.numa.enabled = true;
gpu->mem_info.numa.node_id = gpu_caps.numaNodeId;
}
else {
UVM_ASSERT(!uvm_gpu_is_coherent(gpu->parent));
}
return NV_OK;
}
static NV_STATUS alloc_and_init_address_space(uvm_gpu_t *gpu)
{
NV_STATUS status;
UvmGpuAddressSpaceInfo gpu_address_space_info = {0};
status = uvm_rm_locked_call(nvUvmInterfaceAddressSpaceCreate(uvm_gpu_device_handle(gpu),
gpu->parent->rm_va_base,
gpu->parent->rm_va_size,
&gpu->rm_address_space,
&gpu_address_space_info));
if (status != NV_OK)
return status;
gpu->big_page.internal_size = gpu_address_space_info.bigPageSize;
gpu->time.time0_register = gpu_address_space_info.time0Offset;
gpu->time.time1_register = gpu_address_space_info.time1Offset;
gpu->max_subcontexts = gpu_address_space_info.maxSubctxCount;
return NV_OK;
}
static NV_STATUS get_gpu_fb_info(uvm_gpu_t *gpu)
{
NV_STATUS status;
UvmGpuFbInfo fb_info = {0};
status = uvm_rm_locked_call(nvUvmInterfaceGetFbInfo(uvm_gpu_device_handle(gpu), &fb_info));
if (status != NV_OK)
return status;
if (!fb_info.bZeroFb) {
gpu->mem_info.size = ((NvU64)fb_info.heapSize + fb_info.reservedHeapSize) * 1024;
gpu->mem_info.max_allocatable_address = fb_info.maxAllocatableAddress;
}
return NV_OK;
}
static NV_STATUS get_gpu_ecc_info(uvm_gpu_t *gpu)
{
NV_STATUS status;
UvmGpuEccInfo ecc_info = {0};
status = uvm_rm_locked_call(nvUvmInterfaceGetEccInfo(uvm_gpu_device_handle(gpu), &ecc_info));
if (status != NV_OK)
return status;
gpu->ecc.enabled = ecc_info.bEccEnabled;
if (gpu->ecc.enabled) {
gpu->ecc.hw_interrupt_tree_location = (volatile NvU32*)((char*)ecc_info.eccReadLocation + ecc_info.eccOffset);
UVM_ASSERT(gpu->ecc.hw_interrupt_tree_location != NULL);
gpu->ecc.mask = ecc_info.eccMask;
UVM_ASSERT(gpu->ecc.mask != 0);
gpu->ecc.error_notifier = ecc_info.eccErrorNotifier;
UVM_ASSERT(gpu->ecc.error_notifier != NULL);
}
return NV_OK;
}
static bool gpu_supports_uvm(uvm_parent_gpu_t *parent_gpu)
{
// TODO: Bug 1757136: Add Linux SLI support. Until then, explicitly disable
// UVM on SLI.
return parent_gpu->rm_info.subdeviceCount == 1;
}
bool uvm_gpu_can_address(uvm_gpu_t *gpu, NvU64 addr, NvU64 size)
{
// Lower and upper address spaces are typically found in platforms that use
// the canonical address form.
NvU64 max_va_lower;
NvU64 min_va_upper;
NvU64 addr_end = addr + size - 1;
NvU8 gpu_addr_shift;
NvU8 cpu_addr_shift;
NvU8 addr_shift;
// Watch out for calling this too early in init
UVM_ASSERT(gpu->address_space_tree.hal);
UVM_ASSERT(gpu->address_space_tree.hal->num_va_bits() < 64);
UVM_ASSERT(addr <= addr_end);
UVM_ASSERT(size > 0);
gpu_addr_shift = gpu->address_space_tree.hal->num_va_bits();
cpu_addr_shift = uvm_cpu_num_va_bits();
addr_shift = gpu_addr_shift;
// Pascal+ GPUs are capable of accessing kernel pointers in various modes
// by applying the same upper-bit checks that x86, ARM, and Power
// processors do. x86 and ARM use canonical form addresses. For ARM, even
// with Top-Byte Ignore enabled, the following logic validates addresses
// from the kernel VA range. PowerPC does not use canonical form address.
// The following diagram illustrates the valid (V) VA regions that can be
// mapped (or addressed) by the GPU/CPU when the CPU uses canonical form.
// (C) regions are only accessible by the CPU. Similarly, (G) regions
// are only accessible by the GPU. (X) regions are not addressible.
// Note that we only consider (V) regions, i.e., address ranges that are
// addressable by both, the CPU and GPU.
//
// GPU MAX VA < CPU MAX VA GPU MAX VA >= CPU MAX VA
// 0xF..F +----------------+ 0xF..F +----------------+
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// GPU MIN UPPER VA|----------------| CPU MIN UPPER VA|----------------|
// |CCCCCCCCCCCCCCCC| |GGGGGGGGGGGGGGGG|
// |CCCCCCCCCCCCCCCC| |GGGGGGGGGGGGGGGG|
// CPU MIN UPPER VA|----------------| GPU MIN UPPER VA|----------------|
// |XXXXXXXXXXXXXXXX| |XXXXXXXXXXXXXXXX|
// |XXXXXXXXXXXXXXXX| |XXXXXXXXXXXXXXXX|
// CPU MAX LOWER VA|----------------| GPU MAX LOWER VA|----------------|
// |CCCCCCCCCCCCCCCC| |GGGGGGGGGGGGGGGG|
// |CCCCCCCCCCCCCCCC| |GGGGGGGGGGGGGGGG|
// GPU MAX LOWER VA|----------------| CPU MAX LOWER VA|----------------|
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// |VVVVVVVVVVVVVVVV| |VVVVVVVVVVVVVVVV|
// 0 +----------------+ 0 +----------------+
// On canonical form address platforms and Pascal+ GPUs.
if (uvm_platform_uses_canonical_form_address() && gpu_addr_shift > 40) {
// On x86, when cpu_addr_shift > gpu_addr_shift, it means the CPU uses
// 5-level paging and the GPU is pre-Hopper. On Pascal-Ada GPUs (49b
// wide VA) we set addr_shift to match a 4-level paging x86 (48b wide).
// See more details on uvm_parent_gpu_canonical_address(..);
if (cpu_addr_shift > gpu_addr_shift)
addr_shift = NVCPU_IS_X86_64 ? 48 : 49;
else if (gpu_addr_shift == 57)
addr_shift = gpu_addr_shift;
else
addr_shift = cpu_addr_shift;
}
uvm_get_unaddressable_range(addr_shift, &max_va_lower, &min_va_upper);
return (addr_end < max_va_lower) || (addr >= min_va_upper);
}
// The internal UVM VAS does not use canonical form addresses.
bool uvm_gpu_can_address_kernel(uvm_gpu_t *gpu, NvU64 addr, NvU64 size)
{
NvU64 addr_end = addr + size - 1;
NvU64 max_gpu_va;
// Watch out for calling this too early in init
UVM_ASSERT(gpu->address_space_tree.hal);
UVM_ASSERT(gpu->address_space_tree.hal->num_va_bits() < 64);
UVM_ASSERT(addr <= addr_end);
UVM_ASSERT(size > 0);
max_gpu_va = 1ULL << gpu->address_space_tree.hal->num_va_bits();
return addr_end < max_gpu_va;
}
NvU64 uvm_parent_gpu_canonical_address(uvm_parent_gpu_t *parent_gpu, NvU64 addr)
{
NvU8 gpu_addr_shift;
NvU8 cpu_addr_shift;
NvU8 addr_shift;
NvU64 input_addr = addr;
if (uvm_platform_uses_canonical_form_address()) {
// When the CPU VA width is larger than GPU's, it means that:
// On ARM: the CPU is on LVA mode and the GPU is pre-Hopper.
// On x86: the CPU uses 5-level paging and the GPU is pre-Hopper.
// We sign-extend on the 48b on ARM and on the 47b on x86 to mirror the
// behavior of CPUs with smaller (than GPU) VA widths.
gpu_addr_shift = parent_gpu->arch_hal->mmu_mode_hal(UVM_PAGE_SIZE_64K)->num_va_bits();
cpu_addr_shift = uvm_cpu_num_va_bits();
if (cpu_addr_shift > gpu_addr_shift)
addr_shift = NVCPU_IS_X86_64 ? 48 : 49;
else if (gpu_addr_shift == 57)
addr_shift = gpu_addr_shift;
else
addr_shift = cpu_addr_shift;
addr = (NvU64)((NvS64)(addr << (64 - addr_shift)) >> (64 - addr_shift));
// This protection acts on when the address is not covered by the GPU's
// OOR_ADDR_CHECK. This can only happen when OOR_ADDR_CHECK is in
// permissive (NO_CHECK) mode.
if ((addr << (64 - gpu_addr_shift)) != (input_addr << (64 - gpu_addr_shift)))
return input_addr;
}
return addr;
}
static void gpu_info_print_ce_caps(uvm_gpu_t *gpu, struct seq_file *s)
{
NvU32 i;
UvmGpuCopyEnginesCaps *ces_caps;
NV_STATUS status;
ces_caps = uvm_kvmalloc_zero(sizeof(*ces_caps));
if (!ces_caps) {
UVM_SEQ_OR_DBG_PRINT(s, "supported_ces: unavailable (no memory)\n");
return;
}
status = uvm_rm_locked_call(nvUvmInterfaceQueryCopyEnginesCaps(uvm_gpu_device_handle(gpu), ces_caps));
if (status != NV_OK) {
UVM_SEQ_OR_DBG_PRINT(s, "supported_ces: unavailable (query failed)\n");
goto out;
}
UVM_SEQ_OR_DBG_PRINT(s, "supported_ces:\n");
for (i = 0; i < UVM_COPY_ENGINE_COUNT_MAX; ++i) {
UvmGpuCopyEngineCaps *ce_caps = ces_caps->copyEngineCaps + i;
if (!ce_caps->supported)
continue;
UVM_SEQ_OR_DBG_PRINT(s, " ce %u pce mask 0x%08x grce %u shared %u sysmem read %u sysmem write %u sysmem %u "
"nvlink p2p %u p2p %u\n",
i,
ce_caps->cePceMask,
ce_caps->grce,
ce_caps->shared,
ce_caps->sysmemRead,
ce_caps->sysmemWrite,
ce_caps->sysmem,
ce_caps->nvlinkP2p,
ce_caps->p2p);
}
out:
uvm_kvfree(ces_caps);
}
static const char *uvm_gpu_virt_type_string(UVM_VIRT_MODE virtMode)
{
BUILD_BUG_ON(UVM_VIRT_MODE_COUNT != 4);
switch (virtMode) {
UVM_ENUM_STRING_CASE(UVM_VIRT_MODE_NONE);
UVM_ENUM_STRING_CASE(UVM_VIRT_MODE_LEGACY);
UVM_ENUM_STRING_CASE(UVM_VIRT_MODE_SRIOV_HEAVY);
UVM_ENUM_STRING_CASE(UVM_VIRT_MODE_SRIOV_STANDARD);
UVM_ENUM_STRING_DEFAULT();
}
}
static const char *uvm_gpu_link_type_string(uvm_gpu_link_type_t link_type)
{
BUILD_BUG_ON(UVM_GPU_LINK_MAX != 7);
switch (link_type) {
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_INVALID);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_PCIE);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_NVLINK_1);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_NVLINK_2);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_NVLINK_3);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_NVLINK_4);
UVM_ENUM_STRING_CASE(UVM_GPU_LINK_C2C);
UVM_ENUM_STRING_DEFAULT();
}
}
static void gpu_info_print_common(uvm_gpu_t *gpu, struct seq_file *s)
{
const UvmGpuInfo *gpu_info = &gpu->parent->rm_info;
NvU64 num_pages_in;
NvU64 num_pages_out;
NvU64 mapped_cpu_pages_size;
NvU32 get, put;
unsigned int cpu;
UVM_SEQ_OR_DBG_PRINT(s, "GPU %s\n", uvm_gpu_name(gpu));
UVM_SEQ_OR_DBG_PRINT(s, "retained_count %llu\n", uvm_gpu_retained_count(gpu));
UVM_SEQ_OR_DBG_PRINT(s, "ecc %s\n", gpu->ecc.enabled ? "enabled" : "disabled");
if (gpu->parent->closest_cpu_numa_node == -1)
UVM_SEQ_OR_DBG_PRINT(s, "closest_cpu_numa_node n/a\n");
else
UVM_SEQ_OR_DBG_PRINT(s, "closest_cpu_numa_node %d\n", gpu->parent->closest_cpu_numa_node);
if (!uvm_procfs_is_debug_enabled())
return;
UVM_SEQ_OR_DBG_PRINT(s, "CPU link type %s\n",
uvm_gpu_link_type_string(gpu->parent->system_bus.link));
UVM_SEQ_OR_DBG_PRINT(s, "CPU link bandwidth %uMBps\n",
gpu->parent->system_bus.link_rate_mbyte_per_s);
UVM_SEQ_OR_DBG_PRINT(s, "architecture 0x%X\n", gpu_info->gpuArch);
UVM_SEQ_OR_DBG_PRINT(s, "implementation 0x%X\n", gpu_info->gpuImplementation);
UVM_SEQ_OR_DBG_PRINT(s, "gpcs %u\n", gpu_info->gpcCount);
UVM_SEQ_OR_DBG_PRINT(s, "max_gpcs %u\n", gpu_info->maxGpcCount);
UVM_SEQ_OR_DBG_PRINT(s, "tpcs %u\n", gpu_info->tpcCount);
UVM_SEQ_OR_DBG_PRINT(s, "max_tpcs_per_gpc %u\n", gpu_info->maxTpcPerGpcCount);
UVM_SEQ_OR_DBG_PRINT(s, "host_class 0x%X\n", gpu_info->hostClass);
UVM_SEQ_OR_DBG_PRINT(s, "ce_class 0x%X\n", gpu_info->ceClass);
UVM_SEQ_OR_DBG_PRINT(s, "virtualization_mode %s\n",
uvm_gpu_virt_type_string(gpu_info->virtMode));
UVM_SEQ_OR_DBG_PRINT(s, "big_page_size %u\n", gpu->big_page.internal_size);
UVM_SEQ_OR_DBG_PRINT(s, "rm_va_base 0x%llx\n", gpu->parent->rm_va_base);
UVM_SEQ_OR_DBG_PRINT(s, "rm_va_size 0x%llx\n", gpu->parent->rm_va_size);
UVM_SEQ_OR_DBG_PRINT(s, "vidmem_size %llu (%llu MBs)\n",
gpu->mem_info.size,
gpu->mem_info.size / (1024 * 1024));
UVM_SEQ_OR_DBG_PRINT(s, "vidmem_max_allocatable 0x%llx (%llu MBs)\n",
gpu->mem_info.max_allocatable_address,
gpu->mem_info.max_allocatable_address / (1024 * 1024));
if (gpu->mem_info.numa.enabled) {
NvU64 window_size = gpu->parent->system_bus.memory_window_end - gpu->parent->system_bus.memory_window_start + 1;
UVM_SEQ_OR_DBG_PRINT(s, "numa_node_id %u\n", uvm_gpu_numa_node(gpu));
UVM_SEQ_OR_DBG_PRINT(s, "memory_window_start 0x%llx\n",
gpu->parent->system_bus.memory_window_start);
UVM_SEQ_OR_DBG_PRINT(s, "memory_window_end 0x%llx\n",
gpu->parent->system_bus.memory_window_end);
UVM_SEQ_OR_DBG_PRINT(s, "system_memory_window_size 0x%llx (%llu MBs)\n",
window_size,
window_size / (1024 * 1024));
}
if (gpu->parent->npu)
UVM_SEQ_OR_DBG_PRINT(s, "npu_domain %d\n", gpu->parent->npu->pci_domain);
UVM_SEQ_OR_DBG_PRINT(s, "interrupts %llu\n", gpu->parent->isr.interrupt_count);
if (gpu->parent->isr.replayable_faults.handling) {
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_bh %llu\n",
gpu->parent->isr.replayable_faults.stats.bottom_half_count);
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_bh/cpu\n");
