File: uvm_gpu_access_counters.c

package info (click to toggle)
nvidia-open-gpu-kernel-modules 535.261.03-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bookworm-proposed-updates
  • size: 80,736 kB
  • sloc: ansic: 1,033,792; cpp: 21,829; sh: 3,575; makefile: 614; python: 189
file content (2225 lines) | stat: -rw-r--r-- 91,739 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
/*******************************************************************************
    Copyright (c) 2017-2022 NVIDIA Corporation

    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to
    deal in the Software without restriction, including without limitation the
    rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
    sell copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

        The above copyright notice and this permission notice shall be
        included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.
*******************************************************************************/

#include "linux/sort.h"
#include "nv_uvm_interface.h"
#include "uvm_gpu_access_counters.h"
#include "uvm_global.h"
#include "uvm_gpu.h"
#include "uvm_hal.h"
#include "uvm_kvmalloc.h"
#include "uvm_tools.h"
#include "uvm_va_block.h"
#include "uvm_va_range.h"
#include "uvm_va_space_mm.h"
#include "uvm_pmm_sysmem.h"
#include "uvm_perf_module.h"
#include "uvm_ats.h"
#include "uvm_ats_faults.h"

#define UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN     1
#define UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_DEFAULT 256
#define UVM_PERF_ACCESS_COUNTER_GRANULARITY         UVM_ACCESS_COUNTER_GRANULARITY_2M
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN       1
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX       ((1 << 16) - 1)
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_DEFAULT   256

#define UVM_ACCESS_COUNTER_ACTION_CLEAR     0x1
#define UVM_ACCESS_COUNTER_PHYS_ON_MANAGED  0x2

// Each page in a tracked physical range may belong to a different VA Block. We
// preallocate an array of reverse map translations. However, access counter
// granularity can be set to up to 16G, which would require an array too large
// to hold all possible translations. Thus, we set an upper bound for reverse
// map translations, and we perform as many translation requests as needed to
// cover the whole tracked range.
#define UVM_MAX_TRANSLATION_SIZE (2 * 1024 * 1024ULL)
#define UVM_SUB_GRANULARITY_REGIONS 32

static unsigned g_uvm_access_counter_threshold;

// Per-VA space access counters information
typedef struct
{
    // VA space-specific configuration settings. These override the global
    // settings
    struct
    {
        atomic_t enable_mimc_migrations;

        atomic_t enable_momc_migrations;
    } params;

    uvm_va_space_t *va_space;
} va_space_access_counters_info_t;

// Enable/disable access-counter-guided migrations
//
static int uvm_perf_access_counter_mimc_migration_enable = -1;
static int uvm_perf_access_counter_momc_migration_enable = -1;

// Number of entries that are fetched from the GPU access counter notification
// buffer and serviced in batch
static unsigned uvm_perf_access_counter_batch_count = UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_DEFAULT;

// See module param documentation below
static unsigned uvm_perf_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_DEFAULT;

// Module parameters for the tunables
module_param(uvm_perf_access_counter_mimc_migration_enable, int, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_mimc_migration_enable,
                 "Whether MIMC access counters will trigger migrations."
                 "Valid values: <= -1 (default policy), 0 (off), >= 1 (on)");
module_param(uvm_perf_access_counter_momc_migration_enable, int, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_momc_migration_enable,
                 "Whether MOMC access counters will trigger migrations."
                 "Valid values: <= -1 (default policy), 0 (off), >= 1 (on)");
module_param(uvm_perf_access_counter_batch_count, uint, S_IRUGO);
module_param(uvm_perf_access_counter_threshold, uint, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_threshold,
                 "Number of remote accesses on a region required to trigger a notification."
                 "Valid values: [1, 65535]");

static void access_counter_buffer_flush_locked(uvm_gpu_t *gpu, uvm_gpu_buffer_flush_mode_t flush_mode);

static uvm_perf_module_event_callback_desc_t g_callbacks_access_counters[] = {};

// Performance heuristics module for access_counters
static uvm_perf_module_t g_module_access_counters;

// Get the access counters tracking struct for the given VA space if it exists.
// This information is allocated at VA space creation and freed during VA space
// destruction.
static va_space_access_counters_info_t *va_space_access_counters_info_get_or_null(uvm_va_space_t *va_space)
{
    return uvm_perf_module_type_data(va_space->perf_modules_data, UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);
}

// Get the access counters tracking struct for the given VA space. It asserts
// that the information has been previously created.
static va_space_access_counters_info_t *va_space_access_counters_info_get(uvm_va_space_t *va_space)
{
    va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get_or_null(va_space);
    UVM_ASSERT(va_space_access_counters);

    return va_space_access_counters;
}

// Whether access counter migrations are enabled or not. The policy is as
// follows:
// - MIMC migrations are disabled by default on all non-ATS systems.
// - MOMC migrations are disabled by default on all systems
// - Users can override this policy by specifying on/off
static bool is_migration_enabled(uvm_access_counter_type_t type)
{
    int val;
    if (type == UVM_ACCESS_COUNTER_TYPE_MIMC) {
        val = uvm_perf_access_counter_mimc_migration_enable;
    }
    else {
        val = uvm_perf_access_counter_momc_migration_enable;

        UVM_ASSERT(type == UVM_ACCESS_COUNTER_TYPE_MOMC);
    }

    if (val == 0)
        return false;
    else if (val > 0)
        return true;

    if (type == UVM_ACCESS_COUNTER_TYPE_MOMC)
        return false;

    if (UVM_ATS_SUPPORTED())
        return g_uvm_global.ats.supported;

    return false;
}

// Create the access counters tracking struct for the given VA space
//
// VA space lock needs to be held in write mode
static va_space_access_counters_info_t *va_space_access_counters_info_create(uvm_va_space_t *va_space)
{
    va_space_access_counters_info_t *va_space_access_counters;
    uvm_assert_rwsem_locked_write(&va_space->lock);

    UVM_ASSERT(va_space_access_counters_info_get_or_null(va_space) == NULL);

    va_space_access_counters = uvm_kvmalloc_zero(sizeof(*va_space_access_counters));
    if (va_space_access_counters) {
        uvm_perf_module_type_set_data(va_space->perf_modules_data,
                                      va_space_access_counters,
                                      UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);

        // Snap the access_counters parameters so that they can be tuned per VA space
        atomic_set(&va_space_access_counters->params.enable_mimc_migrations,
                   is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MIMC));
        atomic_set(&va_space_access_counters->params.enable_momc_migrations,
                   is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MOMC));
        va_space_access_counters->va_space = va_space;
    }

    return va_space_access_counters;
}

// Destroy the access counters tracking struct for the given VA space
//
// VA space lock needs to be in write mode
static void va_space_access_counters_info_destroy(uvm_va_space_t *va_space)
{
    va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get_or_null(va_space);
    uvm_assert_rwsem_locked_write(&va_space->lock);

    if (va_space_access_counters) {
        uvm_perf_module_type_unset_data(va_space->perf_modules_data, UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);
        uvm_kvfree(va_space_access_counters);
    }
}

static NV_STATUS config_granularity_to_bytes(UVM_ACCESS_COUNTER_GRANULARITY granularity, NvU64 *bytes)
{
    switch (granularity) {
        case UVM_ACCESS_COUNTER_GRANULARITY_64K:
            *bytes = 64 * 1024ULL;
            break;
        case UVM_ACCESS_COUNTER_GRANULARITY_2M:
            *bytes = 2 * UVM_SIZE_1MB;
            break;
        case UVM_ACCESS_COUNTER_GRANULARITY_16M:
            *bytes = 16 * UVM_SIZE_1MB;
            break;
        case UVM_ACCESS_COUNTER_GRANULARITY_16G:
            *bytes = 16 * UVM_SIZE_1GB;
            break;
        default:
            return NV_ERR_INVALID_ARGUMENT;
    }