for_each_cpu(cpu, &gpu->parent->isr.replayable_faults.stats.cpus_used_mask) {
UVM_SEQ_OR_DBG_PRINT(s, " cpu%02u %llu\n",
cpu,
gpu->parent->isr.replayable_faults.stats.cpu_exec_count[cpu]);
}
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_buffer_entries %u\n",
gpu->parent->fault_buffer_info.replayable.max_faults);
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_cached_get %u\n",
gpu->parent->fault_buffer_info.replayable.cached_get);
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_cached_put %u\n",
gpu->parent->fault_buffer_info.replayable.cached_put);
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_get %u\n",
gpu->parent->fault_buffer_hal->read_get(gpu->parent));
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_put %u\n",
gpu->parent->fault_buffer_hal->read_put(gpu->parent));
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_fault_batch_size %u\n",
gpu->parent->fault_buffer_info.max_batch_size);
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_replay_policy %s\n",
uvm_perf_fault_replay_policy_string(gpu->parent->fault_buffer_info.replayable.replay_policy));
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults_num_faults %llu\n",
gpu->parent->stats.num_replayable_faults);
}
if (gpu->parent->isr.non_replayable_faults.handling) {
UVM_SEQ_OR_DBG_PRINT(s, "non_replayable_faults_bh %llu\n",
gpu->parent->isr.non_replayable_faults.stats.bottom_half_count);
UVM_SEQ_OR_DBG_PRINT(s, "non_replayable_faults_bh/cpu\n");
for_each_cpu(cpu, &gpu->parent->isr.non_replayable_faults.stats.cpus_used_mask) {
UVM_SEQ_OR_DBG_PRINT(s, " cpu%02u %llu\n",
cpu,
gpu->parent->isr.non_replayable_faults.stats.cpu_exec_count[cpu]);
}
UVM_SEQ_OR_DBG_PRINT(s, "non_replayable_faults_buffer_entries %u\n",
gpu->parent->fault_buffer_info.non_replayable.max_faults);
UVM_SEQ_OR_DBG_PRINT(s, "non_replayable_faults_num_faults %llu\n",
gpu->parent->stats.num_non_replayable_faults);
}
if (gpu->parent->isr.access_counters.handling_ref_count > 0) {
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_bh %llu\n",
gpu->parent->isr.access_counters.stats.bottom_half_count);
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_bh/cpu\n");
for_each_cpu(cpu, &gpu->parent->isr.access_counters.stats.cpus_used_mask) {
UVM_SEQ_OR_DBG_PRINT(s, " cpu%02u %llu\n",
cpu,
gpu->parent->isr.access_counters.stats.cpu_exec_count[cpu]);
}
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_buffer_entries %u\n",
gpu->parent->access_counter_buffer_info.max_notifications);
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_cached_get %u\n",
gpu->parent->access_counter_buffer_info.cached_get);
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_cached_put %u\n",
gpu->parent->access_counter_buffer_info.cached_put);
get = UVM_GPU_READ_ONCE(*gpu->parent->access_counter_buffer_info.rm_info.pAccessCntrBufferGet);
put = UVM_GPU_READ_ONCE(*gpu->parent->access_counter_buffer_info.rm_info.pAccessCntrBufferPut);
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_get %u\n", get);
UVM_SEQ_OR_DBG_PRINT(s, "access_counters_put %u\n", put);
}
num_pages_out = atomic64_read(&gpu->parent->stats.num_pages_out);
num_pages_in = atomic64_read(&gpu->parent->stats.num_pages_in);
mapped_cpu_pages_size = atomic64_read(&gpu->parent->mapped_cpu_pages_size);
UVM_SEQ_OR_DBG_PRINT(s, "migrated_pages_in %llu (%llu MB)\n",
num_pages_in,
(num_pages_in * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, "migrated_pages_out %llu (%llu MB)\n",
num_pages_out,
(num_pages_out * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, "mapped_cpu_pages_dma %llu (%llu MB)\n",
mapped_cpu_pages_size / PAGE_SIZE,
mapped_cpu_pages_size / (1024u * 1024u));
gpu_info_print_ce_caps(gpu, s);
if (uvm_conf_computing_mode_enabled(gpu)) {
UVM_SEQ_OR_DBG_PRINT(s, "dma_buffer_pool_num_buffers %lu\n",
gpu->conf_computing.dma_buffer_pool.num_dma_buffers);
}
}
static void
gpu_fault_stats_print_common(uvm_parent_gpu_t *parent_gpu, struct seq_file *s)
{
NvU64 num_pages_in;
NvU64 num_pages_out;
UVM_ASSERT(uvm_procfs_is_debug_enabled());
UVM_SEQ_OR_DBG_PRINT(s, "replayable_faults %llu\n", parent_gpu->stats.num_replayable_faults);
UVM_SEQ_OR_DBG_PRINT(s, "duplicates %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_duplicate_faults);
UVM_SEQ_OR_DBG_PRINT(s, "faults_by_access_type:\n");
UVM_SEQ_OR_DBG_PRINT(s, " prefetch %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_prefetch_faults);
UVM_SEQ_OR_DBG_PRINT(s, " read %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_read_faults);
UVM_SEQ_OR_DBG_PRINT(s, " write %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_write_faults);
UVM_SEQ_OR_DBG_PRINT(s, " atomic %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_atomic_faults);
num_pages_out = atomic64_read(&parent_gpu->fault_buffer_info.replayable.stats.num_pages_out);
num_pages_in = atomic64_read(&parent_gpu->fault_buffer_info.replayable.stats.num_pages_in);
UVM_SEQ_OR_DBG_PRINT(s, "migrations:\n");
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_in %llu (%llu MB)\n", num_pages_in,
(num_pages_in * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_out %llu (%llu MB)\n", num_pages_out,
(num_pages_out * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, "replays:\n");
UVM_SEQ_OR_DBG_PRINT(s, " start %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_replays);
UVM_SEQ_OR_DBG_PRINT(s, " start_ack_all %llu\n",
parent_gpu->fault_buffer_info.replayable.stats.num_replays_ack_all);
UVM_SEQ_OR_DBG_PRINT(s, "non_replayable_faults %llu\n", parent_gpu->stats.num_non_replayable_faults);
UVM_SEQ_OR_DBG_PRINT(s, "faults_by_access_type:\n");
UVM_SEQ_OR_DBG_PRINT(s, " read %llu\n",
parent_gpu->fault_buffer_info.non_replayable.stats.num_read_faults);
UVM_SEQ_OR_DBG_PRINT(s, " write %llu\n",
parent_gpu->fault_buffer_info.non_replayable.stats.num_write_faults);
UVM_SEQ_OR_DBG_PRINT(s, " atomic %llu\n",
parent_gpu->fault_buffer_info.non_replayable.stats.num_atomic_faults);
UVM_SEQ_OR_DBG_PRINT(s, "faults_by_addressing:\n");
UVM_SEQ_OR_DBG_PRINT(s, " virtual %llu\n",
parent_gpu->stats.num_non_replayable_faults -
parent_gpu->fault_buffer_info.non_replayable.stats.num_physical_faults);
UVM_SEQ_OR_DBG_PRINT(s, " physical %llu\n",
parent_gpu->fault_buffer_info.non_replayable.stats.num_physical_faults);
num_pages_out = atomic64_read(&parent_gpu->fault_buffer_info.non_replayable.stats.num_pages_out);
num_pages_in = atomic64_read(&parent_gpu->fault_buffer_info.non_replayable.stats.num_pages_in);
UVM_SEQ_OR_DBG_PRINT(s, "migrations:\n");
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_in %llu (%llu MB)\n", num_pages_in,
(num_pages_in * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_out %llu (%llu MB)\n", num_pages_out,
(num_pages_out * (NvU64)PAGE_SIZE) / (1024u * 1024u));
}
static void gpu_access_counters_print_common(uvm_parent_gpu_t *parent_gpu, struct seq_file *s)
{
NvU64 num_pages_in;
NvU64 num_pages_out;
UVM_ASSERT(uvm_procfs_is_debug_enabled());
num_pages_out = atomic64_read(&parent_gpu->access_counter_buffer_info.stats.num_pages_out);
num_pages_in = atomic64_read(&parent_gpu->access_counter_buffer_info.stats.num_pages_in);
UVM_SEQ_OR_DBG_PRINT(s, "migrations:\n");
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_in %llu (%llu MB)\n", num_pages_in,
(num_pages_in * (NvU64)PAGE_SIZE) / (1024u * 1024u));
UVM_SEQ_OR_DBG_PRINT(s, " num_pages_out %llu (%llu MB)\n", num_pages_out,
(num_pages_out * (NvU64)PAGE_SIZE) / (1024u * 1024u));
}
void uvm_gpu_print(uvm_gpu_t *gpu)
{
gpu_info_print_common(gpu, NULL);
}
static void gpu_peer_caps_print(uvm_gpu_t **gpu_pair, struct seq_file *s)
{
bool nvswitch_connected;
uvm_aperture_t aperture;
uvm_gpu_peer_t *peer_caps;
uvm_gpu_t *local;
uvm_gpu_t *remote;
UVM_ASSERT(uvm_procfs_is_debug_enabled());
local = gpu_pair[0];
remote = gpu_pair[1];
peer_caps = uvm_gpu_peer_caps(local, remote);
aperture = uvm_gpu_peer_aperture(local, remote);
nvswitch_connected = uvm_gpus_are_nvswitch_connected(local, remote);
UVM_SEQ_OR_DBG_PRINT(s, "Link type %s\n", uvm_gpu_link_type_string(peer_caps->link_type));
UVM_SEQ_OR_DBG_PRINT(s, "Bandwidth %uMBps\n", peer_caps->total_link_line_rate_mbyte_per_s);
UVM_SEQ_OR_DBG_PRINT(s, "Aperture %s\n", uvm_aperture_string(aperture));
UVM_SEQ_OR_DBG_PRINT(s, "Connected through NVSWITCH %s\n", nvswitch_connected ? "True" : "False");
UVM_SEQ_OR_DBG_PRINT(s, "Refcount %llu\n", UVM_READ_ONCE(peer_caps->ref_count));
}
static int nv_procfs_read_gpu_info(struct seq_file *s, void *v)
{
uvm_gpu_t *gpu = (uvm_gpu_t *)s->private;
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock))
return -EAGAIN;
gpu_info_print_common(gpu, s);
uvm_up_read(&g_uvm_global.pm.lock);
return 0;
}
static int nv_procfs_read_gpu_info_entry(struct seq_file *s, void *v)
{
UVM_ENTRY_RET(nv_procfs_read_gpu_info(s, v));
}
static int nv_procfs_read_gpu_fault_stats(struct seq_file *s, void *v)
{
uvm_parent_gpu_t *parent_gpu = (uvm_parent_gpu_t *)s->private;
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock))
return -EAGAIN;
gpu_fault_stats_print_common(parent_gpu, s);
uvm_up_read(&g_uvm_global.pm.lock);
return 0;
}
static int nv_procfs_read_gpu_fault_stats_entry(struct seq_file *s, void *v)
{
UVM_ENTRY_RET(nv_procfs_read_gpu_fault_stats(s, v));
}
static int nv_procfs_read_gpu_access_counters(struct seq_file *s, void *v)
{
uvm_parent_gpu_t *parent_gpu = (uvm_parent_gpu_t *)s->private;
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock))
return -EAGAIN;
gpu_access_counters_print_common(parent_gpu, s);
uvm_up_read(&g_uvm_global.pm.lock);
return 0;
}
static int nv_procfs_read_gpu_access_counters_entry(struct seq_file *s, void *v)
{
UVM_ENTRY_RET(nv_procfs_read_gpu_access_counters(s, v));
}
UVM_DEFINE_SINGLE_PROCFS_FILE(gpu_info_entry);
UVM_DEFINE_SINGLE_PROCFS_FILE(gpu_fault_stats_entry);
UVM_DEFINE_SINGLE_PROCFS_FILE(gpu_access_counters_entry);
static NV_STATUS init_parent_procfs_dir(uvm_parent_gpu_t *parent_gpu)
{
struct proc_dir_entry *gpu_base_dir_entry;
char uuid_text_buffer[UVM_GPU_UUID_TEXT_BUFFER_LENGTH];
char gpu_dir_name[sizeof(uuid_text_buffer) + 1];
if (!uvm_procfs_is_enabled())
return NV_OK;
gpu_base_dir_entry = uvm_procfs_get_gpu_base_dir();
format_uuid_to_buffer(uuid_text_buffer, sizeof(uuid_text_buffer), &parent_gpu->uuid);
// Create UVM-GPU-${UUID} directory
snprintf(gpu_dir_name, sizeof(gpu_dir_name), "%s", uuid_text_buffer);
parent_gpu->procfs.dir = NV_CREATE_PROC_DIR(gpu_dir_name, gpu_base_dir_entry);
if (parent_gpu->procfs.dir == NULL)
return NV_ERR_OPERATING_SYSTEM;
return NV_OK;
}
static void deinit_parent_procfs_dir(uvm_parent_gpu_t *parent_gpu)
{
proc_remove(parent_gpu->procfs.dir);
}
static NV_STATUS init_parent_procfs_files(uvm_parent_gpu_t *parent_gpu)
{
// Fault and access counter files are debug only
if (!uvm_procfs_is_debug_enabled())
return NV_OK;
parent_gpu->procfs.fault_stats_file = NV_CREATE_PROC_FILE("fault_stats",
parent_gpu->procfs.dir,
gpu_fault_stats_entry,
parent_gpu);
if (parent_gpu->procfs.fault_stats_file == NULL)
return NV_ERR_OPERATING_SYSTEM;
parent_gpu->procfs.access_counters_file = NV_CREATE_PROC_FILE("access_counters",
parent_gpu->procfs.dir,
gpu_access_counters_entry,
parent_gpu);
if (parent_gpu->procfs.access_counters_file == NULL)
return NV_ERR_OPERATING_SYSTEM;
return NV_OK;
}
static void deinit_parent_procfs_files(uvm_parent_gpu_t *parent_gpu)
{
proc_remove(parent_gpu->procfs.access_counters_file);
proc_remove(parent_gpu->procfs.fault_stats_file);
}
static NV_STATUS init_procfs_dirs(uvm_gpu_t *gpu)
{
struct proc_dir_entry *gpu_base_dir_entry;
char symlink_name[16]; // Hold a global_gpu_id_t value in decimal.