    return NV_OK;
}

// Clear the access counter notifications and add it to the per-GPU clear
// tracker.
static NV_STATUS access_counter_clear_notifications(uvm_gpu_t *gpu,
                                                    uvm_access_counter_buffer_entry_t **notification_start,
                                                    NvU32 num_notifications)
{
    NvU32 i;
    NV_STATUS status;
    uvm_push_t push;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;

    status = uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_MEMOPS, &push, "Clear access counter batch");
    if (status != NV_OK) {
        UVM_ERR_PRINT("Error creating push to clear access counters: %s, GPU %s\n",
                      nvstatusToString(status),
                      uvm_gpu_name(gpu));
        return status;
    }

    for (i = 0; i < num_notifications; i++)
        gpu->parent->host_hal->access_counter_clear_targeted(&push, notification_start[i]);

    uvm_push_end(&push);

    uvm_tracker_remove_completed(&access_counters->clear_tracker);

    return uvm_tracker_add_push_safe(&access_counters->clear_tracker, &push);
}

// Clear all access counters and add the operation to the per-GPU clear tracker
static NV_STATUS access_counter_clear_all(uvm_gpu_t *gpu)
{
    NV_STATUS status;
    uvm_push_t push;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;

    status = uvm_push_begin(gpu->channel_manager,
                            UVM_CHANNEL_TYPE_MEMOPS,
                            &push,
                            "Clear access counter: all");
    if (status != NV_OK) {
        UVM_ERR_PRINT("Error creating push to clear access counters: %s, GPU %s\n",
                      nvstatusToString(status),
                      uvm_gpu_name(gpu));
        return status;
    }

    gpu->parent->host_hal->access_counter_clear_all(&push);

    uvm_push_end(&push);

    uvm_tracker_remove_completed(&access_counters->clear_tracker);

    return uvm_tracker_add_push_safe(&access_counters->clear_tracker, &push);
}

static const uvm_gpu_access_counter_type_config_t *
get_config_for_type(const uvm_access_counter_buffer_info_t *access_counters, uvm_access_counter_type_t counter_type)
{
    return counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? &(access_counters)->current_config.mimc :
                                                         &(access_counters)->current_config.momc;
}

bool uvm_gpu_access_counters_pending(uvm_parent_gpu_t *parent_gpu)
{
    UVM_ASSERT(parent_gpu->access_counters_supported);

    // Fast path 1: we left some notifications unserviced in the buffer in the last pass
    if (parent_gpu->access_counter_buffer_info.cached_get != parent_gpu->access_counter_buffer_info.cached_put)
        return true;

    // Fast path 2: read the valid bit of the notification buffer entry pointed by the cached get pointer
    if (!parent_gpu->access_counter_buffer_hal->entry_is_valid(parent_gpu,
                                                               parent_gpu->access_counter_buffer_info.cached_get)) {
        // Slow path: read the put pointer from the GPU register via BAR0 over PCIe
        parent_gpu->access_counter_buffer_info.cached_put =
            UVM_GPU_READ_ONCE(*parent_gpu->access_counter_buffer_info.rm_info.pAccessCntrBufferPut);

        // No interrupt pending
        if (parent_gpu->access_counter_buffer_info.cached_get == parent_gpu->access_counter_buffer_info.cached_put)
            return false;
    }

    return true;
}

// Initialize the configuration and pre-compute some required values for the
// given access counter type
static void init_access_counter_types_config(const UvmGpuAccessCntrConfig *config,
                                             uvm_access_counter_type_t counter_type,
                                             uvm_gpu_access_counter_type_config_t *counter_type_config)
{
    NV_STATUS status;
    NvU64 tracking_size = 0;
    UVM_ACCESS_COUNTER_GRANULARITY granularity = counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? config->mimcGranularity:
                                                                                               config->momcGranularity;
    UVM_ACCESS_COUNTER_USE_LIMIT use_limit = counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? config->mimcUseLimit:
                                                                                           config->momcUseLimit;

    counter_type_config->rm.granularity = granularity;
    counter_type_config->rm.use_limit = use_limit;

    // Precompute the maximum size to use in reverse map translations and the
    // number of translations that are required per access counter notification.
    status = config_granularity_to_bytes(granularity, &tracking_size);
    UVM_ASSERT(status == NV_OK);

    // sub_granularity field is only filled for tracking granularities larger
    // than 64K
    if (granularity == UVM_ACCESS_COUNTER_GRANULARITY_64K)
        counter_type_config->sub_granularity_region_size = tracking_size;
    else
        counter_type_config->sub_granularity_region_size = tracking_size / UVM_SUB_GRANULARITY_REGIONS;

    counter_type_config->translation_size = min(UVM_MAX_TRANSLATION_SIZE, tracking_size);
    counter_type_config->translations_per_counter =
        max(counter_type_config->translation_size / UVM_MAX_TRANSLATION_SIZE, 1ULL);
    counter_type_config->sub_granularity_regions_per_translation =
        max(counter_type_config->translation_size / counter_type_config->sub_granularity_region_size, 1ULL);
    UVM_ASSERT(counter_type_config->sub_granularity_regions_per_translation <= UVM_SUB_GRANULARITY_REGIONS);
}

NV_STATUS uvm_gpu_init_access_counters(uvm_parent_gpu_t *parent_gpu)
{
    NV_STATUS status = NV_OK;
    uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;
    uvm_access_counter_service_batch_context_t *batch_context = &access_counters->batch_service_context;
    NvU64 granularity_bytes = 0;

    if (uvm_perf_access_counter_threshold < UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN) {
        g_uvm_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN;
        pr_info("Value %u too small for uvm_perf_access_counter_threshold, using %u instead\n",
                uvm_perf_access_counter_threshold,
                g_uvm_access_counter_threshold);
    }
    else if (uvm_perf_access_counter_threshold > UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX) {
        g_uvm_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX;
        pr_info("Value %u too large for uvm_perf_access_counter_threshold, using %u instead\n",
                uvm_perf_access_counter_threshold,
                g_uvm_access_counter_threshold);
    }
    else {
        g_uvm_access_counter_threshold = uvm_perf_access_counter_threshold;
    }

    uvm_assert_mutex_locked(&g_uvm_global.global_lock);
    UVM_ASSERT(parent_gpu->access_counter_buffer_hal != NULL);

    status = uvm_rm_locked_call(nvUvmInterfaceInitAccessCntrInfo(parent_gpu->rm_device,
                                                                 &access_counters->rm_info,
                                                                 0));
    if (status != NV_OK) {
        UVM_ERR_PRINT("Failed to init notify buffer info from RM: %s, GPU %s\n",
                      nvstatusToString(status),
                      parent_gpu->name);

        // nvUvmInterfaceInitAccessCntrInfo may leave fields in rm_info
        // populated when it returns an error. Set the buffer handle to zero as
        // it is used by the deinitialization logic to determine if it was
        // correctly initialized.
        access_counters->rm_info.accessCntrBufferHandle = 0;
        goto fail;
    }

    UVM_ASSERT(access_counters->rm_info.bufferSize %
               parent_gpu->access_counter_buffer_hal->entry_size(parent_gpu) == 0);

    status = config_granularity_to_bytes(UVM_PERF_ACCESS_COUNTER_GRANULARITY, &granularity_bytes);
    UVM_ASSERT(status == NV_OK);
    if (granularity_bytes > UVM_MAX_TRANSLATION_SIZE)
        UVM_ASSERT(granularity_bytes % UVM_MAX_TRANSLATION_SIZE == 0);

    parent_gpu->access_counter_buffer_info.notifications_ignored_count = 0;
    parent_gpu->access_counter_buffer_info.reconfiguration_owner = NULL;

    uvm_tracker_init(&access_counters->clear_tracker);

    access_counters->max_notifications = parent_gpu->access_counter_buffer_info.rm_info.bufferSize /
                                         parent_gpu->access_counter_buffer_hal->entry_size(parent_gpu);