char uuid_text_buffer[UVM_GPU_UUID_TEXT_BUFFER_LENGTH];
char gpu_dir_name[sizeof(symlink_name) + sizeof(uuid_text_buffer) + 1];
if (!uvm_procfs_is_enabled())
return NV_OK;
format_uuid_to_buffer(uuid_text_buffer, sizeof(uuid_text_buffer), uvm_gpu_uuid(gpu));
gpu_base_dir_entry = uvm_procfs_get_gpu_base_dir();
// Create UVM-GPU-${UUID}/${sub_processor_index} directory
snprintf(gpu_dir_name, sizeof(gpu_dir_name), "%u", uvm_global_id_sub_processor_index(gpu->global_id));
gpu->procfs.dir = NV_CREATE_PROC_DIR(gpu_dir_name, gpu->parent->procfs.dir);
if (gpu->procfs.dir == NULL)
return NV_ERR_OPERATING_SYSTEM;
// Create symlink from ${global_gpu_id} to
// gpus/UVM-GPU-${UUID}/${sub_processor_index}
snprintf(symlink_name, sizeof(symlink_name), "%u", uvm_global_id_value(gpu->global_id));
snprintf(gpu_dir_name,
sizeof(gpu_dir_name),
"%s/%u",
uuid_text_buffer,
uvm_global_id_sub_processor_index(gpu->global_id));
gpu->procfs.dir_symlink = proc_symlink(symlink_name, gpu_base_dir_entry, gpu_dir_name);
if (gpu->procfs.dir_symlink == NULL)
return NV_ERR_OPERATING_SYSTEM;
// GPU peer files are debug only
if (!uvm_procfs_is_debug_enabled())
return NV_OK;
gpu->procfs.dir_peers = NV_CREATE_PROC_DIR(UVM_PROC_GPUS_PEER_DIR_NAME, gpu->procfs.dir);
if (gpu->procfs.dir_peers == NULL)
return NV_ERR_OPERATING_SYSTEM;
return NV_OK;
}
// The kernel waits on readers to finish before returning from those calls
static void deinit_procfs_dirs(uvm_gpu_t *gpu)
{
proc_remove(gpu->procfs.dir_peers);
proc_remove(gpu->procfs.dir_symlink);
proc_remove(gpu->procfs.dir);
}
static NV_STATUS init_procfs_files(uvm_gpu_t *gpu)
{
gpu->procfs.info_file = NV_CREATE_PROC_FILE("info", gpu->procfs.dir, gpu_info_entry, gpu);
if (gpu->procfs.info_file == NULL)
return NV_ERR_OPERATING_SYSTEM;
return NV_OK;
}
static void deinit_procfs_files(uvm_gpu_t *gpu)
{
proc_remove(gpu->procfs.info_file);
}
static void deinit_procfs_peer_cap_files(uvm_gpu_peer_t *peer_caps)
{
proc_remove(peer_caps->procfs.peer_symlink_file[0]);
proc_remove(peer_caps->procfs.peer_symlink_file[1]);
proc_remove(peer_caps->procfs.peer_file[0]);
proc_remove(peer_caps->procfs.peer_file[1]);
}
static NV_STATUS init_semaphore_pools(uvm_gpu_t *gpu)
{
NV_STATUS status;
uvm_gpu_t *other_gpu;
status = uvm_gpu_semaphore_pool_create(gpu, &gpu->semaphore_pool);
if (status != NV_OK)
return status;
// When the Confidential Computing feature is enabled, a separate secure
// pool is created that holds page allocated in the CPR of vidmem.
if (uvm_conf_computing_mode_enabled(gpu)) {
status = uvm_gpu_semaphore_secure_pool_create(gpu, &gpu->secure_semaphore_pool);
if (status != NV_OK)
return status;
}
for_each_global_gpu(other_gpu) {
if (uvm_conf_computing_mode_enabled(gpu))
break;
if (other_gpu == gpu)
continue;
status = uvm_gpu_semaphore_pool_map_gpu(other_gpu->semaphore_pool, gpu);
if (status != NV_OK)
return status;
}
return NV_OK;
}
static void deinit_semaphore_pools(uvm_gpu_t *gpu)
{
uvm_gpu_t *other_gpu;
for_each_global_gpu(other_gpu) {
if (other_gpu == gpu)
continue;
uvm_gpu_semaphore_pool_unmap_gpu(other_gpu->semaphore_pool, gpu);
}
uvm_gpu_semaphore_pool_destroy(gpu->semaphore_pool);
uvm_gpu_semaphore_pool_destroy(gpu->secure_semaphore_pool);
}
static NV_STATUS find_unused_global_gpu_id(uvm_parent_gpu_t *parent_gpu, uvm_global_gpu_id_t *out_id)
{
NvU32 i;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (!parent_gpu) {
for (i = 0; i < UVM_MAX_GPUS; i++) {
if (!g_uvm_global.parent_gpus[i]) {
*out_id = uvm_global_gpu_id_from_parent_index(i);
return NV_OK;
}
}
}
else {
NvU32 sub_processor_index = find_first_zero_bit(parent_gpu->valid_gpus, UVM_ID_MAX_SUB_PROCESSORS);
if (sub_processor_index < UVM_ID_MAX_SUB_PROCESSORS) {
*out_id = uvm_global_gpu_id_from_sub_processor_index(parent_gpu->id, sub_processor_index);
return NV_OK;
}
}
return NV_ERR_INSUFFICIENT_RESOURCES;
}
// Allocates a uvm_parent_gpu_t, assigns the GPU ID, and sets up basic data
// structures, but leaves all other initialization up to the caller.
static NV_STATUS alloc_parent_gpu(const NvProcessorUuid *gpu_uuid,
uvm_gpu_id_t gpu_id,
uvm_parent_gpu_t **parent_gpu_out)
{
uvm_parent_gpu_t *parent_gpu;
NV_STATUS status;
parent_gpu = uvm_kvmalloc_zero(sizeof(*parent_gpu));
if (!parent_gpu)
return NV_ERR_NO_MEMORY;
parent_gpu->id = gpu_id;
uvm_processor_uuid_copy(&parent_gpu->uuid, gpu_uuid);
uvm_sema_init(&parent_gpu->isr.replayable_faults.service_lock, 1, UVM_LOCK_ORDER_ISR);
uvm_sema_init(&parent_gpu->isr.non_replayable_faults.service_lock, 1, UVM_LOCK_ORDER_ISR);
uvm_sema_init(&parent_gpu->isr.access_counters.service_lock, 1, UVM_LOCK_ORDER_ISR);
uvm_spin_lock_irqsave_init(&parent_gpu->isr.interrupts_lock, UVM_LOCK_ORDER_LEAF);
uvm_spin_lock_init(&parent_gpu->instance_ptr_table_lock, UVM_LOCK_ORDER_LEAF);
uvm_rb_tree_init(&parent_gpu->instance_ptr_table);
uvm_rb_tree_init(&parent_gpu->tsg_table);
// TODO: Bug 3881835: revisit whether to use nv_kthread_q_t or workqueue.
status = errno_to_nv_status(nv_kthread_q_init(&parent_gpu->lazy_free_q, "vidmem lazy free"));
nv_kref_init(&parent_gpu->gpu_kref);
*parent_gpu_out = parent_gpu;
return status;
}
// Allocates a uvm_gpu_t struct and initializes the basic fields and leaves all
// other initialization up to the caller.
static uvm_gpu_t *alloc_gpu(uvm_parent_gpu_t *parent_gpu, uvm_global_gpu_id_t global_gpu_id)
{
NvU32 sub_processor_index;
uvm_gpu_t *gpu;
gpu = uvm_kvmalloc_zero(sizeof(*gpu));
if (!gpu)
return gpu;
gpu->id = parent_gpu->id;
gpu->global_id = global_gpu_id;
gpu->parent = parent_gpu;
// Initialize enough of the gpu struct for remove_gpu to be called
gpu->magic = UVM_GPU_MAGIC_VALUE;
uvm_spin_lock_init(&gpu->peer_info.peer_gpus_lock, UVM_LOCK_ORDER_LEAF);
sub_processor_index = uvm_global_id_sub_processor_index(global_gpu_id);
parent_gpu->gpus[sub_processor_index] = gpu;
return gpu;
}
static NV_STATUS configure_address_space(uvm_gpu_t *gpu)
{
NV_STATUS status;
NvU32 num_entries;
NvU64 va_size;
NvU64 va_per_entry;
status = uvm_page_tree_init(gpu,
NULL,
UVM_PAGE_TREE_TYPE_KERNEL,
gpu->big_page.internal_size,
uvm_gpu_page_tree_init_location(gpu),
&gpu->address_space_tree);
if (status != NV_OK) {
UVM_ERR_PRINT("Initializing the page tree failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
num_entries = uvm_mmu_page_tree_entries(&gpu->address_space_tree, 0, UVM_PAGE_SIZE_AGNOSTIC);
UVM_ASSERT(gpu->address_space_tree.hal->num_va_bits() < 64);
va_size = 1ull << gpu->address_space_tree.hal->num_va_bits();
va_per_entry = va_size / num_entries;
// Make sure that RM's part of the VA is aligned to the VA covered by a
// single top level PDE.
UVM_ASSERT_MSG(gpu->parent->rm_va_base % va_per_entry == 0,
"va_base 0x%llx va_per_entry 0x%llx\n", gpu->parent->rm_va_base, va_per_entry);
UVM_ASSERT_MSG(gpu->parent->rm_va_size % va_per_entry == 0,
"va_size 0x%llx va_per_entry 0x%llx\n", gpu->parent->rm_va_size, va_per_entry);
status = uvm_rm_locked_call(nvUvmInterfaceSetPageDirectory(gpu->rm_address_space,
uvm_page_tree_pdb(&gpu->address_space_tree)->addr.address, num_entries,
uvm_page_tree_pdb(&gpu->address_space_tree)->addr.aperture == UVM_APERTURE_VID,
-1U /* Invalid PASID for internal RM address space */));
if (status != NV_OK) {
UVM_ERR_PRINT("nvUvmInterfaceSetPageDirectory() failed: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
gpu->rm_address_space_moved_to_page_tree = true;
return NV_OK;
}
static void deconfigure_address_space(uvm_gpu_t *gpu)
{
if (gpu->rm_address_space_moved_to_page_tree)
uvm_rm_locked_call_void(nvUvmInterfaceUnsetPageDirectory(gpu->rm_address_space));
if (gpu->address_space_tree.root)
uvm_page_tree_deinit(&gpu->address_space_tree);
}
static NV_STATUS service_interrupts(uvm_parent_gpu_t *parent_gpu)
{
// Asking RM to service interrupts from top half interrupt handler would
// very likely deadlock.
UVM_ASSERT(!in_interrupt());
return uvm_rm_locked_call(nvUvmInterfaceServiceDeviceInterruptsRM(parent_gpu->rm_device));
}
NV_STATUS uvm_gpu_check_ecc_error(uvm_gpu_t *gpu)
{
NV_STATUS status = uvm_gpu_check_ecc_error_no_rm(gpu);
if (status == NV_OK || status != NV_WARN_MORE_PROCESSING_REQUIRED)
return status;
// An interrupt that might mean an ECC error needs to be serviced.
UVM_ASSERT(status == NV_WARN_MORE_PROCESSING_REQUIRED);
status = service_interrupts(gpu->parent);
if (status != NV_OK) {
UVM_ERR_PRINT("Servicing interrupts failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
// After servicing interrupts the ECC error notifier should be current.
if (*gpu->ecc.error_notifier) {
UVM_ERR_PRINT("ECC error encountered, GPU %s\n", uvm_gpu_name(gpu));
uvm_global_set_fatal_error(NV_ERR_ECC_ERROR);
return NV_ERR_ECC_ERROR;
}
return NV_OK;
}
static NV_STATUS init_parent_gpu(uvm_parent_gpu_t *parent_gpu,
const NvProcessorUuid *gpu_uuid,
const UvmGpuInfo *gpu_info,
const UvmGpuPlatformInfo *gpu_platform_info)
{
NV_STATUS status;
status = uvm_rm_locked_call(nvUvmInterfaceDeviceCreate(g_uvm_global.rm_session_handle,
gpu_info,
gpu_uuid,
&parent_gpu->rm_device,
NV_FALSE));
if (status != NV_OK) {
UVM_ERR_PRINT("Creating RM device failed: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
uvm_conf_computing_check_parent_gpu(parent_gpu);
parent_gpu->pci_dev = gpu_platform_info->pci_dev;
parent_gpu->closest_cpu_numa_node = dev_to_node(&parent_gpu->pci_dev->dev);
parent_gpu->dma_addressable_start = gpu_platform_info->dma_addressable_start;
parent_gpu->dma_addressable_limit = gpu_platform_info->dma_addressable_limit;
parent_gpu->sli_enabled = (gpu_info->subdeviceCount > 1);
parent_gpu->virt_mode = gpu_info->virtMode;
if (parent_gpu->virt_mode == UVM_VIRT_MODE_LEGACY) {
UVM_ERR_PRINT("Failed to init GPU %s. UVM is not supported in legacy virtualization mode\n", parent_gpu->name);
return NV_ERR_NOT_SUPPORTED;
}
if (gpu_info->isSimulated)
++g_uvm_global.num_simulated_devices;
status = init_parent_procfs_dir(parent_gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init parent procfs dir: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
status = uvm_hal_init_gpu(parent_gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init GPU hal: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
uvm_hal_init_properties(parent_gpu);
UVM_ASSERT(!parent_gpu->rm_info.smcEnabled || parent_gpu->smc.supported);
parent_gpu->smc.enabled = !!parent_gpu->rm_info.smcEnabled;
uvm_mmu_init_gpu_chunk_sizes(parent_gpu);
status = uvm_ats_add_gpu(parent_gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("uvm_ats_add_gpu failed: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
status = init_parent_procfs_files(parent_gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init parent procfs files: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
status = uvm_gpu_init_isr(parent_gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init ISR: %s, GPU %s\n", nvstatusToString(status), parent_gpu->name);
return status;
}
return NV_OK;
}
static NV_STATUS init_gpu(uvm_gpu_t *gpu, const UvmGpuInfo *gpu_info)
{
NV_STATUS status;
// Presently, an RM client can only subscribe to a single partition per
// GPU. Therefore, UVM needs to create several RM clients. For simplicity,
// and since P2P is not supported when SMC partitions are created, we
// create a client (session) per GPU partition.
if (gpu->parent->smc.enabled) {
UvmPlatformInfo platform_info;
status = uvm_rm_locked_call(nvUvmInterfaceSessionCreate(&gpu->smc.rm_session_handle, &platform_info));
if (status != NV_OK) {
UVM_ERR_PRINT("Creating RM session failed: %s\n", nvstatusToString(status));
return status;
}
status = uvm_rm_locked_call(nvUvmInterfaceDeviceCreate(uvm_gpu_session_handle(gpu),
gpu_info,
uvm_gpu_uuid(gpu),
&gpu->smc.rm_device,
NV_TRUE));
if (status != NV_OK) {
UVM_ERR_PRINT("Creating RM device failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
}
gpu->smc.swizz_id = gpu_info->smcSwizzId;
// Initialize the per-GPU procfs dirs as early as possible so that other
// parts of the driver can add files in them as part of their per-GPU init.
status = init_procfs_dirs(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init procfs dirs: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = get_gpu_caps(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to get GPU caps: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
uvm_mmu_init_gpu_peer_addresses(gpu);
status = alloc_and_init_address_space(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Creating RM address space failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = get_gpu_fb_info(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to get GPU FB info: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = get_gpu_ecc_info(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to get GPU ECC info: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = uvm_pmm_gpu_init(&gpu->pmm);
if (status != NV_OK) {
UVM_ERR_PRINT("PMM initialization failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = uvm_pmm_sysmem_mappings_init(gpu, &gpu->pmm_reverse_sysmem_mappings);
if (status != NV_OK) {
UVM_ERR_PRINT("CPU PMM MMIO initialization failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = init_semaphore_pools(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to initialize the semaphore pool: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
status = uvm_channel_manager_create(gpu, &gpu->channel_manager);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to initialize the channel manager: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
status = configure_address_space(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to configure the GPU address space: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
status = uvm_mmu_create_flat_mappings(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Creating flat mappings failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = uvm_conf_computing_gpu_init(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to initialize Confidential Compute: %s for GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
status = init_procfs_files(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init procfs files: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = uvm_perf_heuristics_add_gpu(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init heuristics: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
return NV_OK;
}
// Add a new gpu and register it with RM
// TODO: Bug 2844714: Split parent-specific parts of this function out into a
// separate add_parent_gpu() function.
static NV_STATUS add_gpu(const NvProcessorUuid *gpu_uuid,
const uvm_global_gpu_id_t global_gpu_id,
const UvmGpuInfo *gpu_info,
const UvmGpuPlatformInfo *gpu_platform_info,
uvm_parent_gpu_t *parent_gpu,
uvm_gpu_t **gpu_out)
{
NV_STATUS status;
bool alloc_parent = (parent_gpu == NULL);
uvm_gpu_t *gpu = NULL;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (alloc_parent) {
status = alloc_parent_gpu(gpu_uuid, uvm_gpu_id_from_global_gpu_id(global_gpu_id), &parent_gpu);
if (status != NV_OK)
return status;
}
gpu = alloc_gpu(parent_gpu, global_gpu_id);
if (!gpu) {
if (alloc_parent)
uvm_parent_gpu_kref_put(parent_gpu);
return NV_ERR_NO_MEMORY;
}
parent_gpu->num_retained_gpus++;
if (alloc_parent)
fill_gpu_info(parent_gpu, gpu_info);
// After this point all error clean up should be handled by remove_gpu()
if (!gpu_supports_uvm(parent_gpu)) {
UVM_DBG_PRINT("Registration of non-UVM-capable GPU attempted: GPU %s\n", uvm_gpu_name(gpu));
status = NV_ERR_NOT_SUPPORTED;
goto error;
}
if (alloc_parent) {
status = init_parent_gpu(parent_gpu, gpu_uuid, gpu_info, gpu_platform_info);
if (status != NV_OK)
goto error;
}
status = init_gpu(gpu, gpu_info);
if (status != NV_OK)
goto error;
status = uvm_gpu_check_ecc_error(gpu);
if (status != NV_OK)
goto error;
atomic64_set(&gpu->retained_count, 1);
uvm_global_processor_mask_set(&g_uvm_global.retained_gpus, gpu->global_id);
uvm_spin_lock_irqsave(&g_uvm_global.gpu_table_lock);
if (alloc_parent)
uvm_global_add_parent_gpu(parent_gpu);
// Mark the GPU as valid in the parent GPU's GPU table.
UVM_ASSERT(!test_bit(uvm_global_id_sub_processor_index(gpu->global_id), parent_gpu->valid_gpus));
__set_bit(uvm_global_id_sub_processor_index(gpu->global_id), parent_gpu->valid_gpus);
// Although locking correctness does not, at this early point (before the
// GPU is visible in the table) strictly require holding the gpu_table_lock
// in order to read gpu->isr.replayable_faults.handling, nor to enable page
// fault interrupts (this could have been done earlier), it is best to do it
// here, in order to avoid an interrupt storm. That way, we take advantage
// of the spinlock_irqsave side effect of turning off local CPU interrupts,
// part of holding the gpu_table_lock. That means that the local CPU won't
// receive any of these interrupts, until the GPU is safely added to the
// table (where the top half ISR can find it).
//
// As usual with spinlock_irqsave behavior, *other* CPUs can still handle
// these interrupts, but the local CPU will not be slowed down (interrupted)
// by such handling, and can quickly release the gpu_table_lock, thus
// unblocking any other CPU's top half (which waits for the gpu_table_lock).
if (alloc_parent && parent_gpu->isr.replayable_faults.handling) {
parent_gpu->fault_buffer_hal->enable_replayable_faults(parent_gpu);
// Clear the interrupt bit and force the re-evaluation of the interrupt
// condition to ensure that we don't miss any pending interrupt
parent_gpu->fault_buffer_hal->clear_replayable_faults(parent_gpu,
parent_gpu->fault_buffer_info.replayable.cached_get);
}
// Access counters are enabled on demand
uvm_spin_unlock_irqrestore(&g_uvm_global.gpu_table_lock);
if (alloc_parent) {
status = discover_nvlink_peers(gpu);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to discover NVLINK peers: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
// Nobody can have retained the GPU yet, since we still hold the global
// lock.
UVM_ASSERT(uvm_gpu_retained_count(gpu) == 1);
atomic64_set(&gpu->retained_count, 0);
goto error;
}
}
*gpu_out = gpu;
return NV_OK;
error:
remove_gpu(gpu);
return status;
}
static void sync_parent_gpu_trackers(uvm_parent_gpu_t *parent_gpu,
bool sync_replay_tracker,
bool sync_clear_faulted_tracker)
{
NV_STATUS status;
// Sync the replay tracker since it inherits dependencies from the VA block
// trackers.
if (sync_replay_tracker) {
uvm_gpu_replayable_faults_isr_lock(parent_gpu);
status = uvm_tracker_wait(&parent_gpu->fault_buffer_info.replayable.replay_tracker);
uvm_gpu_replayable_faults_isr_unlock(parent_gpu);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
}
// Sync the clear_faulted tracker since it inherits dependencies from the
// VA block trackers, too.
if (sync_clear_faulted_tracker) {
uvm_gpu_non_replayable_faults_isr_lock(parent_gpu);
status = uvm_tracker_wait(&parent_gpu->fault_buffer_info.non_replayable.clear_faulted_tracker);
uvm_gpu_non_replayable_faults_isr_unlock(parent_gpu);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
}
}
// Remove all references the given GPU has to other GPUs, since one of those
// other GPUs is getting removed. This involves waiting for any unfinished
// trackers contained by this GPU.
static void remove_gpus_from_gpu(uvm_gpu_t *gpu)
{
sync_parent_gpu_trackers(gpu->parent,
gpu->parent->isr.replayable_faults.handling,
gpu->parent->isr.non_replayable_faults.handling);
// Sync all trackers in PMM
uvm_pmm_gpu_sync(&gpu->pmm);
// Sync all trackers in the GPU's DMA allocation pool
uvm_conf_computing_dma_buffer_pool_sync(&gpu->conf_computing.dma_buffer_pool);
}
// Remove all references to the given GPU from its parent, since it is being
// removed. This involves waiting for any unfinished trackers contained
// by the parent GPU.
static void remove_gpu_from_parent_gpu(uvm_gpu_t *gpu)
{
// We use *.was_handling instead of *.handling here since this function is
// called after uvm_gpu_disable_isr(), and the *.handling flags will
// already have been copied to *.was_handling, and then set to false.
sync_parent_gpu_trackers(gpu->parent,
gpu->parent->isr.replayable_faults.was_handling,
gpu->parent->isr.non_replayable_faults.was_handling);
}
static void deinit_parent_gpu(uvm_parent_gpu_t *parent_gpu)
{
// All channels should have been removed before the retained count went to 0
UVM_ASSERT(uvm_rb_tree_empty(&parent_gpu->instance_ptr_table));
UVM_ASSERT(uvm_rb_tree_empty(&parent_gpu->tsg_table));
// Access counters should have been disabled when the GPU is no longer
// registered in any VA space.
UVM_ASSERT(parent_gpu->isr.access_counters.handling_ref_count == 0);
// Return ownership to RM
uvm_gpu_deinit_isr(parent_gpu);
deinit_parent_procfs_files(parent_gpu);
uvm_ats_remove_gpu(parent_gpu);
UVM_ASSERT(atomic64_read(&parent_gpu->mapped_cpu_pages_size) == 0);
// After calling nvUvmInterfaceUnregisterGpu() the reference to pci_dev may
// not be valid any more so clear it ahead of time.
parent_gpu->pci_dev = NULL;
deinit_parent_procfs_dir(parent_gpu);
if (parent_gpu->rm_info.isSimulated)
--g_uvm_global.num_simulated_devices;
if (parent_gpu->rm_device != 0)
uvm_rm_locked_call_void(nvUvmInterfaceDeviceDestroy(parent_gpu->rm_device));
uvm_parent_gpu_kref_put(parent_gpu);
}
static void deinit_gpu(uvm_gpu_t *gpu)
{
uvm_gpu_t *other_gpu;
// Remove any pointers to this GPU from other GPUs' trackers.
for_each_global_gpu(other_gpu) {
UVM_ASSERT(other_gpu != gpu);
remove_gpus_from_gpu(other_gpu);
}
// Further, remove any pointers to this GPU from its parent's trackers.
remove_gpu_from_parent_gpu(gpu);
uvm_perf_heuristics_remove_gpu(gpu);
deinit_procfs_files(gpu);
// TODO Bug 3429163: [UVM] Move uvm_mmu_destroy_flat_mapping() to the
// correct spot
uvm_mmu_destroy_flat_mappings(gpu);
// Wait for any deferred frees and their associated trackers to be finished
// before tearing down channels.
uvm_pmm_gpu_sync(&gpu->pmm);
uvm_channel_manager_destroy(gpu->channel_manager);
// Deconfigure the address space only after destroying all the channels as
// in case any of them hit fatal errors, RM will assert that they are not
// idle during nvUvmInterfaceUnsetPageDirectory() and that's an unnecessary
// pain during development.
deconfigure_address_space(gpu);
deinit_semaphore_pools(gpu);
uvm_pmm_sysmem_mappings_deinit(&gpu->pmm_reverse_sysmem_mappings);
uvm_pmm_gpu_deinit(&gpu->pmm);
if (gpu->rm_address_space != 0)
uvm_rm_locked_call_void(nvUvmInterfaceAddressSpaceDestroy(gpu->rm_address_space));
deinit_procfs_dirs(gpu);
if (gpu->parent->smc.enabled) {
if (gpu->smc.rm_device != 0)
uvm_rm_locked_call_void(nvUvmInterfaceDeviceDestroy(gpu->smc.rm_device));
if (gpu->smc.rm_session_handle != 0)
uvm_rm_locked_call_void(nvUvmInterfaceSessionDestroy(gpu->smc.rm_session_handle));
}
gpu->magic = 0;
}
// Remove a gpu and unregister it from RM
// Note that this is also used in most error paths in add_gpu()
static void remove_gpu(uvm_gpu_t *gpu)
{
NvU32 sub_processor_index;
uvm_parent_gpu_t *parent_gpu;
bool free_parent;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
sub_processor_index = uvm_global_id_sub_processor_index(gpu->global_id);
parent_gpu = gpu->parent;
UVM_ASSERT_MSG(uvm_gpu_retained_count(gpu) == 0,
"gpu_id %u retained_count %llu\n",
uvm_id_value(gpu->id),
uvm_gpu_retained_count(gpu));
UVM_ASSERT(parent_gpu->num_retained_gpus > 0);
parent_gpu->num_retained_gpus--;
free_parent = (parent_gpu->num_retained_gpus == 0);
// NVLINK peers must be removed and the relevant access counter buffers must
// be flushed before removing this GPU from the global table. See the
// comment on discover_nvlink_peers in add_gpu.
if (free_parent)
destroy_nvlink_peers(gpu);
// uvm_mem_free and other uvm_mem APIs invoked by the Confidential Compute
// deinitialization must be called before the GPU is removed from the global
// table.
//
// TODO: Bug 2008200: Add and remove the GPU in a more reasonable spot.
uvm_conf_computing_gpu_deinit(gpu);
// TODO: Bug 2844714: If the parent is not being freed, the following
// gpu_table_lock is only needed to protect concurrent
// find_first_valid_gpu() in BH from the __clear_bit here. After
// find_first_valid_gpu() is removed, gpu_table_lock should only be acquired
// and released in the free_parent case.
//
// In the free_parent case, gpu_table_lock protects the top half from the
// uvm_global_remove_parent_gpu()
uvm_spin_lock_irqsave(&g_uvm_global.gpu_table_lock);
// Mark the GPU as invalid in the parent GPU's GPU table.
__clear_bit(sub_processor_index, parent_gpu->valid_gpus);
// Remove the GPU from the table.
if (free_parent)
uvm_global_remove_parent_gpu(parent_gpu);
uvm_spin_unlock_irqrestore(&g_uvm_global.gpu_table_lock);
uvm_global_processor_mask_clear(&g_uvm_global.retained_gpus, gpu->global_id);
// If the parent is being freed, stop scheduling new bottom halves and
// update relevant software state. Else flush any pending bottom halves
// before continuing.
if (free_parent)
uvm_gpu_disable_isr(parent_gpu);
else
uvm_gpu_flush_bottom_halves(parent_gpu);
deinit_gpu(gpu);
UVM_ASSERT(parent_gpu->gpus[sub_processor_index] == gpu);
parent_gpu->gpus[sub_processor_index] = NULL;
uvm_kvfree(gpu);
if (free_parent)
deinit_parent_gpu(parent_gpu);
}
// Do not not call this directly. It is called by nv_kref_put, when the
// GPU's ref count drops to zero.