    // Check provided module parameter value
    access_counters->max_batch_size = max(uvm_perf_access_counter_batch_count,
                                          (NvU32)UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN);
    access_counters->max_batch_size = min(access_counters->max_batch_size,
                                          access_counters->max_notifications);

    if (access_counters->max_batch_size != uvm_perf_access_counter_batch_count) {
        pr_info("Invalid uvm_perf_access_counter_batch_count value on GPU %s: %u. Valid range [%u:%u] Using %u instead\n",
                parent_gpu->name,
                uvm_perf_access_counter_batch_count,
                UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN,
                access_counters->max_notifications,
                access_counters->max_batch_size);
    }

    batch_context->notification_cache = uvm_kvmalloc_zero(access_counters->max_notifications *
                                                          sizeof(*batch_context->notification_cache));
    if (!batch_context->notification_cache) {
        status = NV_ERR_NO_MEMORY;
        goto fail;
    }

    batch_context->virt.notifications = uvm_kvmalloc_zero(access_counters->max_notifications *
                                                          sizeof(*batch_context->virt.notifications));
    if (!batch_context->virt.notifications) {
        status = NV_ERR_NO_MEMORY;
        goto fail;
    }

    batch_context->phys.notifications = uvm_kvmalloc_zero(access_counters->max_notifications *
                                                          sizeof(*batch_context->phys.notifications));
    if (!batch_context->phys.notifications) {
        status = NV_ERR_NO_MEMORY;
        goto fail;
    }

    batch_context->phys.translations = uvm_kvmalloc_zero((UVM_MAX_TRANSLATION_SIZE / PAGE_SIZE) *
                                                         sizeof(*batch_context->phys.translations));
    if (!batch_context->phys.translations) {
        status = NV_ERR_NO_MEMORY;
        goto fail;
    }

    return NV_OK;

fail:
    uvm_gpu_deinit_access_counters(parent_gpu);

    return status;
}

void uvm_gpu_deinit_access_counters(uvm_parent_gpu_t *parent_gpu)
{
    uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;
    uvm_access_counter_service_batch_context_t *batch_context = &access_counters->batch_service_context;

    UVM_ASSERT(parent_gpu->isr.access_counters.handling_ref_count == 0);

    if (access_counters->rm_info.accessCntrBufferHandle) {
        NV_STATUS status = uvm_rm_locked_call(nvUvmInterfaceDestroyAccessCntrInfo(parent_gpu->rm_device,
                                                                                  &access_counters->rm_info));
        UVM_ASSERT(status == NV_OK);

        access_counters->rm_info.accessCntrBufferHandle = 0;
        uvm_tracker_deinit(&access_counters->clear_tracker);
    }

    uvm_kvfree(batch_context->notification_cache);
    uvm_kvfree(batch_context->virt.notifications);
    uvm_kvfree(batch_context->phys.notifications);
    uvm_kvfree(batch_context->phys.translations);
    batch_context->notification_cache = NULL;
    batch_context->virt.notifications = NULL;
    batch_context->phys.notifications = NULL;
    batch_context->phys.translations = NULL;
}

bool uvm_gpu_access_counters_required(const uvm_parent_gpu_t *parent_gpu)
{
    if (!parent_gpu->access_counters_supported)
        return false;

    if (parent_gpu->rm_info.isSimulated)
        return true;

    return is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MIMC) || is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MOMC);
}

// This function enables access counters with the given configuration and takes
// ownership from RM. The function also stores the new configuration within the
// uvm_gpu_t struct.
static NV_STATUS access_counters_take_ownership(uvm_gpu_t *gpu, UvmGpuAccessCntrConfig *config)
{
    NV_STATUS status, disable_status;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;

    UVM_ASSERT(gpu->parent->access_counters_supported);
    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));

    status = uvm_rm_locked_call(nvUvmInterfaceEnableAccessCntr(gpu->parent->rm_device,
                                                               &access_counters->rm_info,
                                                               config));
    if (status != NV_OK) {
        UVM_ERR_PRINT("Failed to enable access counter notification from RM: %s, GPU %s\n",
                      nvstatusToString(status), uvm_gpu_name(gpu));
        return status;
    }

    status = access_counter_clear_all(gpu);
    if (status != NV_OK)
        goto error;

    status = uvm_tracker_wait(&access_counters->clear_tracker);
    if (status != NV_OK)
        goto error;

    // Read current get pointer as this might not be the first time we have
    // taken control of the notify buffer since the GPU was initialized. Then
    // flush old notifications. This will update the cached_put pointer.
    access_counters->cached_get = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferGet);
    access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT);

    access_counters->current_config.threshold = config->threshold;

    init_access_counter_types_config(config, UVM_ACCESS_COUNTER_TYPE_MIMC, &access_counters->current_config.mimc);
    init_access_counter_types_config(config, UVM_ACCESS_COUNTER_TYPE_MOMC, &access_counters->current_config.momc);

    return NV_OK;

error:
    disable_status = uvm_rm_locked_call(nvUvmInterfaceDisableAccessCntr(gpu->parent->rm_device,
                                                                        &access_counters->rm_info));
    UVM_ASSERT(disable_status == NV_OK);

    return status;
}

// If ownership is yielded as part of reconfiguration, the access counters
// handling refcount may not be 0
static void access_counters_yield_ownership(uvm_gpu_t *gpu)
{
    NV_STATUS status;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;

    UVM_ASSERT(gpu->parent->access_counters_supported);
    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));

    // Wait for any pending clear operation befor releasing ownership
    status = uvm_tracker_wait(&access_counters->clear_tracker);
    if (status != NV_OK)
        UVM_ASSERT(status == uvm_global_get_status());

    status = uvm_rm_locked_call(nvUvmInterfaceDisableAccessCntr(gpu->parent->rm_device,
                                                                &access_counters->rm_info));
    UVM_ASSERT(status == NV_OK);
}

// Increment the refcount of access counter enablement. If this is the first
// reference, enable the HW feature.
static NV_STATUS gpu_access_counters_enable(uvm_gpu_t *gpu, UvmGpuAccessCntrConfig *config)
{
    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
    UVM_ASSERT(gpu->parent->access_counters_supported);
    UVM_ASSERT(gpu->parent->access_counter_buffer_info.rm_info.accessCntrBufferHandle);

    // There cannot be a concurrent modification of the handling count, since
    // the only two writes of that field happen in the enable/disable functions
    // and those are protected by the access counters ISR lock.
    if (gpu->parent->isr.access_counters.handling_ref_count == 0) {
        NV_STATUS status = access_counters_take_ownership(gpu, config);

        if (status != NV_OK)
            return status;
    }

    ++gpu->parent->isr.access_counters.handling_ref_count;
    return NV_OK;
}

// Decrement the refcount of access counter enablement. If this is the last
// reference, disable the HW feature.
static void gpu_access_counters_disable(uvm_gpu_t *gpu)
{
    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
    UVM_ASSERT(gpu->parent->access_counters_supported);
    UVM_ASSERT(gpu->parent->isr.access_counters.handling_ref_count > 0);

    if (--gpu->parent->isr.access_counters.handling_ref_count == 0)
        access_counters_yield_ownership(gpu);
}