static void uvm_parent_gpu_destroy(nv_kref_t *nv_kref)
{
uvm_parent_gpu_t *parent_gpu = container_of(nv_kref, uvm_parent_gpu_t, gpu_kref);
NvU32 sub_processor_index;
UVM_ASSERT(parent_gpu->num_retained_gpus == 0);
UVM_ASSERT(bitmap_empty(parent_gpu->valid_gpus, UVM_ID_MAX_SUB_PROCESSORS));
nv_kthread_q_stop(&parent_gpu->lazy_free_q);
for (sub_processor_index = 0; sub_processor_index < UVM_ID_MAX_SUB_PROCESSORS; sub_processor_index++)
UVM_ASSERT(!parent_gpu->gpus[sub_processor_index]);
uvm_kvfree(parent_gpu);
}
void uvm_parent_gpu_kref_put(uvm_parent_gpu_t *parent_gpu)
{
nv_kref_put(&parent_gpu->gpu_kref, uvm_parent_gpu_destroy);
}
static void update_stats_gpu_fault_instance(uvm_gpu_t *gpu,
const uvm_fault_buffer_entry_t *fault_entry,
bool is_duplicate)
{
if (!fault_entry->is_replayable) {
switch (fault_entry->fault_access_type)
{
case UVM_FAULT_ACCESS_TYPE_READ:
++gpu->parent->fault_buffer_info.non_replayable.stats.num_read_faults;
break;
case UVM_FAULT_ACCESS_TYPE_WRITE:
++gpu->parent->fault_buffer_info.non_replayable.stats.num_write_faults;
break;
case UVM_FAULT_ACCESS_TYPE_ATOMIC_WEAK:
case UVM_FAULT_ACCESS_TYPE_ATOMIC_STRONG:
++gpu->parent->fault_buffer_info.non_replayable.stats.num_atomic_faults;
break;
default:
UVM_ASSERT_MSG(false, "Invalid access type for non-replayable faults\n");
break;
}
if (!fault_entry->is_virtual)
++gpu->parent->fault_buffer_info.non_replayable.stats.num_physical_faults;
++gpu->parent->stats.num_non_replayable_faults;
return;
}
UVM_ASSERT(fault_entry->is_virtual);
switch (fault_entry->fault_access_type)
{
case UVM_FAULT_ACCESS_TYPE_PREFETCH:
++gpu->parent->fault_buffer_info.replayable.stats.num_prefetch_faults;
break;
case UVM_FAULT_ACCESS_TYPE_READ:
++gpu->parent->fault_buffer_info.replayable.stats.num_read_faults;
break;
case UVM_FAULT_ACCESS_TYPE_WRITE:
++gpu->parent->fault_buffer_info.replayable.stats.num_write_faults;
break;
case UVM_FAULT_ACCESS_TYPE_ATOMIC_WEAK:
case UVM_FAULT_ACCESS_TYPE_ATOMIC_STRONG:
++gpu->parent->fault_buffer_info.replayable.stats.num_atomic_faults;
break;
default:
break;
}
if (is_duplicate || fault_entry->filtered)
++gpu->parent->fault_buffer_info.replayable.stats.num_duplicate_faults;
++gpu->parent->stats.num_replayable_faults;
}
static void update_stats_fault_cb(uvm_perf_event_t event_id, uvm_perf_event_data_t *event_data)
{
uvm_gpu_t *gpu;
const uvm_fault_buffer_entry_t *fault_entry, *fault_instance;
UVM_ASSERT(event_id == UVM_PERF_EVENT_FAULT);
if (UVM_ID_IS_CPU(event_data->fault.proc_id))
return;
// The reported fault entry must be the "representative" fault entry
UVM_ASSERT(!event_data->fault.gpu.buffer_entry->filtered);
gpu = uvm_va_space_get_gpu(event_data->fault.space, event_data->fault.proc_id);
fault_entry = event_data->fault.gpu.buffer_entry;
// Update the stats using the representative fault entry and the rest of
// instances
update_stats_gpu_fault_instance(gpu, fault_entry, event_data->fault.gpu.is_duplicate);
list_for_each_entry(fault_instance, &fault_entry->merged_instances_list, merged_instances_list)
update_stats_gpu_fault_instance(gpu, fault_instance, event_data->fault.gpu.is_duplicate);
}
static void update_stats_migration_cb(uvm_perf_event_t event_id, uvm_perf_event_data_t *event_data)
{
uvm_gpu_t *gpu_dst = NULL;
uvm_gpu_t *gpu_src = NULL;
NvU64 pages;
bool is_replayable_fault;
bool is_non_replayable_fault;
bool is_access_counter;
uvm_va_space_t *va_space = uvm_va_block_get_va_space(event_data->migration.block);
UVM_ASSERT(event_id == UVM_PERF_EVENT_MIGRATION);
if (UVM_ID_IS_GPU(event_data->migration.dst))
gpu_dst = uvm_va_space_get_gpu(va_space, event_data->migration.dst);
if (UVM_ID_IS_GPU(event_data->migration.src))
gpu_src = uvm_va_space_get_gpu(va_space, event_data->migration.src);
if (!gpu_dst && !gpu_src)
return;
// Page prefetching is also triggered by faults
is_replayable_fault =
event_data->migration.make_resident_context->cause == UVM_MAKE_RESIDENT_CAUSE_REPLAYABLE_FAULT;
is_non_replayable_fault =
event_data->migration.make_resident_context->cause == UVM_MAKE_RESIDENT_CAUSE_NON_REPLAYABLE_FAULT;
is_access_counter =
event_data->migration.make_resident_context->cause == UVM_MAKE_RESIDENT_CAUSE_ACCESS_COUNTER;
pages = event_data->migration.bytes / PAGE_SIZE;
UVM_ASSERT(event_data->migration.bytes % PAGE_SIZE == 0);
UVM_ASSERT(pages > 0);
if (gpu_dst) {
atomic64_add(pages, &gpu_dst->parent->stats.num_pages_in);
if (is_replayable_fault)
atomic64_add(pages, &gpu_dst->parent->fault_buffer_info.replayable.stats.num_pages_in);
else if (is_non_replayable_fault)
atomic64_add(pages, &gpu_dst->parent->fault_buffer_info.non_replayable.stats.num_pages_in);
else if (is_access_counter)
atomic64_add(pages, &gpu_dst->parent->access_counter_buffer_info.stats.num_pages_in);
}
if (gpu_src) {
atomic64_add(pages, &gpu_src->parent->stats.num_pages_out);
if (is_replayable_fault)
atomic64_add(pages, &gpu_src->parent->fault_buffer_info.replayable.stats.num_pages_out);
else if (is_non_replayable_fault)
atomic64_add(pages, &gpu_src->parent->fault_buffer_info.non_replayable.stats.num_pages_out);
else if (is_access_counter)
atomic64_add(pages, &gpu_src->parent->access_counter_buffer_info.stats.num_pages_out);
}
}
// Override the UVM driver and GPU settings from the module loader
static void uvm_param_conf(void)
{
// uvm_peer_copy: Valid entries are "phys" and "virt" for Ampere+ GPUs.
// No effect in pre-Ampere GPUs
if (strcmp(uvm_peer_copy, UVM_PARAM_PEER_COPY_VIRTUAL) == 0) {
g_uvm_global.peer_copy_mode = UVM_GPU_PEER_COPY_MODE_VIRTUAL;
}
else {
if (strcmp(uvm_peer_copy, UVM_PARAM_PEER_COPY_PHYSICAL) != 0) {
pr_info("Invalid value for uvm_peer_copy = %s, using %s instead.\n",
uvm_peer_copy, UVM_PARAM_PEER_COPY_PHYSICAL);
}
g_uvm_global.peer_copy_mode = UVM_GPU_PEER_COPY_MODE_PHYSICAL;
}
}
NV_STATUS uvm_gpu_init(void)
{
NV_STATUS status;
uvm_param_conf();
status = uvm_hal_init_table();
if (status != NV_OK) {
UVM_ERR_PRINT("uvm_hal_init_table() failed: %s\n", nvstatusToString(status));
return status;
}
return NV_OK;
}
void uvm_gpu_exit(void)
{
uvm_parent_gpu_t *parent_gpu;
for_each_parent_gpu(parent_gpu)
UVM_ASSERT_MSG(false, "GPU still present: %s\n", parent_gpu->name);
// CPU should never be in the retained GPUs mask
UVM_ASSERT(!uvm_global_processor_mask_test(&g_uvm_global.retained_gpus, UVM_GLOBAL_ID_CPU));
}
NV_STATUS uvm_gpu_init_va_space(uvm_va_space_t *va_space)
{
NV_STATUS status;
if (uvm_procfs_is_debug_enabled()) {
status = uvm_perf_register_event_callback(&va_space->perf_events,
UVM_PERF_EVENT_FAULT,
update_stats_fault_cb);
if (status != NV_OK)
return status;
status = uvm_perf_register_event_callback(&va_space->perf_events,
UVM_PERF_EVENT_MIGRATION,
update_stats_migration_cb);
if (status != NV_OK)
return status;
}
return NV_OK;
}
uvm_parent_gpu_t *uvm_parent_gpu_get_by_uuid_locked(const NvProcessorUuid *gpu_uuid)
{
uvm_parent_gpu_t *parent_gpu;
for_each_parent_gpu(parent_gpu) {
if (uvm_processor_uuid_eq(&parent_gpu->uuid, gpu_uuid))
return parent_gpu;
}
return NULL;
}
uvm_parent_gpu_t *uvm_parent_gpu_get_by_uuid(const NvProcessorUuid *gpu_uuid)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
return uvm_parent_gpu_get_by_uuid_locked(gpu_uuid);
}
static uvm_gpu_t *uvm_gpu_get_by_uuid_locked(const NvProcessorUuid *gpu_uuid)
{
uvm_gpu_id_t gpu_id;
uvm_global_gpu_id_t global_gpu_id;
uvm_gpu_t *gpu;
for_each_gpu_id(gpu_id) {
global_gpu_id = uvm_global_gpu_id_from_gpu_id(gpu_id);
gpu = uvm_gpu_get(global_gpu_id);
if (gpu) {
if (uvm_processor_uuid_eq(uvm_gpu_uuid(gpu), gpu_uuid)) {
UVM_ASSERT(!gpu->parent->smc.enabled);
return gpu;
}
}
}
return NULL;
}
uvm_gpu_t *uvm_gpu_get_by_uuid(const NvProcessorUuid *gpu_uuid)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
return uvm_gpu_get_by_uuid_locked(gpu_uuid);
}
uvm_gpu_t *uvm_gpu_get_by_parent_and_swizz_id_locked(uvm_parent_gpu_t *parent_gpu, NvU32 swizz_id)
{
uvm_gpu_t *gpu;
UVM_ASSERT(parent_gpu);
for_each_gpu_in_parent(parent_gpu, gpu) {
if (gpu->smc.swizz_id == swizz_id)
return gpu;
}
return NULL;
}
uvm_gpu_t *uvm_gpu_get_by_parent_and_swizz_id(uvm_parent_gpu_t *parent_gpu, NvU32 swizz_id)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
return uvm_gpu_get_by_parent_and_swizz_id_locked(parent_gpu, swizz_id);
}
// Increment the refcount for the GPU with the given UUID. If this is the first
// time that this UUID is retained, the GPU is added to UVM.
// When SMC partitioning is enabled, user_rm_device contains the user handles
// that were created by the caller, and that can be used to identify and
// obtain information about the partition. nvUvmInterfaceGetGpuInfo returns, in
// gpu_info, whether SMC is enabled and the swizzId corresponding to the
// partition.
static NV_STATUS gpu_retain_by_uuid_locked(const NvProcessorUuid *gpu_uuid,
const uvm_rm_user_object_t *user_rm_device,
uvm_gpu_t **gpu_out)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu = NULL;
uvm_parent_gpu_t *parent_gpu;
UvmGpuInfo *gpu_info = NULL;
UvmGpuClientInfo client_info = {0};
UvmGpuPlatformInfo gpu_platform_info = {0};
uvm_global_gpu_id_t global_gpu_id;
client_info.hClient = user_rm_device->user_client;
client_info.hSmcPartRef = user_rm_device->user_object;
gpu_info = uvm_kvmalloc_zero(sizeof(*gpu_info));
if (!gpu_info)
return NV_ERR_NO_MEMORY;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
parent_gpu = uvm_parent_gpu_get_by_uuid(gpu_uuid);
if (parent_gpu == NULL) {
// If this is the first time the UUID is seen, register it on RM
status = uvm_rm_locked_call(nvUvmInterfaceRegisterGpu(gpu_uuid, &gpu_platform_info));
if (status != NV_OK)
goto error_free_gpu_info;
}
status = uvm_rm_locked_call(nvUvmInterfaceGetGpuInfo(gpu_uuid, &client_info, gpu_info));
if (status != NV_OK)
goto error_unregister;
if (parent_gpu != NULL) {
// If the UUID has been seen before, and if SMC is enabled, then check
// if this specific partition has been seen previously. The UUID-based
// look-up above may have succeeded for a different partition with the
// same parent GPU.
if (gpu_info->smcEnabled) {
gpu = uvm_gpu_get_by_parent_and_swizz_id(parent_gpu, gpu_info->smcSwizzId);
}
else {
gpu = parent_gpu->gpus[0];
UVM_ASSERT(gpu != NULL);
}
}
if (gpu == NULL) {
status = find_unused_global_gpu_id(parent_gpu, &global_gpu_id);
if (status != NV_OK)
goto error_unregister;
status = add_gpu(gpu_uuid, global_gpu_id, gpu_info, &gpu_platform_info, parent_gpu, &gpu);
if (status != NV_OK)
goto error_unregister;
}
else {
atomic64_inc(&gpu->retained_count);
}
*gpu_out = gpu;
uvm_kvfree(gpu_info);
return status;
error_unregister:
if (parent_gpu == NULL)
uvm_rm_locked_call_void(nvUvmInterfaceUnregisterGpu(gpu_uuid));
error_free_gpu_info:
uvm_kvfree(gpu_info);
return status;
}
NV_STATUS uvm_gpu_retain_by_uuid(const NvProcessorUuid *gpu_uuid,
const uvm_rm_user_object_t *user_rm_device,
uvm_gpu_t **gpu_out)
{
NV_STATUS status;
uvm_mutex_lock(&g_uvm_global.global_lock);
status = gpu_retain_by_uuid_locked(gpu_uuid, user_rm_device, gpu_out);
uvm_mutex_unlock(&g_uvm_global.global_lock);
return status;
}
void uvm_gpu_retain(uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_gpu_retained_count(gpu) > 0);
atomic64_inc(&gpu->retained_count);
}
void uvm_gpu_release_locked(uvm_gpu_t *gpu)
{
uvm_parent_gpu_t *parent_gpu = gpu->parent;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
UVM_ASSERT(uvm_gpu_retained_count(gpu) > 0);
if (atomic64_dec_and_test(&gpu->retained_count)) {
nv_kref_get(&parent_gpu->gpu_kref);
remove_gpu(gpu);
if (parent_gpu->num_retained_gpus == 0)
uvm_rm_locked_call_void(nvUvmInterfaceUnregisterGpu(&parent_gpu->uuid));
uvm_parent_gpu_kref_put(parent_gpu);
}
}
void uvm_gpu_release(uvm_gpu_t *gpu)
{
uvm_mutex_lock(&g_uvm_global.global_lock);
uvm_gpu_release_locked(gpu);
uvm_mutex_unlock(&g_uvm_global.global_lock);
}
// Note: Peer table is an upper triangular matrix packed into a flat array.
// This function converts an index of 2D array of size [N x N] into an index
// of upper triangular array of size [((N - 1) * ((N - 1) + 1)) / 2] which
// does not include diagonal elements.
NvU32 uvm_gpu_peer_table_index(const uvm_gpu_id_t gpu_id0, const uvm_gpu_id_t gpu_id1)
{
NvU32 square_index, triangular_index;
NvU32 gpu_index0 = uvm_id_gpu_index(gpu_id0);
NvU32 gpu_index1 = uvm_id_gpu_index(gpu_id1);
UVM_ASSERT(!uvm_id_equal(gpu_id0, gpu_id1));
// Calculate an index of 2D array by re-ordering indices to always point
// to the same entry.
square_index = min(gpu_index0, gpu_index1) * UVM_ID_MAX_GPUS +
max(gpu_index0, gpu_index1);
// Calculate and subtract number of lower triangular matrix elements till
// the current row (which includes diagonal elements) to get the correct
// index in an upper triangular matrix.
// Note: As gpu_id can be [1, N), no extra logic is needed to calculate
// diagonal elements.
triangular_index = square_index - SUM_FROM_0_TO_N(min(uvm_id_value(gpu_id0), uvm_id_value(gpu_id1)));
UVM_ASSERT(triangular_index < UVM_MAX_UNIQUE_GPU_PAIRS);
return triangular_index;
}
NV_STATUS uvm_gpu_check_ecc_error_no_rm(uvm_gpu_t *gpu)
{
// We may need to call service_interrupts() which cannot be done in the top
// half interrupt handler so assert here as well to catch improper use as
// early as possible.