// Invoked during registration of the GPU in the VA space
NV_STATUS uvm_gpu_access_counters_enable(uvm_gpu_t *gpu, uvm_va_space_t *va_space)
{
    NV_STATUS status;

    UVM_ASSERT(gpu->parent->access_counters_supported);

    uvm_gpu_access_counters_isr_lock(gpu->parent);

    if (uvm_processor_mask_test(&va_space->access_counters_enabled_processors, gpu->id)) {
        status = NV_ERR_INVALID_DEVICE;
    }
    else {
        UvmGpuAccessCntrConfig default_config =
        {
            .mimcGranularity = UVM_PERF_ACCESS_COUNTER_GRANULARITY,
            .momcGranularity = UVM_PERF_ACCESS_COUNTER_GRANULARITY,
            .mimcUseLimit = UVM_ACCESS_COUNTER_USE_LIMIT_FULL,
            .momcUseLimit = UVM_ACCESS_COUNTER_USE_LIMIT_FULL,
            .threshold = g_uvm_access_counter_threshold,
        };
        status = gpu_access_counters_enable(gpu, &default_config);

        // No VA space lock is currently held, so the mask is atomically
        // modified to protect from concurrent enablement of access counters in
        // another GPU
        if (status == NV_OK)
            uvm_processor_mask_set_atomic(&va_space->access_counters_enabled_processors, gpu->id);
    }

    // If this is the first reference taken on access counters, dropping the
    // ISR lock will enable interrupts.
    uvm_gpu_access_counters_isr_unlock(gpu->parent);

    return status;
}

void uvm_gpu_access_counters_disable(uvm_gpu_t *gpu, uvm_va_space_t *va_space)
{
    UVM_ASSERT(gpu->parent->access_counters_supported);

    uvm_gpu_access_counters_isr_lock(gpu->parent);

    if (uvm_processor_mask_test_and_clear_atomic(&va_space->access_counters_enabled_processors, gpu->id)) {
        gpu_access_counters_disable(gpu);

        // If this is VA space reconfigured access counters, clear the
        // ownership to allow for other processes to invoke the reconfiguration
        if (gpu->parent->access_counter_buffer_info.reconfiguration_owner == va_space)
            gpu->parent->access_counter_buffer_info.reconfiguration_owner = NULL;
    }

    uvm_gpu_access_counters_isr_unlock(gpu->parent);
}

static void write_get(uvm_parent_gpu_t *parent_gpu, NvU32 get)
{
    uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;

    UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.access_counters.service_lock));

    // Write get on the GPU only if it's changed.
    if (access_counters->cached_get == get)
        return;

    access_counters->cached_get = get;

    // Update get pointer on the GPU
    UVM_GPU_WRITE_ONCE(*access_counters->rm_info.pAccessCntrBufferGet, get);
}

static void access_counter_buffer_flush_locked(uvm_gpu_t *gpu, uvm_gpu_buffer_flush_mode_t flush_mode)
{
    NvU32 get;
    NvU32 put;
    uvm_spin_loop_t spin;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;

    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
    UVM_ASSERT(gpu->parent->access_counters_supported);

    // Read PUT pointer from the GPU if requested
    UVM_ASSERT(flush_mode != UVM_GPU_BUFFER_FLUSH_MODE_WAIT_UPDATE_PUT);
    if (flush_mode == UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT)
        access_counters->cached_put = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferPut);

    get = access_counters->cached_get;
    put = access_counters->cached_put;

    while (get != put) {
        // Wait until valid bit is set
        UVM_SPIN_WHILE(!gpu->parent->access_counter_buffer_hal->entry_is_valid(gpu->parent, get), &spin) {
            if (uvm_global_get_status() != NV_OK)
                goto done;
        }

        gpu->parent->access_counter_buffer_hal->entry_clear_valid(gpu->parent, get);
        ++get;
        if (get == access_counters->max_notifications)
            get = 0;
    }

done:
    write_get(gpu->parent, get);
}

void uvm_gpu_access_counter_buffer_flush(uvm_gpu_t *gpu)
{
    UVM_ASSERT(gpu->parent->access_counters_supported);

    // Disables access counter interrupts and notification servicing
    uvm_gpu_access_counters_isr_lock(gpu->parent);

    if (gpu->parent->isr.access_counters.handling_ref_count > 0)
        access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT);

    uvm_gpu_access_counters_isr_unlock(gpu->parent);
}

static inline int cmp_access_counter_instance_ptr(const uvm_access_counter_buffer_entry_t *a,
                                                  const uvm_access_counter_buffer_entry_t *b)
{
    int result;

    result = uvm_gpu_phys_addr_cmp(a->virtual_info.instance_ptr, b->virtual_info.instance_ptr);
    // On Volta+ we need to sort by {instance_ptr + subctx_id} pair since it can
    // map to a different VA space
    if (result != 0)
        return result;
    return UVM_CMP_DEFAULT(a->virtual_info.ve_id, b->virtual_info.ve_id);
}

// Sort comparator for pointers to GVA access counter notification buffer
// entries that sorts by instance pointer
static int cmp_sort_virt_notifications_by_instance_ptr(const void *_a, const void *_b)
{
    const uvm_access_counter_buffer_entry_t *a = *(const uvm_access_counter_buffer_entry_t **)_a;
    const uvm_access_counter_buffer_entry_t *b = *(const uvm_access_counter_buffer_entry_t **)_b;

    UVM_ASSERT(a->address.is_virtual);
    UVM_ASSERT(b->address.is_virtual);

    return cmp_access_counter_instance_ptr(a, b);
}

// Sort comparator for pointers to GVA access counter notification buffer
// entries that sorts by va_space, and fault address.
static int cmp_sort_virt_notifications_by_va_space_address(const void *_a, const void *_b)
{
    const uvm_access_counter_buffer_entry_t **a = (const uvm_access_counter_buffer_entry_t **)_a;
    const uvm_access_counter_buffer_entry_t **b = (const uvm_access_counter_buffer_entry_t **)_b;

    int result;

    result = UVM_CMP_DEFAULT((*a)->virtual_info.va_space, (*b)->virtual_info.va_space);
    if (result != 0)
        return result;

    return UVM_CMP_DEFAULT((*a)->address.address, (*b)->address.address);
}

// Sort comparator for pointers to GPA access counter notification buffer
// entries that sorts by physical address' aperture
static int cmp_sort_phys_notifications_by_processor_id(const void *_a, const void *_b)
{
    const uvm_access_counter_buffer_entry_t *a = *(const uvm_access_counter_buffer_entry_t **)_a;
    const uvm_access_counter_buffer_entry_t *b = *(const uvm_access_counter_buffer_entry_t **)_b;

    UVM_ASSERT(!a->address.is_virtual);
    UVM_ASSERT(!b->address.is_virtual);

    return uvm_id_cmp(a->physical_info.resident_id, b->physical_info.resident_id);
}

typedef enum
{
    // Fetch a batch of notifications from the buffer. Stop at the first entry
    // that is not ready yet
    NOTIFICATION_FETCH_MODE_BATCH_READY,

    // Fetch all notifications in the buffer before PUT. Wait for all
    // notifications to become ready
    NOTIFICATION_FETCH_MODE_ALL,
} notification_fetch_mode_t;

static NvU32 fetch_access_counter_buffer_entries(uvm_gpu_t *gpu,
                                                 uvm_access_counter_service_batch_context_t *batch_context,
                                                 notification_fetch_mode_t fetch_mode)
{
    NvU32 get;
    NvU32 put;
    NvU32 notification_index;
    uvm_access_counter_buffer_entry_t *notification_cache;
    uvm_spin_loop_t spin;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
    NvU32 last_instance_ptr_idx = 0;
    uvm_aperture_t last_aperture = UVM_APERTURE_PEER_MAX;

    UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
    UVM_ASSERT(gpu->parent->access_counters_supported);

    notification_cache = batch_context->notification_cache;

    get = access_counters->cached_get;

    // Read put pointer from GPU and cache it
    if (get == access_counters->cached_put) {
        access_counters->cached_put = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferPut);
    }

    put = access_counters->cached_put;

    if (get == put)
        return 0;

    batch_context->phys.num_notifications = 0;
    batch_context->virt.num_notifications = 0;

    batch_context->virt.is_single_instance_ptr = true;
    batch_context->phys.is_single_aperture = true;

    notification_index = 0;

    // Parse until get != put and have enough space to cache.
    while ((get != put) &&
           (fetch_mode == NOTIFICATION_FETCH_MODE_ALL || notification_index < access_counters->max_batch_size)) {
        uvm_access_counter_buffer_entry_t *current_entry = &notification_cache[notification_index];

        // We cannot just wait for the last entry (the one pointed by put) to
        // become valid, we have to do it individually since entries can be
        // written out of order
        UVM_SPIN_WHILE(!gpu->parent->access_counter_buffer_hal->entry_is_valid(gpu->parent, get), &spin) {
            // We have some entry to work on. Let's do the rest later.
            if (fetch_mode != NOTIFICATION_FETCH_MODE_ALL && notification_index > 0)
                goto done;

            // There's no entry to work on and something has gone wrong. Ignore
            // the rest.
            if (uvm_global_get_status() != NV_OK)
               goto done;
        }

        // Prevent later accesses being moved above the read of the valid bit
        smp_mb__after_atomic();

        // Got valid bit set. Let's cache.
        gpu->parent->access_counter_buffer_hal->parse_entry(gpu->parent, get, current_entry);

        if (current_entry->address.is_virtual) {
            batch_context->virt.notifications[batch_context->virt.num_notifications++] = current_entry;

            if (batch_context->virt.is_single_instance_ptr) {
                if (batch_context->virt.num_notifications == 1) {
                    last_instance_ptr_idx = notification_index;
                }
                else if (cmp_access_counter_instance_ptr(&notification_cache[last_instance_ptr_idx],
                                                         current_entry) != 0) {
                    batch_context->virt.is_single_instance_ptr = false;
                }
            }
        }
        else {
            const NvU64 translation_size = get_config_for_type(access_counters, current_entry->counter_type)->translation_size;
            current_entry->address.address = UVM_ALIGN_DOWN(current_entry->address.address, translation_size);

            batch_context->phys.notifications[batch_context->phys.num_notifications++] = current_entry;

            current_entry->physical_info.resident_id =
                uvm_gpu_get_processor_id_by_address(gpu, uvm_gpu_phys_address(current_entry->address.aperture,
                                                                              current_entry->address.address));

            if (batch_context->phys.is_single_aperture) {
                if (batch_context->phys.num_notifications == 1)
                    last_aperture = current_entry->address.aperture;
                else if (current_entry->address.aperture != last_aperture)
                    batch_context->phys.is_single_aperture = false;
            }

            if (current_entry->counter_type == UVM_ACCESS_COUNTER_TYPE_MOMC)
                UVM_ASSERT(uvm_id_equal(current_entry->physical_info.resident_id, gpu->id));
            else
                UVM_ASSERT(!uvm_id_equal(current_entry->physical_info.resident_id, gpu->id));
        }

        ++notification_index;
        ++get;
        if (get == access_counters->max_notifications)
            get = 0;
    }

done:
    write_get(gpu->parent, get);

    return notification_index;
}

static void translate_virt_notifications_instance_ptrs(uvm_gpu_t *gpu,
                                                       uvm_access_counter_service_batch_context_t *batch_context)
{
    NvU32 i;
    NV_STATUS status;

    for (i = 0; i < batch_context->virt.num_notifications; ++i) {
        uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[i];

        if (i == 0 ||
            cmp_access_counter_instance_ptr(current_entry, batch_context->virt.notifications[i - 1]) != 0) {
            // If instance_ptr is different, make a new translation. If the
            // translation fails then va_space will be NULL and the entry will
            // simply be ignored in subsequent processing.
            status = uvm_gpu_access_counter_entry_to_va_space(gpu,
                                                              current_entry,
                                                              &current_entry->virtual_info.va_space);
            if (status != NV_OK)
                UVM_ASSERT(current_entry->virtual_info.va_space == NULL);
        }
        else {
            current_entry->virtual_info.va_space = batch_context->virt.notifications[i - 1]->virtual_info.va_space;
        }
    }
}

// GVA notifications provide an instance_ptr and ve_id that can be directly
// translated to a VA space. In order to minimize translations, we sort the
// entries by instance_ptr, va_space and notification address in that order.
static void preprocess_virt_notifications(uvm_gpu_t *gpu,
                                          uvm_access_counter_service_batch_context_t *batch_context)
{
    if (!batch_context->virt.is_single_instance_ptr) {
        sort(batch_context->virt.notifications,
             batch_context->virt.num_notifications,
             sizeof(*batch_context->virt.notifications),
             cmp_sort_virt_notifications_by_instance_ptr,
             NULL);
    }

    translate_virt_notifications_instance_ptrs(gpu, batch_context);

    sort(batch_context->virt.notifications,
         batch_context->virt.num_notifications,
         sizeof(*batch_context->virt.notifications),
         cmp_sort_virt_notifications_by_va_space_address,
         NULL);
}

// GPA notifications provide a physical address and an aperture. Sort
// accesses by aperture to try to coalesce operations on the same target
// processor.
static void preprocess_phys_notifications(uvm_access_counter_service_batch_context_t *batch_context)
{
    if (!batch_context->phys.is_single_aperture) {
        sort(batch_context->phys.notifications,
             batch_context->phys.num_notifications,
             sizeof(*batch_context->phys.notifications),
             cmp_sort_phys_notifications_by_processor_id,
             NULL);
    }
}

static NV_STATUS notify_tools_and_process_flags(uvm_gpu_t *gpu,
                                                uvm_access_counter_buffer_entry_t **notification_start,
                                                NvU32 num_entries,
                                                NvU32 flags)
{
    NV_STATUS status = NV_OK;

    if (uvm_enable_builtin_tests) {
        // TODO: Bug 4310744: [UVM][TOOLS] Attribute access counter tools events
        //                    to va_space instead of broadcasting.
        NvU32 i;

        for (i = 0; i < num_entries; i++)
            uvm_tools_broadcast_access_counter(gpu, notification_start[i], flags & UVM_ACCESS_COUNTER_PHYS_ON_MANAGED);
    }

    if (flags & UVM_ACCESS_COUNTER_ACTION_CLEAR)
        status = access_counter_clear_notifications(gpu, notification_start, num_entries);

    return status;
}

static NV_STATUS service_va_block_locked(uvm_processor_id_t processor,
                                         uvm_va_block_t *va_block,
                                         uvm_va_block_retry_t *va_block_retry,
                                         uvm_service_block_context_t *service_context,
                                         uvm_page_mask_t *accessed_pages)
{
    NV_STATUS status = NV_OK;
    uvm_va_space_t *va_space = uvm_va_block_get_va_space(va_block);
    uvm_range_group_range_iter_t iter;
    uvm_page_index_t page_index;
    uvm_page_index_t first_page_index;
    uvm_page_index_t last_page_index;
    NvU32 page_count = 0;
    const uvm_page_mask_t *residency_mask;

    uvm_assert_mutex_locked(&va_block->lock);