UVM_ASSERT(!in_interrupt());
if (!gpu->ecc.enabled)
return NV_OK;
// Early out If a global ECC error is already set to not spam the logs with
// the same error.
if (uvm_global_get_status() == NV_ERR_ECC_ERROR)
return NV_ERR_ECC_ERROR;
if (*gpu->ecc.error_notifier) {
UVM_ERR_PRINT("ECC error encountered, GPU %s\n", uvm_gpu_name(gpu));
uvm_global_set_fatal_error(NV_ERR_ECC_ERROR);
return NV_ERR_ECC_ERROR;
}
// RM hasn't seen an ECC error yet, check whether there is a pending
// interrupt that might indicate one. We might get false positives because
// the interrupt bits we read are not ECC-specific. They're just the
// top-level bits for any interrupt on all engines which support ECC. On
// Pascal for example, RM returns us a mask with the bits for GR, L2, and
// FB, because any of those might raise an ECC interrupt. So if they're set
// we have to ask RM to check whether it was really an ECC error (and a
// double-bit ECC error at that), in which case it sets the notifier.
if ((*gpu->ecc.hw_interrupt_tree_location & gpu->ecc.mask) == 0) {
// No pending interrupts.
return NV_OK;
}
// An interrupt that might mean an ECC error needs to be serviced, signal
// that to the caller.
return NV_WARN_MORE_PROCESSING_REQUIRED;
}
static NV_STATUS get_p2p_caps(uvm_gpu_t *gpu0,
uvm_gpu_t *gpu1,
UvmGpuP2PCapsParams *p2p_caps_params)
{
NV_STATUS status;
uvmGpuDeviceHandle rm_device0, rm_device1;
if (uvm_id_value(gpu0->id) < uvm_id_value(gpu1->id)) {
rm_device0 = uvm_gpu_device_handle(gpu0);
rm_device1 = uvm_gpu_device_handle(gpu1);
}
else {
rm_device0 = uvm_gpu_device_handle(gpu1);
rm_device1 = uvm_gpu_device_handle(gpu0);
}
memset(p2p_caps_params, 0, sizeof(*p2p_caps_params));
status = uvm_rm_locked_call(nvUvmInterfaceGetP2PCaps(rm_device0, rm_device1, p2p_caps_params));
if (status != NV_OK) {
UVM_ERR_PRINT("nvUvmInterfaceGetP2PCaps() failed with error: %s, for GPU0:%s and GPU1:%s\n",
nvstatusToString(status),
uvm_gpu_name(gpu0),
uvm_gpu_name(gpu1));
return status;
}
if (p2p_caps_params->p2pLink != UVM_LINK_TYPE_NONE) {
// P2P is not supported under SMC partitioning
UVM_ASSERT(!gpu0->parent->smc.enabled);
UVM_ASSERT(!gpu1->parent->smc.enabled);
}
return NV_OK;
}
static NV_STATUS create_p2p_object(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1, NvHandle *p2p_handle)
{
NV_STATUS status;
uvmGpuDeviceHandle rm_device0, rm_device1;
if (uvm_id_value(gpu0->id) < uvm_id_value(gpu1->id)) {
rm_device0 = uvm_gpu_device_handle(gpu0);
rm_device1 = uvm_gpu_device_handle(gpu1);
}
else {
rm_device0 = uvm_gpu_device_handle(gpu1);
rm_device1 = uvm_gpu_device_handle(gpu0);
}
*p2p_handle = 0;
status = uvm_rm_locked_call(nvUvmInterfaceP2pObjectCreate(rm_device0, rm_device1, p2p_handle));
if (status != NV_OK) {
UVM_ERR_PRINT("nvUvmInterfaceP2pObjectCreate() failed with error: %s, for GPU0:%s and GPU1:%s\n",
nvstatusToString(status),
uvm_gpu_name(gpu0),
uvm_gpu_name(gpu1));
return status;
}
UVM_ASSERT(*p2p_handle);
return NV_OK;
}
static void set_optimal_p2p_write_ces(const UvmGpuP2PCapsParams *p2p_caps_params,
const uvm_gpu_peer_t *peer_caps,
uvm_gpu_t *gpu0,
uvm_gpu_t *gpu1)
{
bool sorted;
NvU32 ce0, ce1;
if (peer_caps->link_type < UVM_GPU_LINK_NVLINK_1)
return;
sorted = uvm_id_value(gpu0->id) < uvm_id_value(gpu1->id);
ce0 = p2p_caps_params->optimalNvlinkWriteCEs[sorted ? 0 : 1];
ce1 = p2p_caps_params->optimalNvlinkWriteCEs[sorted ? 1 : 0];
// Indirect peers communicate through the CPU, so the optimal CE
// should match the one selected for writing to system memory
if (peer_caps->is_indirect_peer) {
uvm_channel_pool_t *pool;
pool = gpu0->channel_manager->pool_to_use.default_for_type[UVM_CHANNEL_TYPE_GPU_TO_CPU];
UVM_ASSERT(ce0 == pool->engine_index);
pool = gpu1->channel_manager->pool_to_use.default_for_type[UVM_CHANNEL_TYPE_GPU_TO_CPU];
UVM_ASSERT(ce1 == pool->engine_index);
}
uvm_channel_manager_set_p2p_ce(gpu0->channel_manager, gpu1, ce0);
uvm_channel_manager_set_p2p_ce(gpu1->channel_manager, gpu0, ce1);
}
static int nv_procfs_read_gpu_peer_caps(struct seq_file *s, void *v)
{
if (!uvm_down_read_trylock(&g_uvm_global.pm.lock))
return -EAGAIN;
gpu_peer_caps_print((uvm_gpu_t **)s->private, s);
uvm_up_read(&g_uvm_global.pm.lock);
return 0;
}
static int nv_procfs_read_gpu_peer_caps_entry(struct seq_file *s, void *v)
{
UVM_ENTRY_RET(nv_procfs_read_gpu_peer_caps(s, v));
}
UVM_DEFINE_SINGLE_PROCFS_FILE(gpu_peer_caps_entry);
static NV_STATUS init_procfs_peer_cap_files(uvm_gpu_t *local, uvm_gpu_t *remote, size_t local_idx)
{
// This needs to hold a gpu_id_t in decimal
char gpu_dir_name[16];
// This needs to hold a GPU UUID
char symlink_name[UVM_GPU_UUID_TEXT_BUFFER_LENGTH];
uvm_gpu_peer_t *peer_caps;
if (!uvm_procfs_is_enabled())
return NV_OK;
peer_caps = uvm_gpu_peer_caps(local, remote);
peer_caps->procfs.pairs[local_idx][0] = local;
peer_caps->procfs.pairs[local_idx][1] = remote;
// Create gpus/gpuA/peers/gpuB
snprintf(gpu_dir_name, sizeof(gpu_dir_name), "%u", uvm_id_value(remote->id));
peer_caps->procfs.peer_file[local_idx] = NV_CREATE_PROC_FILE(gpu_dir_name,
local->procfs.dir_peers,
gpu_peer_caps_entry,
&peer_caps->procfs.pairs[local_idx]);
if (peer_caps->procfs.peer_file[local_idx] == NULL)
return NV_ERR_OPERATING_SYSTEM;
// Create a symlink from UVM GPU UUID (UVM-GPU-...) to the UVM GPU ID gpuB
format_uuid_to_buffer(symlink_name, sizeof(symlink_name), uvm_gpu_uuid(remote));
peer_caps->procfs.peer_symlink_file[local_idx] = proc_symlink(symlink_name,
local->procfs.dir_peers,
gpu_dir_name);
if (peer_caps->procfs.peer_symlink_file[local_idx] == NULL)
return NV_ERR_OPERATING_SYSTEM;
return NV_OK;
}
static NV_STATUS init_peer_access(uvm_gpu_t *gpu0,
uvm_gpu_t *gpu1,
const UvmGpuP2PCapsParams *p2p_caps_params,
uvm_gpu_peer_t *peer_caps)
{
NV_STATUS status;
UVM_ASSERT(p2p_caps_params->p2pLink != UVM_LINK_TYPE_C2C);
// check for peer-to-peer compatibility (PCI-E or NvLink).
peer_caps->link_type = get_gpu_link_type(p2p_caps_params->p2pLink);
if (peer_caps->link_type == UVM_GPU_LINK_INVALID
|| peer_caps->link_type == UVM_GPU_LINK_C2C
)
return NV_ERR_NOT_SUPPORTED;
peer_caps->total_link_line_rate_mbyte_per_s = p2p_caps_params->totalLinkLineRateMBps;
// Initialize peer ids and establish peer mappings
peer_caps->is_indirect_peer = (p2p_caps_params->indirectAccess == NV_TRUE);
if (peer_caps->is_indirect_peer) {
UVM_ASSERT(gpu0->mem_info.numa.enabled);
UVM_ASSERT(gpu1->mem_info.numa.enabled);
status = uvm_pmm_gpu_indirect_peer_init(&gpu0->pmm, gpu1);
if (status != NV_OK)
return status;
status = uvm_pmm_gpu_indirect_peer_init(&gpu1->pmm, gpu0);
if (status != NV_OK)
return status;
set_optimal_p2p_write_ces(p2p_caps_params, peer_caps, gpu0, gpu1);
UVM_ASSERT(peer_caps->total_link_line_rate_mbyte_per_s == 0);
}
else {
// Peer id from min(gpu_id0, gpu_id1) -> max(gpu_id0, gpu_id1)
peer_caps->peer_ids[0] = p2p_caps_params->peerIds[0];
// Peer id from max(gpu_id0, gpu_id1) -> min(gpu_id0, gpu_id1)
peer_caps->peer_ids[1] = p2p_caps_params->peerIds[1];
// Establish peer mappings from each GPU to the other. Indirect peers
// do not require identity mappings since they use sysmem aperture to
// communicate.
status = uvm_mmu_create_peer_identity_mappings(gpu0, gpu1);
if (status != NV_OK)
return status;
status = uvm_mmu_create_peer_identity_mappings(gpu1, gpu0);
if (status != NV_OK)
return status;
set_optimal_p2p_write_ces(p2p_caps_params, peer_caps, gpu0, gpu1);
UVM_ASSERT(uvm_gpu_get(gpu0->global_id) == gpu0);
UVM_ASSERT(uvm_gpu_get(gpu1->global_id) == gpu1);
// In the case of NVLINK peers, this initialization will happen during
// add_gpu. As soon as the peer info table is assigned below, the access
// counter bottom half could start operating on the GPU being newly
// added and inspecting the peer caps, so all of the appropriate
// initialization must happen before this point.
uvm_spin_lock(&gpu0->peer_info.peer_gpus_lock);
uvm_processor_mask_set(&gpu0->peer_info.peer_gpu_mask, gpu1->id);
UVM_ASSERT(gpu0->peer_info.peer_gpus[uvm_id_gpu_index(gpu1->id)] == NULL);
gpu0->peer_info.peer_gpus[uvm_id_gpu_index(gpu1->id)] = gpu1;
uvm_spin_unlock(&gpu0->peer_info.peer_gpus_lock);
uvm_spin_lock(&gpu1->peer_info.peer_gpus_lock);
uvm_processor_mask_set(&gpu1->peer_info.peer_gpu_mask, gpu0->id);
UVM_ASSERT(gpu1->peer_info.peer_gpus[uvm_id_gpu_index(gpu0->id)] == NULL);
gpu1->peer_info.peer_gpus[uvm_id_gpu_index(gpu0->id)] = gpu0;
uvm_spin_unlock(&gpu1->peer_info.peer_gpus_lock);
}
if (!uvm_procfs_is_debug_enabled())
return NV_OK;
status = init_procfs_peer_cap_files(gpu0, gpu1, 0);
if (status != NV_OK)
return status;
status = init_procfs_peer_cap_files(gpu1, gpu0, 1);
if (status != NV_OK)
return status;
return NV_OK;
}
static NV_STATUS enable_pcie_peer_access(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
NV_STATUS status = NV_OK;
UvmGpuP2PCapsParams p2p_caps_params;
uvm_gpu_peer_t *peer_caps;
NvHandle p2p_handle;
UVM_ASSERT(gpu0);
UVM_ASSERT(gpu1);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
peer_caps = uvm_gpu_peer_caps(gpu0, gpu1);
UVM_ASSERT(peer_caps->link_type == UVM_GPU_LINK_INVALID);
UVM_ASSERT(peer_caps->ref_count == 0);
status = create_p2p_object(gpu0, gpu1, &p2p_handle);
if (status != NV_OK)
return status;
// Store the handle in the global table.
peer_caps->p2p_handle = p2p_handle;
status = get_p2p_caps(gpu0, gpu1, &p2p_caps_params);
if (status != NV_OK)
goto cleanup;
// Sanity checks
UVM_ASSERT(p2p_caps_params.indirectAccess == NV_FALSE);
UVM_ASSERT(p2p_caps_params.p2pLink == UVM_LINK_TYPE_PCIE);
status = init_peer_access(gpu0, gpu1, &p2p_caps_params, peer_caps);
if (status != NV_OK)
goto cleanup;
return NV_OK;
cleanup:
disable_peer_access(gpu0, gpu1);
return status;
}
static NV_STATUS enable_nvlink_peer_access(uvm_gpu_t *gpu0,
uvm_gpu_t *gpu1,
UvmGpuP2PCapsParams *p2p_caps_params)
{
NV_STATUS status = NV_OK;
NvHandle p2p_handle;
uvm_gpu_peer_t *peer_caps;
UVM_ASSERT(gpu0);
UVM_ASSERT(gpu1);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
peer_caps = uvm_gpu_peer_caps(gpu0, gpu1);
UVM_ASSERT(peer_caps->ref_count == 0);
peer_caps->ref_count = 1;
if (!p2p_caps_params->indirectAccess) {
// Create P2P object for direct NVLink peers
status = create_p2p_object(gpu0, gpu1, &p2p_handle);
if (status != NV_OK) {
UVM_ERR_PRINT("failed to create a P2P object with error: %s, for GPU1:%s and GPU2:%s \n",
nvstatusToString(status),
uvm_gpu_name(gpu0),
uvm_gpu_name(gpu1));
return status;
}
UVM_ASSERT(p2p_handle != 0);
// Store the handle in the global table.
peer_caps->p2p_handle = p2p_handle;
// Update p2p caps after p2p object creation as it generates the peer
// ids
status = get_p2p_caps(gpu0, gpu1, p2p_caps_params);
if (status != NV_OK)
goto cleanup;
}
status = init_peer_access(gpu0, gpu1, p2p_caps_params, peer_caps);
if (status != NV_OK)
goto cleanup;
return NV_OK;
cleanup:
disable_peer_access(gpu0, gpu1);
return status;
}
static NV_STATUS discover_nvlink_peers(uvm_gpu_t *gpu)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *other_gpu;
UVM_ASSERT(gpu);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (gpu->parent->smc.enabled)
return NV_OK;
for_each_global_gpu(other_gpu) {
UvmGpuP2PCapsParams p2p_caps_params;
if ((other_gpu == gpu) || other_gpu->parent->smc.enabled)
continue;
status = get_p2p_caps(gpu, other_gpu, &p2p_caps_params);
if (status != NV_OK)
goto cleanup;
// PCIe peers need to be explicitly enabled via UvmEnablePeerAccess
if (p2p_caps_params.p2pLink == UVM_LINK_TYPE_NONE || p2p_caps_params.p2pLink == UVM_LINK_TYPE_PCIE)
continue;
// Indirect peers are only supported when onlined as NUMA nodes, because
// we want to use vm_insert_page and dma_map_page.
if (p2p_caps_params.indirectAccess && (!gpu->mem_info.numa.enabled || !other_gpu->mem_info.numa.enabled))
continue;
status = enable_nvlink_peer_access(gpu, other_gpu, &p2p_caps_params);
if (status != NV_OK)
goto cleanup;
}
return NV_OK;
cleanup:
destroy_nvlink_peers(gpu);
return status;
}
static void destroy_nvlink_peers(uvm_gpu_t *gpu)
{
uvm_gpu_t *other_gpu;
UVM_ASSERT(gpu);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (gpu->parent->smc.enabled)
return;
for_each_global_gpu(other_gpu) {
uvm_gpu_peer_t *peer_caps;
if ((other_gpu == gpu) || other_gpu->parent->smc.enabled)
continue;
peer_caps = uvm_gpu_peer_caps(gpu, other_gpu);
// PCIe peers need to be explicitly destroyed via UvmDisablePeerAccess
if (peer_caps->link_type == UVM_GPU_LINK_INVALID || peer_caps->link_type == UVM_GPU_LINK_PCIE)
continue;
disable_peer_access(gpu, other_gpu);
}
}
NV_STATUS uvm_gpu_retain_pcie_peer_access(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
NV_STATUS status = NV_OK;
uvm_gpu_peer_t *peer_caps;
UVM_ASSERT(gpu0);
UVM_ASSERT(gpu1);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
peer_caps = uvm_gpu_peer_caps(gpu0, gpu1);
// Insert an entry into global peer table, if not present.