    // GPU VA space could be gone since we received the notification. We handle
    // this case by skipping service if processor is not in the mapped mask.
    // Using this approach we also filter out notifications for pages that
    // moved since they were reported by the GPU. This is fine because:
    // - If the GPU is still accessing them, it should have faulted
    // - If the GPU gets remote mappings in the future, we will get new
    //   notifications and we will act accordingly
    // - If the GPU does not access the pages again, we do not want to migrate
    //   them
    if (!uvm_processor_mask_test(&va_block->mapped, processor))
        return NV_OK;

    if (uvm_processor_mask_test(&va_block->resident, processor))
        residency_mask = uvm_va_block_resident_mask_get(va_block, processor);
    else
        residency_mask = NULL;

    first_page_index = PAGES_PER_UVM_VA_BLOCK;
    last_page_index = 0;

    // Initialize fault service block context
    uvm_processor_mask_zero(&service_context->resident_processors);
    service_context->read_duplicate_count = 0;
    service_context->thrashing_pin_count = 0;

    // If the page is already resident on the accessing processor, the
    // notification for this page is stale. Skip it.
    if (residency_mask)
        uvm_page_mask_andnot(accessed_pages, accessed_pages, residency_mask);

    uvm_range_group_range_migratability_iter_first(va_space, va_block->start, va_block->end, &iter);

    for_each_va_block_page_in_mask(page_index, accessed_pages, va_block) {
        uvm_perf_thrashing_hint_t thrashing_hint;
        NvU64 address = uvm_va_block_cpu_page_address(va_block, page_index);
        bool read_duplicate = false;
        uvm_processor_id_t new_residency;
        const uvm_va_policy_t *policy;

        // Ensure that the migratability iterator covers the current address
        while (iter.end < address)
            uvm_range_group_range_migratability_iter_next(va_space, &iter, va_block->end);

        UVM_ASSERT(iter.start <= address && iter.end >= address);

        // If the range is not migratable, skip the page
        if (!iter.migratable)
            continue;

        thrashing_hint = uvm_perf_thrashing_get_hint(va_block, address, processor);
        if (thrashing_hint.type == UVM_PERF_THRASHING_HINT_TYPE_THROTTLE) {
            // If the page is throttling, ignore the access counter
            // notification
            continue;
        }
        else if (thrashing_hint.type == UVM_PERF_THRASHING_HINT_TYPE_PIN) {
            if (service_context->thrashing_pin_count++ == 0)
                uvm_page_mask_zero(&service_context->thrashing_pin_mask);

            uvm_page_mask_set(&service_context->thrashing_pin_mask, page_index);
        }

        // If the underlying VMA is gone, skip HMM migrations.
        if (uvm_va_block_is_hmm(va_block)) {
            status = uvm_hmm_find_vma(service_context->block_context.mm,
                                      &service_context->block_context.hmm.vma,
                                      address);
            if (status == NV_ERR_INVALID_ADDRESS)
                continue;

            UVM_ASSERT(status == NV_OK);
        }

        policy = uvm_va_policy_get(va_block, address);

        new_residency = uvm_va_block_select_residency(va_block,
                                                      &service_context->block_context,
                                                      page_index,
                                                      processor,
                                                      uvm_fault_access_type_mask_bit(UVM_FAULT_ACCESS_TYPE_PREFETCH),
                                                      policy,
                                                      &thrashing_hint,
                                                      UVM_SERVICE_OPERATION_ACCESS_COUNTERS,
                                                      &read_duplicate);

        if (!uvm_processor_mask_test_and_set(&service_context->resident_processors, new_residency))
            uvm_page_mask_zero(&service_context->per_processor_masks[uvm_id_value(new_residency)].new_residency);

        uvm_page_mask_set(&service_context->per_processor_masks[uvm_id_value(new_residency)].new_residency, page_index);

        if (page_index < first_page_index)
            first_page_index = page_index;
        if (page_index > last_page_index)
            last_page_index = page_index;

        ++page_count;

        service_context->access_type[page_index] = UVM_FAULT_ACCESS_TYPE_PREFETCH;
    }

    // Apply the changes computed in the service block context, if there are
    // pages to be serviced
    if (page_count > 0) {
        uvm_processor_id_t id;
        uvm_processor_mask_t update_processors;

        uvm_processor_mask_and(&update_processors, &va_block->resident, &service_context->resident_processors);

        // Remove pages that are already resident in the destination processors
        for_each_id_in_mask(id, &update_processors) {
            bool migrate_pages;
            uvm_page_mask_t *residency_mask = uvm_va_block_resident_mask_get(va_block, id);
            UVM_ASSERT(residency_mask);

            migrate_pages = uvm_page_mask_andnot(&service_context->per_processor_masks[uvm_id_value(id)].new_residency,
                                                 &service_context->per_processor_masks[uvm_id_value(id)].new_residency,
                                                 residency_mask);

            if (!migrate_pages)
                uvm_processor_mask_clear(&service_context->resident_processors, id);
        }

        if (!uvm_processor_mask_empty(&service_context->resident_processors)) {
            while (first_page_index <= last_page_index) {
                uvm_page_index_t outer = last_page_index + 1;
                const uvm_va_policy_t *policy;

                if (uvm_va_block_is_hmm(va_block)) {
                    status = NV_ERR_INVALID_ADDRESS;
                    if (service_context->block_context.mm) {
                        status = uvm_hmm_find_policy_vma_and_outer(va_block,
                                                                   &service_context->block_context.hmm.vma,
                                                                   first_page_index,
                                                                   &policy,
                                                                   &outer);
                    }
                    if (status != NV_OK)
                        break;
                }

                service_context->region = uvm_va_block_region(first_page_index, outer);
                first_page_index = outer;

                status = uvm_va_block_service_locked(processor, va_block, va_block_retry, service_context);
                if (status != NV_OK)
                    break;
            }
        }
    }

    ++service_context->num_retries;

    return status;
}

static void reverse_mappings_to_va_block_page_mask(uvm_va_block_t *va_block,
                                                   const uvm_reverse_map_t *reverse_mappings,
                                                   size_t num_reverse_mappings,
                                                   uvm_page_mask_t *page_mask)
{
    NvU32 index;

    UVM_ASSERT(page_mask);

    if (num_reverse_mappings > 0)
        UVM_ASSERT(reverse_mappings);

    uvm_page_mask_zero(page_mask);

    // Populate the mask of accessed pages within the VA Block
    for (index = 0; index < num_reverse_mappings; ++index) {
        const uvm_reverse_map_t *reverse_map = &reverse_mappings[index];
        uvm_va_block_region_t region = reverse_map->region;

        UVM_ASSERT(reverse_map->va_block == va_block);

        // The VA Block could have been split since we obtained the reverse
        // mappings. Clamp the region to the current VA block size, to handle
        // the case in which it was split.
        region.outer = min(region.outer, (uvm_page_index_t)uvm_va_block_num_cpu_pages(va_block));
        region.first = min(region.first, region.outer);

        uvm_page_mask_region_fill(page_mask, region);
    }
}

static NV_STATUS service_phys_single_va_block(uvm_gpu_t *gpu,
                                              uvm_access_counter_service_batch_context_t *batch_context,
                                              const uvm_access_counter_buffer_entry_t *current_entry,
                                              const uvm_reverse_map_t *reverse_mappings,
                                              size_t num_reverse_mappings,
                                              NvU32 *out_flags)
{
    size_t index;
    uvm_va_block_t *va_block = reverse_mappings[0].va_block;
    uvm_va_space_t *va_space = NULL;
    struct mm_struct *mm = NULL;
    NV_STATUS status = NV_OK;
    const uvm_processor_id_t processor = current_entry->counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC?
                                             gpu->id: UVM_ID_CPU;

    *out_flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;

    UVM_ASSERT(num_reverse_mappings > 0);

    uvm_mutex_lock(&va_block->lock);
    va_space = uvm_va_block_get_va_space_maybe_dead(va_block);
    uvm_mutex_unlock(&va_block->lock);

    if (va_space) {
        uvm_va_block_retry_t va_block_retry;
        va_space_access_counters_info_t *va_space_access_counters;
        uvm_service_block_context_t *service_context = &batch_context->block_service_context;
        uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;

        // If an mm is registered with the VA space, we have to retain it
        // in order to lock it before locking the VA space.
        mm = uvm_va_space_mm_retain_lock(va_space);
        uvm_va_space_down_read(va_space);

        // Re-check that the VA block is valid after taking the VA block lock.
        if (uvm_va_block_is_dead(va_block))
            goto done;

        va_space_access_counters = va_space_access_counters_info_get(va_space);
        if (UVM_ID_IS_CPU(processor) && !atomic_read(&va_space_access_counters->params.enable_momc_migrations))
            goto done;

        if (!UVM_ID_IS_CPU(processor) && !atomic_read(&va_space_access_counters->params.enable_mimc_migrations))
            goto done;

        service_context->operation = UVM_SERVICE_OPERATION_ACCESS_COUNTERS;
        service_context->num_retries = 0;
        service_context->block_context.mm = mm;

        if (uvm_va_block_is_hmm(va_block)) {
            uvm_hmm_service_context_init(service_context);
            uvm_hmm_migrate_begin_wait(va_block);
        }

        uvm_mutex_lock(&va_block->lock);

        reverse_mappings_to_va_block_page_mask(va_block, reverse_mappings, num_reverse_mappings, accessed_pages);

        status = UVM_VA_BLOCK_RETRY_LOCKED(va_block, &va_block_retry,
                                           service_va_block_locked(processor,
                                                                   va_block,
                                                                   &va_block_retry,
                                                                   service_context,
                                                                   accessed_pages));

        uvm_mutex_unlock(&va_block->lock);

        if (uvm_va_block_is_hmm(va_block))
            uvm_hmm_migrate_finish(va_block);

        if (status == NV_OK)
            *out_flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;
    }

done:
    if (va_space) {
        uvm_va_space_up_read(va_space);
        uvm_va_space_mm_release_unlock(va_space, mm);
    }

    // Drop the refcounts taken by the reverse map translation routines
    for (index = 0; index < num_reverse_mappings; ++index)
        uvm_va_block_release(va_block);

    return status;
}

static NV_STATUS service_phys_va_blocks(uvm_gpu_t *gpu,
                                        uvm_access_counter_service_batch_context_t *batch_context,
                                        const uvm_access_counter_buffer_entry_t *current_entry,
                                        const uvm_reverse_map_t *reverse_mappings,
                                        size_t num_reverse_mappings,
                                        NvU32 *out_flags)
{
    NV_STATUS status = NV_OK;
    size_t index;

    *out_flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;

    for (index = 0; index < num_reverse_mappings; ++index) {
        NvU32 out_flags_local = 0;
        status = service_phys_single_va_block(gpu,
                                              batch_context,
                                              current_entry,
                                              reverse_mappings + index,
                                              1,
                                              &out_flags_local);
        if (status != NV_OK)
            break;

        UVM_ASSERT((out_flags_local & ~UVM_ACCESS_COUNTER_ACTION_CLEAR) == 0);
        *out_flags |= out_flags_local;
    }

    // In the case of failure, drop the refcounts for the remaining reverse mappings
    while (++index < num_reverse_mappings)
        uvm_va_block_release(reverse_mappings[index].va_block);

    return status;
}

// Iterate over all regions set in the given sub_granularity mask
#define for_each_sub_granularity_region(region_start, region_end, sub_granularity, num_regions)      \
    for ((region_start) = find_first_bit(&(sub_granularity), (num_regions)),                         \
         (region_end) = find_next_zero_bit(&(sub_granularity), (num_regions), (region_start) + 1);   \
         (region_start) < (num_regions);                                                             \
         (region_start) = find_next_bit(&(sub_granularity), (num_regions), (region_end) + 1),        \
         (region_end) = find_next_zero_bit(&(sub_granularity), (num_regions), (region_start) + 1))


static bool are_reverse_mappings_on_single_block(const uvm_reverse_map_t *reverse_mappings, size_t num_reverse_mappings)
{
    size_t index;
    uvm_va_block_t *prev_va_block = NULL;

    for (index = 0; index < num_reverse_mappings; ++index) {
        uvm_va_block_t *va_block = reverse_mappings[index].va_block;
        UVM_ASSERT(va_block);

        if (prev_va_block && prev_va_block != va_block)
            return false;

        prev_va_block = va_block;
    }

    return true;
}

// Service the given translation range. It will return the count of the reverse
// mappings found during servicing in num_reverse_mappings, even if the function
// doesn't return NV_OK.
static NV_STATUS service_phys_notification_translation(uvm_gpu_t *gpu,
                                                       uvm_gpu_t *resident_gpu,
                                                       uvm_access_counter_service_batch_context_t *batch_context,
                                                       const uvm_gpu_access_counter_type_config_t *config,
                                                       const uvm_access_counter_buffer_entry_t *current_entry,
                                                       NvU64 address,
                                                       unsigned long sub_granularity,
                                                       size_t *num_reverse_mappings,
                                                       NvU32 *out_flags)
{
    NV_STATUS status;
    NvU32 region_start, region_end;

    *num_reverse_mappings = 0;

    // Get the reverse_map translations for all the regions set in the
    // sub_granularity field of the counter.
    for_each_sub_granularity_region(region_start,
                                    region_end,
                                    sub_granularity,
                                    config->sub_granularity_regions_per_translation) {
        NvU64 local_address = address + region_start * config->sub_granularity_region_size;
        NvU32 local_translation_size = (region_end - region_start) * config->sub_granularity_region_size;
        uvm_reverse_map_t *local_reverse_mappings = batch_context->phys.translations + *num_reverse_mappings;

        // Obtain the virtual addresses of the pages within the reported
        // DMA range
        if (resident_gpu) {
            *num_reverse_mappings += uvm_pmm_gpu_phys_to_virt(&resident_gpu->pmm,
                                                              local_address,
                                                              local_translation_size,
                                                              local_reverse_mappings);
        }
        else {
            *num_reverse_mappings += uvm_pmm_sysmem_mappings_dma_to_virt(&gpu->pmm_reverse_sysmem_mappings,
                                                                         local_address,
                                                                         local_translation_size,
                                                                         local_reverse_mappings,
                                                                         local_translation_size / PAGE_SIZE);
        }
    }

    if (*num_reverse_mappings == 0)
        return NV_OK;