if (peer_caps->link_type == UVM_GPU_LINK_INVALID) {
UVM_ASSERT(peer_caps->ref_count == 0);
status = enable_pcie_peer_access(gpu0, gpu1);
if (status != NV_OK)
return status;
}
else if (peer_caps->link_type != UVM_GPU_LINK_PCIE) {
return NV_ERR_INVALID_DEVICE;
}
// GPUs can't be destroyed until their peer pairings have also been
// destroyed.
uvm_gpu_retain(gpu0);
uvm_gpu_retain(gpu1);
peer_caps->ref_count++;
return status;
}
static void disable_peer_access(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
uvm_gpu_peer_t *peer_caps;
NvHandle p2p_handle = 0;
UVM_ASSERT(gpu0);
UVM_ASSERT(gpu1);
// P2P is not supported under SMC partitioning
UVM_ASSERT(!gpu0->parent->smc.enabled);
UVM_ASSERT(!gpu1->parent->smc.enabled);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
peer_caps = uvm_gpu_peer_caps(gpu0, gpu1);
if (uvm_procfs_is_debug_enabled())
deinit_procfs_peer_cap_files(peer_caps);
p2p_handle = peer_caps->p2p_handle;
if (peer_caps->is_indirect_peer) {
uvm_pmm_gpu_indirect_peer_destroy(&gpu0->pmm, gpu1);
uvm_pmm_gpu_indirect_peer_destroy(&gpu1->pmm, gpu0);
}
else {
UVM_ASSERT(p2p_handle);
uvm_mmu_destroy_peer_identity_mappings(gpu0, gpu1);
uvm_mmu_destroy_peer_identity_mappings(gpu1, gpu0);
uvm_rm_locked_call_void(nvUvmInterfaceP2pObjectDestroy(uvm_gpu_session_handle(gpu0), p2p_handle));
UVM_ASSERT(uvm_gpu_get(gpu0->global_id) == gpu0);
UVM_ASSERT(uvm_gpu_get(gpu1->global_id) == gpu1);
uvm_spin_lock(&gpu0->peer_info.peer_gpus_lock);
uvm_processor_mask_clear(&gpu0->peer_info.peer_gpu_mask, gpu1->id);
gpu0->peer_info.peer_gpus[uvm_id_gpu_index(gpu1->id)] = NULL;
uvm_spin_unlock(&gpu0->peer_info.peer_gpus_lock);
uvm_spin_lock(&gpu1->peer_info.peer_gpus_lock);
uvm_processor_mask_clear(&gpu1->peer_info.peer_gpu_mask, gpu0->id);
gpu1->peer_info.peer_gpus[uvm_id_gpu_index(gpu0->id)] = NULL;
uvm_spin_unlock(&gpu1->peer_info.peer_gpus_lock);
}
// Flush the access counter buffer to avoid getting stale notifications for
// accesses to GPUs to which peer access is being disabled. This is also
// needed in the case of disabling automatic (NVLINK) peers on GPU
// unregister, because access counter processing might still be using GPU
// IDs queried from the peer table above which are about to be removed from
// the global table.
if (gpu0->parent->access_counters_supported)
uvm_gpu_access_counter_buffer_flush(gpu0);
if (gpu1->parent->access_counters_supported)
uvm_gpu_access_counter_buffer_flush(gpu1);
memset(peer_caps, 0, sizeof(*peer_caps));
}
void uvm_gpu_release_pcie_peer_access(uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
uvm_gpu_peer_t *peer_caps;
UVM_ASSERT(gpu0);
UVM_ASSERT(gpu1);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
peer_caps = uvm_gpu_peer_caps(gpu0, gpu1);
UVM_ASSERT(peer_caps->ref_count > 0);
UVM_ASSERT(peer_caps->link_type == UVM_GPU_LINK_PCIE);
peer_caps->ref_count--;
if (peer_caps->ref_count == 0)
disable_peer_access(gpu0, gpu1);
uvm_gpu_release_locked(gpu0);
uvm_gpu_release_locked(gpu1);
}
static uvm_aperture_t uvm_gpu_peer_caps_aperture(uvm_gpu_peer_t *peer_caps, uvm_gpu_t *local_gpu, uvm_gpu_t *remote_gpu)
{
size_t peer_index;
UVM_ASSERT(peer_caps->link_type != UVM_GPU_LINK_INVALID);
// Indirect peers are accessed as sysmem addresses
if (peer_caps->is_indirect_peer)
return UVM_APERTURE_SYS;
if (uvm_id_value(local_gpu->id) < uvm_id_value(remote_gpu->id))
peer_index = 0;
else
peer_index = 1;
return UVM_APERTURE_PEER(peer_caps->peer_ids[peer_index]);
}
uvm_aperture_t uvm_gpu_peer_aperture(uvm_gpu_t *local_gpu, uvm_gpu_t *remote_gpu)
{
uvm_gpu_peer_t *peer_caps = uvm_gpu_peer_caps(local_gpu, remote_gpu);
return uvm_gpu_peer_caps_aperture(peer_caps, local_gpu, remote_gpu);
}
uvm_aperture_t uvm_gpu_page_tree_init_location(const uvm_gpu_t *gpu)
{
// See comment in page_tree_set_location
if (uvm_gpu_is_virt_mode_sriov_heavy(gpu))
return UVM_APERTURE_VID;
if (uvm_conf_computing_mode_enabled(gpu))
return UVM_APERTURE_VID;
return UVM_APERTURE_DEFAULT;
}
uvm_processor_id_t uvm_gpu_get_processor_id_by_address(uvm_gpu_t *gpu, uvm_gpu_phys_address_t addr)
{
uvm_processor_id_t id = UVM_ID_INVALID;
// TODO: Bug 1899622: On P9 systems with multiple CPU sockets, SYS aperture
// is also reported for accesses to remote GPUs connected to a different CPU
// NUMA domain. We will need to determine the actual processor id using the
// reported physical address.
if (addr.aperture == UVM_APERTURE_SYS)
return UVM_ID_CPU;
else if (addr.aperture == UVM_APERTURE_VID)
return gpu->id;
uvm_spin_lock(&gpu->peer_info.peer_gpus_lock);
for_each_gpu_id_in_mask(id, &gpu->peer_info.peer_gpu_mask) {
uvm_gpu_t *other_gpu = gpu->peer_info.peer_gpus[uvm_id_gpu_index(id)];
UVM_ASSERT(other_gpu);
if (uvm_gpus_are_nvswitch_connected(gpu, other_gpu)) {
// NVSWITCH connected systems use an extended physical address to
// map to peers. Find the physical memory 'slot' containing the
// given physical address to find the peer gpu that owns the
// physical address
NvU64 fabric_window_end = other_gpu->parent->nvswitch_info.fabric_memory_window_start +
other_gpu->mem_info.max_allocatable_address;
if (other_gpu->parent->nvswitch_info.fabric_memory_window_start <= addr.address &&
fabric_window_end >= addr.address)
break;
}
else if (uvm_gpu_peer_aperture(gpu, other_gpu) == addr.aperture) {
break;
}
}
uvm_spin_unlock(&gpu->peer_info.peer_gpus_lock);
return id;
}
uvm_gpu_peer_t *uvm_gpu_index_peer_caps(const uvm_gpu_id_t gpu_id1, const uvm_gpu_id_t gpu_id2)
{
NvU32 table_index = uvm_gpu_peer_table_index(gpu_id1, gpu_id2);
return &g_uvm_global.peers[table_index];
}
static NvU64 instance_ptr_to_key(uvm_gpu_phys_address_t instance_ptr)
{
NvU64 key;
int is_sys = (instance_ptr.aperture == UVM_APERTURE_SYS);
// Instance pointers must be 4k aligned and they must have either VID or SYS
// apertures. Compress them as much as we can both to guarantee that the key
// fits within 64 bits, and to make the table as shallow as possible.
UVM_ASSERT(IS_ALIGNED(instance_ptr.address, UVM_PAGE_SIZE_4K));
UVM_ASSERT(instance_ptr.aperture == UVM_APERTURE_VID || instance_ptr.aperture == UVM_APERTURE_SYS);
key = (instance_ptr.address >> 11) | is_sys;
return key;
}
static NV_STATUS gpu_add_user_channel_subctx_info(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_gpu_phys_address_t instance_ptr = user_channel->instance_ptr.addr;
NV_STATUS status = NV_OK;
uvm_rb_tree_node_t *channel_tree_node;
uvm_user_channel_subctx_info_t *channel_subctx_info;
uvm_user_channel_subctx_info_t *new_channel_subctx_info = NULL;
uvm_va_space_t *va_space = user_channel->gpu_va_space->va_space;
if (!user_channel->in_subctx)
return NV_OK;
// Pre-allocate a subcontext info descriptor out of the lock, in case we
// need to add a new entry to the tree
new_channel_subctx_info = uvm_kvmalloc_zero(sizeof(*new_channel_subctx_info));
// Don't check for the result of the allocation since it is only needed
// if the TSG has not been registered yet, and we do that under the lock
// below
if (new_channel_subctx_info) {
new_channel_subctx_info->subctxs =
uvm_kvmalloc_zero(sizeof(*new_channel_subctx_info->subctxs) * user_channel->tsg.max_subctx_count);
}
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
// Check if the subcontext information for the channel already exists
channel_tree_node = uvm_rb_tree_find(&gpu->parent->tsg_table, user_channel->tsg.id);
if (!channel_tree_node) {
// We could not allocate the descriptor before taking the lock. Exiting
if (!new_channel_subctx_info || !new_channel_subctx_info->subctxs) {
status = NV_ERR_NO_MEMORY;
goto exit_unlock;
}
// Insert the new subcontext information descriptor
new_channel_subctx_info->node.key = user_channel->tsg.id;
status = uvm_rb_tree_insert(&gpu->parent->tsg_table, &new_channel_subctx_info->node);
UVM_ASSERT(status == NV_OK);
channel_subctx_info = new_channel_subctx_info;
channel_subctx_info->smc_engine_id = user_channel->smc_engine_id;
}
else {
channel_subctx_info = container_of(channel_tree_node, uvm_user_channel_subctx_info_t, node);
UVM_ASSERT(channel_subctx_info->smc_engine_id == user_channel->smc_engine_id);
}
user_channel->subctx_info = channel_subctx_info;
// Register the VA space of the channel subcontext info descriptor, or
// check that the existing one matches the channel's
if (channel_subctx_info->subctxs[user_channel->subctx_id].refcount++ > 0) {
UVM_ASSERT_MSG(channel_subctx_info->subctxs[user_channel->subctx_id].va_space == va_space,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: expected VA space 0x%llx but got 0x%llx instead\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id,
(NvU64)va_space,
(NvU64)channel_subctx_info->subctxs[user_channel->subctx_id].va_space);
UVM_ASSERT_MSG(channel_subctx_info->subctxs[user_channel->subctx_id].va_space != NULL,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: VA space is NULL\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id);
UVM_ASSERT_MSG(channel_subctx_info->total_refcount > 0,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: TSG refcount is 0\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id);
}
else {
UVM_ASSERT_MSG(channel_subctx_info->subctxs[user_channel->subctx_id].va_space == NULL,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: expected VA space NULL but got 0x%llx instead\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id,
(NvU64)channel_subctx_info->subctxs[user_channel->subctx_id].va_space);
channel_subctx_info->subctxs[user_channel->subctx_id].va_space = va_space;
}
++channel_subctx_info->total_refcount;
exit_unlock:
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
// Remove the pre-allocated per-TSG subctx information struct if there was
// some error or it was not used
if (status != NV_OK || user_channel->subctx_info != new_channel_subctx_info) {
if (new_channel_subctx_info)
uvm_kvfree(new_channel_subctx_info->subctxs);
uvm_kvfree(new_channel_subctx_info);
}
return status;
}
static void gpu_remove_user_channel_subctx_info_locked(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_gpu_phys_address_t instance_ptr = user_channel->instance_ptr.addr;
uvm_va_space_t *va_space = user_channel->gpu_va_space->va_space;
uvm_assert_spinlock_locked(&gpu->parent->instance_ptr_table_lock);
// Channel subcontext info descriptor may not have been registered in
// tsg_table since this function is called in some teardown paths during
// channel creation
if (!user_channel->subctx_info)
return;
UVM_ASSERT_MSG(&user_channel->subctx_info->node ==
uvm_rb_tree_find(&gpu->parent->tsg_table, user_channel->subctx_info->node.key),
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: SubCTX not found in TSG table\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id);
UVM_ASSERT_MSG(user_channel->subctx_info->subctxs[user_channel->subctx_id].refcount > 0,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: SubCTX refcount is 0\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id);
UVM_ASSERT_MSG(user_channel->subctx_info->subctxs[user_channel->subctx_id].va_space == va_space,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: expected VA space 0x%llx but got 0x%llx instead\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id,
(NvU64)va_space,
(NvU64)user_channel->subctx_info->subctxs[user_channel->subctx_id].va_space);
UVM_ASSERT_MSG(user_channel->subctx_info->total_refcount > 0,
"CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: TSG refcount is 0\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id);
// Decrement VA space refcount. If it gets to zero, unregister the pointer
if (--user_channel->subctx_info->subctxs[user_channel->subctx_id].refcount == 0)
user_channel->subctx_info->subctxs[user_channel->subctx_id].va_space = NULL;
if (--user_channel->subctx_info->total_refcount == 0) {
uvm_rb_tree_remove(&gpu->parent->tsg_table, &user_channel->subctx_info->node);
uvm_kvfree(user_channel->subctx_info->subctxs);
uvm_kvfree(user_channel->subctx_info);
}
user_channel->subctx_info = NULL;
}
static void gpu_remove_user_channel_subctx_info(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
gpu_remove_user_channel_subctx_info_locked(gpu, user_channel);
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
}
static void gpu_add_user_channel_instance_ptr(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_gpu_phys_address_t instance_ptr = user_channel->instance_ptr.addr;
NvU64 instance_ptr_key = instance_ptr_to_key(instance_ptr);
NV_STATUS status;
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
// Insert the instance_ptr -> user_channel mapping
user_channel->instance_ptr.node.key = instance_ptr_key;
status = uvm_rb_tree_insert(&gpu->parent->instance_ptr_table, &user_channel->instance_ptr.node);
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
UVM_ASSERT_MSG(status == NV_OK, "CH %u:%u instance_ptr {0x%llx:%s} SubCTX %u in TSG %u: error %s\n",
user_channel->hw_runlist_id,
user_channel->hw_channel_id,
instance_ptr.address,
uvm_aperture_string(instance_ptr.aperture),
user_channel->subctx_id,
user_channel->tsg.id,
nvstatusToString(status));
}
static void gpu_remove_user_channel_instance_ptr_locked(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_assert_spinlock_locked(&gpu->parent->instance_ptr_table_lock);
if (UVM_RB_TREE_EMPTY_NODE(&user_channel->instance_ptr.node))
return;
uvm_rb_tree_remove(&gpu->parent->instance_ptr_table, &user_channel->instance_ptr.node);
}
NV_STATUS uvm_gpu_add_user_channel(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_va_space_t *va_space;
uvm_gpu_va_space_t *gpu_va_space = user_channel->gpu_va_space;
NV_STATUS status;
UVM_ASSERT(user_channel->rm_retained_channel);
UVM_ASSERT(gpu_va_space);
UVM_ASSERT(uvm_gpu_va_space_state(gpu_va_space) == UVM_GPU_VA_SPACE_STATE_ACTIVE);
va_space = gpu_va_space->va_space;
uvm_assert_rwsem_locked(&va_space->lock);
status = gpu_add_user_channel_subctx_info(gpu, user_channel);
if (status != NV_OK)
return status;
gpu_add_user_channel_instance_ptr(gpu, user_channel);
return NV_OK;
}
static uvm_user_channel_t *instance_ptr_to_user_channel(uvm_gpu_t *gpu, uvm_gpu_phys_address_t instance_ptr)
{
NvU64 key = instance_ptr_to_key(instance_ptr);
uvm_rb_tree_node_t *instance_node;
uvm_assert_spinlock_locked(&gpu->parent->instance_ptr_table_lock);
instance_node = uvm_rb_tree_find(&gpu->parent->instance_ptr_table, key);
if (!instance_node)
return NULL;
return get_user_channel(instance_node);
}
static uvm_va_space_t *user_channel_and_subctx_to_va_space(uvm_user_channel_t *user_channel, NvU32 subctx_id)
{
uvm_user_channel_subctx_info_t *channel_subctx_info;
UVM_ASSERT(user_channel);
UVM_ASSERT(user_channel->in_subctx);
UVM_ASSERT(user_channel->subctx_info);
uvm_assert_spinlock_locked(&user_channel->gpu->parent->instance_ptr_table_lock);
channel_subctx_info = user_channel->subctx_info;
UVM_ASSERT_MSG(subctx_id < user_channel->tsg.max_subctx_count,
"instance_ptr {0x%llx:%s} in TSG %u. Invalid SubCTX %u\n",
user_channel->instance_ptr.addr.address,
uvm_aperture_string(user_channel->instance_ptr.addr.aperture),
user_channel->tsg.id,
subctx_id);
UVM_ASSERT_MSG(channel_subctx_info->total_refcount > 0,
"instance_ptr {0x%llx:%s} in TSG %u: TSG refcount is 0\n",
user_channel->instance_ptr.addr.address,
uvm_aperture_string(user_channel->instance_ptr.addr.aperture),
user_channel->tsg.id);
// A subcontext's refcount can be zero if that subcontext is torn down
// uncleanly and work from that subcontext continues running with work from
// other subcontexts.
if (channel_subctx_info->subctxs[subctx_id].refcount == 0) {
UVM_ASSERT(channel_subctx_info->subctxs[subctx_id].va_space == NULL);
}
else {
UVM_ASSERT_MSG(channel_subctx_info->subctxs[subctx_id].va_space,
"instance_ptr {0x%llx:%s} in TSG %u: no VA space for SubCTX %u\n",
user_channel->instance_ptr.addr.address,
uvm_aperture_string(user_channel->instance_ptr.addr.aperture),
user_channel->tsg.id,
subctx_id);
}
return channel_subctx_info->subctxs[subctx_id].va_space;
}
NV_STATUS uvm_gpu_fault_entry_to_va_space(uvm_gpu_t *gpu,
uvm_fault_buffer_entry_t *fault,
uvm_va_space_t **out_va_space)
{
uvm_user_channel_t *user_channel;
NV_STATUS status = NV_OK;
*out_va_space = NULL;
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
user_channel = instance_ptr_to_user_channel(gpu, fault->instance_ptr);
if (!user_channel) {
status = NV_ERR_INVALID_CHANNEL;
goto exit_unlock;
}
// Faults from HUB clients will always report VEID 0 even if the channel
// belongs a TSG with many subcontexts. Therefore, we cannot use the per-TSG
// subctx table and we need to directly return the channel's VA space
if (!user_channel->in_subctx || (fault->fault_source.client_type == UVM_FAULT_CLIENT_TYPE_HUB)) {
UVM_ASSERT_MSG(fault->fault_source.ve_id == 0,
"Fault packet contains SubCTX %u for channel not in subctx\n",
fault->fault_source.ve_id);
// We can safely access user_channel->gpu_va_space under the
// instance_ptr_table_lock since gpu_va_space is set to NULL after this
// function is called in uvm_user_channel_detach
UVM_ASSERT(uvm_gpu_va_space_state(user_channel->gpu_va_space) == UVM_GPU_VA_SPACE_STATE_ACTIVE);
*out_va_space = user_channel->gpu_va_space->va_space;
}
else {
NvU32 ve_id = fault->fault_source.ve_id;
// Compute the SMC engine-local VEID
UVM_ASSERT(ve_id >= user_channel->smc_engine_ve_id_offset);
ve_id -= user_channel->smc_engine_ve_id_offset;
*out_va_space = user_channel_and_subctx_to_va_space(user_channel, ve_id);
// Instance pointer is valid but the fault targets a non-existent
// subcontext.
if (!*out_va_space)
status = NV_ERR_PAGE_TABLE_NOT_AVAIL;
}
exit_unlock:
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
return status;
}
NV_STATUS uvm_gpu_access_counter_entry_to_va_space(uvm_gpu_t *gpu,
uvm_access_counter_buffer_entry_t *entry,
uvm_va_space_t **out_va_space)
{
uvm_user_channel_t *user_channel;
NV_STATUS status = NV_OK;
*out_va_space = NULL;
UVM_ASSERT(entry->address.is_virtual);
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
user_channel = instance_ptr_to_user_channel(gpu, entry->virtual_info.instance_ptr);
if (!user_channel) {
status = NV_ERR_INVALID_CHANNEL;
goto exit_unlock;
}
if (!user_channel->in_subctx) {
UVM_ASSERT_MSG(entry->virtual_info.ve_id == 0,
"Access counter packet contains SubCTX %u for channel not in subctx\n",
entry->virtual_info.ve_id);
UVM_ASSERT(uvm_gpu_va_space_state(user_channel->gpu_va_space) == UVM_GPU_VA_SPACE_STATE_ACTIVE);
*out_va_space = user_channel->gpu_va_space->va_space;
}
else {
*out_va_space = user_channel_and_subctx_to_va_space(user_channel, entry->virtual_info.ve_id);
if (!*out_va_space)
status = NV_ERR_PAGE_TABLE_NOT_AVAIL;
}
exit_unlock:
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
return status;
}
void uvm_gpu_remove_user_channel(uvm_gpu_t *gpu, uvm_user_channel_t *user_channel)
{
uvm_va_space_t *va_space;
uvm_gpu_va_space_t *gpu_va_space = user_channel->gpu_va_space;
UVM_ASSERT(user_channel->rm_retained_channel);
UVM_ASSERT(gpu_va_space);
UVM_ASSERT(uvm_gpu_va_space_state(gpu_va_space) == UVM_GPU_VA_SPACE_STATE_ACTIVE);
va_space = gpu_va_space->va_space;
uvm_assert_rwsem_locked_write(&va_space->lock);
uvm_spin_lock(&gpu->parent->instance_ptr_table_lock);
gpu_remove_user_channel_subctx_info_locked(gpu, user_channel);
gpu_remove_user_channel_instance_ptr_locked(gpu, user_channel);
uvm_spin_unlock(&gpu->parent->instance_ptr_table_lock);
}
static NvU64 gpu_addr_to_dma_addr(uvm_parent_gpu_t *parent_gpu, NvU64 gpu_addr)
{
NvU64 dma_addr = gpu_addr;
UVM_ASSERT(dma_addr <= dma_addr + parent_gpu->dma_addressable_start);
if (parent_gpu->npu)
dma_addr = nv_expand_nvlink_addr(dma_addr);
dma_addr += parent_gpu->dma_addressable_start;
return dma_addr;
}
// The GPU has its NV_PFB_XV_UPPER_ADDR register set by RM to
// dma_addressable_start (in bifSetupDmaWindow_IMPL()) and hence when
// referencing sysmem from the GPU, dma_addressable_start should be
// subtracted from the DMA address we get from the OS.
static NvU64 dma_addr_to_gpu_addr(uvm_parent_gpu_t *parent_gpu, NvU64 dma_addr)
{
NvU64 gpu_addr = dma_addr - parent_gpu->dma_addressable_start;
UVM_ASSERT(dma_addr >= gpu_addr);
// See Bug 1920398 for background and details about NVLink DMA address
// transformations being applied here.
if (parent_gpu->npu)
gpu_addr = nv_compress_nvlink_addr(gpu_addr);
return gpu_addr;
}
void *uvm_gpu_dma_alloc_page(uvm_parent_gpu_t *parent_gpu, gfp_t gfp_flags, NvU64 *dma_address_out)
{
NvU64 dma_addr;
void *cpu_addr;
cpu_addr = dma_alloc_coherent(&parent_gpu->pci_dev->dev, PAGE_SIZE, &dma_addr, gfp_flags);
if (!cpu_addr)
return cpu_addr;
*dma_address_out = dma_addr_to_gpu_addr(parent_gpu, dma_addr);
atomic64_add(PAGE_SIZE, &parent_gpu->mapped_cpu_pages_size);
return cpu_addr;
}
void uvm_gpu_dma_free_page(uvm_parent_gpu_t *parent_gpu, void *va, NvU64 dma_address)
{
dma_address = gpu_addr_to_dma_addr(parent_gpu, dma_address);
dma_free_coherent(&parent_gpu->pci_dev->dev, PAGE_SIZE, va, dma_address);
atomic64_sub(PAGE_SIZE, &parent_gpu->mapped_cpu_pages_size);
}
NV_STATUS uvm_gpu_map_cpu_pages(uvm_parent_gpu_t *parent_gpu, struct page *page, size_t size, NvU64 *dma_address_out)
{
NvU64 dma_addr;
UVM_ASSERT(PAGE_ALIGNED(size));
dma_addr = dma_map_page(&parent_gpu->pci_dev->dev, page, 0, size, DMA_BIDIRECTIONAL);
if (dma_mapping_error(&parent_gpu->pci_dev->dev, dma_addr))
return NV_ERR_OPERATING_SYSTEM;
if (dma_addr < parent_gpu->dma_addressable_start ||
dma_addr + size - 1 > parent_gpu->dma_addressable_limit) {
dma_unmap_page(&parent_gpu->pci_dev->dev, dma_addr, size, DMA_BIDIRECTIONAL);
UVM_ERR_PRINT_RL("PCI mapped range [0x%llx, 0x%llx) not in the addressable range [0x%llx, 0x%llx), GPU %s\n",
dma_addr,
dma_addr + (NvU64)size,
parent_gpu->dma_addressable_start,
parent_gpu->dma_addressable_limit + 1,
parent_gpu->name);
return NV_ERR_INVALID_ADDRESS;
}
atomic64_add(size, &parent_gpu->mapped_cpu_pages_size);
*dma_address_out = dma_addr_to_gpu_addr(parent_gpu, dma_addr);
return NV_OK;
}
void uvm_gpu_unmap_cpu_pages(uvm_parent_gpu_t *parent_gpu, NvU64 dma_address, size_t size)
{
UVM_ASSERT(PAGE_ALIGNED(size));
dma_address = gpu_addr_to_dma_addr(parent_gpu, dma_address);
dma_unmap_page(&parent_gpu->pci_dev->dev, dma_address, size, DMA_BIDIRECTIONAL);
atomic64_sub(size, &parent_gpu->mapped_cpu_pages_size);
}
// This function implements the UvmRegisterGpu API call, as described in uvm.h.
// Notes:
//
// 1. The UVM VA space has a 1-to-1 relationship with an open instance of
// /dev/nvidia-uvm. That, in turn, has a 1-to-1 relationship with a process,
// because the user-level UVM code (os-user-linux.c, for example) enforces an
// "open /dev/nvidia-uvm only once per process" policy. So a UVM VA space is
// very close to a process's VA space.
//
// If that user space code fails or is not used, then the relationship is no
// longer 1-to-1. That situation requires that this code should avoid crashing,
// leaking resources, exhibiting security holes, etc, but it does not have to
// provide correct UVM API behavior. Correct UVM API behavior requires doing
// the right things in user space before calling into the kernel.
//
// 2. The uvm_api*() routines are invoked directly from the top-level ioctl
// handler. They are considered "API routing routines", because they are
// responsible for providing the behavior that is described in the UVM
// user-to-kernel API documentation, in uvm.h.
//
// 3. A GPU VA space, which you'll see in other parts of the driver,
// is something different: there may be more than one
// GPU VA space within a process, and therefore within a UVM VA space.
//
NV_STATUS uvm_api_register_gpu(UVM_REGISTER_GPU_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_rm_user_object_t user_rm_va_space = {
.rm_control_fd = params->rmCtrlFd,
.user_client = params->hClient,
.user_object = params->hSmcPartRef,
};
return uvm_va_space_register_gpu(va_space,
¶ms->gpu_uuid,
&user_rm_va_space,
¶ms->numaEnabled,
¶ms->numaNodeId);
}
NV_STATUS uvm_api_unregister_gpu(UVM_UNREGISTER_GPU_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_va_space_unregister_gpu(va_space, ¶ms->gpu_uuid);
}
NV_STATUS uvm_api_register_gpu_va_space(UVM_REGISTER_GPU_VASPACE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_rm_user_object_t user_rm_va_space = {
.rm_control_fd = params->rmCtrlFd,
.user_client = params->hClient,
.user_object = params->hVaSpace
};
return uvm_va_space_register_gpu_va_space(va_space, &user_rm_va_space, ¶ms->gpuUuid);
}
NV_STATUS uvm_api_unregister_gpu_va_space(UVM_UNREGISTER_GPU_VASPACE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_va_space_unregister_gpu_va_space(va_space, ¶ms->gpuUuid);
}
NV_STATUS uvm_api_pageable_mem_access_on_gpu(UVM_PAGEABLE_MEM_ACCESS_ON_GPU_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_gpu_t *gpu;
uvm_va_space_down_read(va_space);
gpu = uvm_va_space_get_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu) {
uvm_va_space_up_read(va_space);
return NV_ERR_INVALID_DEVICE;
}
if (uvm_va_space_pageable_mem_access_supported(va_space) && gpu->parent->replayable_faults_supported)
params->pageableMemAccess = NV_TRUE;
else
params->pageableMemAccess = NV_FALSE;
uvm_va_space_up_read(va_space);
return NV_OK;
}
NV_STATUS uvm_test_set_prefetch_filtering(UVM_TEST_SET_PREFETCH_FILTERING_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_gpu_t *gpu = NULL;
NV_STATUS status = NV_OK;
uvm_mutex_lock(&g_uvm_global.global_lock);
uvm_va_space_down_read(va_space);
gpu = uvm_va_space_get_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu) {
status = NV_ERR_INVALID_DEVICE;
goto done;
}
if (!gpu->parent->isr.replayable_faults.handling || !gpu->parent->prefetch_fault_supported) {
status = NV_ERR_INVALID_DEVICE;
goto done;
}
switch (params->filtering_mode) {
case UVM_TEST_PREFETCH_FILTERING_MODE_FILTER_ALL:
uvm_gpu_disable_prefetch_faults(gpu->parent);
break;
case UVM_TEST_PREFETCH_FILTERING_MODE_FILTER_NONE:
uvm_gpu_enable_prefetch_faults(gpu->parent);
break;
default:
status = NV_ERR_INVALID_ARGUMENT;
break;
}
done:
uvm_va_space_up_read(va_space);
uvm_mutex_unlock(&g_uvm_global.global_lock);
return status;
}
NV_STATUS uvm_test_get_gpu_time(UVM_TEST_GET_GPU_TIME_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_gpu_t *gpu = NULL;
NV_STATUS status = NV_OK;
uvm_va_space_down_read(va_space);
gpu = uvm_va_space_get_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (gpu)
params->timestamp_ns = gpu->parent->host_hal->get_time(gpu);
else
status = NV_ERR_INVALID_DEVICE;
uvm_va_space_up_read(va_space);
return status;
}
|