    // Service all the translations
    if (are_reverse_mappings_on_single_block(batch_context->phys.translations, *num_reverse_mappings)) {
        status = service_phys_single_va_block(gpu,
                                              batch_context,
                                              current_entry,
                                              batch_context->phys.translations,
                                              *num_reverse_mappings,
                                              out_flags);
    }
    else {
        status = service_phys_va_blocks(gpu,
                                        batch_context,
                                        current_entry,
                                        batch_context->phys.translations,
                                        *num_reverse_mappings,
                                        out_flags);
    }

    return status;
}

static NV_STATUS service_phys_notification(uvm_gpu_t *gpu,
                                           uvm_access_counter_service_batch_context_t *batch_context,
                                           const uvm_access_counter_buffer_entry_t *current_entry,
                                           NvU32 *out_flags)
{
    NvU64 address;
    NvU64 translation_index;
    uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
    uvm_access_counter_type_t counter_type = current_entry->counter_type;
    const uvm_gpu_access_counter_type_config_t *config = get_config_for_type(access_counters, counter_type);
    unsigned long sub_granularity;
    size_t total_reverse_mappings = 0;
    uvm_gpu_t *resident_gpu = NULL;
    NV_STATUS status = NV_OK;
    NvU32 flags = 0;

    address = current_entry->address.address;
    UVM_ASSERT(address % config->translation_size == 0);
    sub_granularity = current_entry->sub_granularity;

    if (config->rm.granularity == UVM_ACCESS_COUNTER_GRANULARITY_64K)
        sub_granularity = 1;

    if (UVM_ID_IS_GPU(current_entry->physical_info.resident_id)) {
        resident_gpu = uvm_gpu_get_by_processor_id(current_entry->physical_info.resident_id);
        UVM_ASSERT(resident_gpu != NULL);

        if (gpu != resident_gpu && uvm_gpus_are_nvswitch_connected(gpu, resident_gpu)) {
            UVM_ASSERT(address >= resident_gpu->parent->nvswitch_info.fabric_memory_window_start);
            address -= resident_gpu->parent->nvswitch_info.fabric_memory_window_start;
        }

        // On P9 systems, the CPU accesses the reserved heap on vidmem via
        // coherent NVLINK mappings. This can trigger notifications that
        // fall outside of the allocatable address range. We just drop
        // them.
        if (address >= resident_gpu->mem_info.max_allocatable_address)
            return NV_OK;
    }

    for (translation_index = 0; translation_index < config->translations_per_counter; ++translation_index) {
        size_t num_reverse_mappings;
        NvU32 out_flags_local = 0;
        status = service_phys_notification_translation(gpu,
                                                       resident_gpu,
                                                       batch_context,
                                                       config,
                                                       current_entry,
                                                       address,
                                                       sub_granularity,
                                                       &num_reverse_mappings,
                                                       &out_flags_local);
        total_reverse_mappings += num_reverse_mappings;

        UVM_ASSERT((out_flags_local & ~UVM_ACCESS_COUNTER_ACTION_CLEAR) == 0);
        flags |= out_flags_local;

        if (status != NV_OK)
            break;

        address += config->translation_size;
        sub_granularity = sub_granularity >> config->sub_granularity_regions_per_translation;
    }

    if (uvm_enable_builtin_tests)
        *out_flags |= ((total_reverse_mappings != 0) ? UVM_ACCESS_COUNTER_PHYS_ON_MANAGED : 0);

    if (status == NV_OK && (flags & UVM_ACCESS_COUNTER_ACTION_CLEAR))
        *out_flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;

    return status;
}

// TODO: Bug 2018899: Add statistics for dropped access counter notifications
static NV_STATUS service_phys_notifications(uvm_gpu_t *gpu,
                                            uvm_access_counter_service_batch_context_t *batch_context)
{
    NvU32 i;
    uvm_access_counter_buffer_entry_t **notifications = batch_context->phys.notifications;

    preprocess_phys_notifications(batch_context);

    for (i = 0; i < batch_context->phys.num_notifications; ++i) {
        NV_STATUS status;
        uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
        NvU32 flags = 0;

        if (!UVM_ID_IS_VALID(current_entry->physical_info.resident_id))
            continue;

        status = service_phys_notification(gpu, batch_context, current_entry, &flags);

        notify_tools_and_process_flags(gpu, &notifications[i], 1, flags);

        if (status != NV_OK)
            return status;
    }

    return NV_OK;
}

static NV_STATUS service_notification_va_block_helper(struct mm_struct *mm,
                                                      uvm_va_block_t *va_block,
                                                      uvm_processor_id_t processor,
                                                      uvm_access_counter_service_batch_context_t *batch_context)
{
    uvm_va_block_retry_t va_block_retry;
    uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;
    uvm_service_block_context_t *service_context = &batch_context->block_service_context;

    if (uvm_page_mask_empty(accessed_pages))
        return NV_OK;

    uvm_assert_mutex_locked(&va_block->lock);

    service_context->operation = UVM_SERVICE_OPERATION_ACCESS_COUNTERS;
    service_context->num_retries = 0;
    service_context->block_context.mm = mm;

    return UVM_VA_BLOCK_RETRY_LOCKED(va_block,
                                     &va_block_retry,
                                     service_va_block_locked(processor,
                                                             va_block,
                                                             &va_block_retry,
                                                             service_context,
                                                             accessed_pages));
}

static void expand_notification_block(uvm_gpu_va_space_t *gpu_va_space,
                                      uvm_va_block_t *va_block,
                                      uvm_page_mask_t *accessed_pages,
                                      const uvm_access_counter_buffer_entry_t *current_entry)
{
    NvU64 addr;
    NvU64 granularity = 0;
    uvm_gpu_t *resident_gpu = NULL;
    uvm_processor_id_t resident_id;
    uvm_page_index_t page_index;
    uvm_gpu_t *gpu = gpu_va_space->gpu;
    const uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
    const uvm_gpu_access_counter_type_config_t *config = get_config_for_type(access_counters,
                                                                             UVM_ACCESS_COUNTER_TYPE_MIMC);

    config_granularity_to_bytes(config->rm.granularity, &granularity);

    // Granularities other than 2MB can only be enabled by UVM tests. Do nothing
    // in that case.
    if (granularity != UVM_PAGE_SIZE_2M)
        return;

    addr = current_entry->address.address;

    uvm_assert_rwsem_locked(&gpu_va_space->va_space->lock);
    uvm_assert_mutex_locked(&va_block->lock);

    page_index = uvm_va_block_cpu_page_index(va_block, addr);

    resident_id = uvm_va_block_page_get_closest_resident(va_block, page_index, gpu->id);

    // resident_id might be invalid or might already be the same as the GPU
    // which received the notification if the memory was already migrated before
    // acquiring the locks either during the servicing of previous notifications
    // or during faults or because of explicit migrations or if the VA range was
    // freed after receiving the notification. Return NV_OK in such cases.
    if (!UVM_ID_IS_VALID(resident_id) || uvm_id_equal(resident_id, gpu->id))
        return;

    if (UVM_ID_IS_GPU(resident_id))
        resident_gpu = uvm_va_space_get_gpu(gpu_va_space->va_space, resident_id);

    if (uvm_va_block_get_physical_size(va_block, resident_id, page_index) != granularity) {
        uvm_page_mask_set(accessed_pages, page_index);
    }
    else {
        NvU32 region_start;
        NvU32 region_end;
        unsigned long sub_granularity = current_entry->sub_granularity;
        NvU32 num_regions = config->sub_granularity_regions_per_translation;
        NvU32 num_sub_pages = config->sub_granularity_region_size / PAGE_SIZE;
        uvm_page_mask_t *resident_mask = uvm_va_block_resident_mask_get(va_block, resident_id);

        UVM_ASSERT(num_sub_pages >= 1);

        // region_start and region_end refer to sub_granularity indices, not
        // page_indices.
        for_each_sub_granularity_region(region_start, region_end, sub_granularity, num_regions) {
            uvm_page_mask_region_fill(accessed_pages,
                                      uvm_va_block_region(region_start * num_sub_pages,
                                                          region_end * num_sub_pages));
        }

        // Remove pages in the va_block which are not resident on resident_id.
        // If the GPU is heavily accessing those pages, future access counter
        // migrations will migrate them to the GPU.
        uvm_page_mask_and(accessed_pages, accessed_pages, resident_mask);
    }
}

static NV_STATUS service_virt_notifications_in_block(uvm_gpu_va_space_t *gpu_va_space,
                                                     struct mm_struct *mm,
                                                     uvm_va_block_t *va_block,
                                                     uvm_access_counter_service_batch_context_t *batch_context,
                                                     NvU32 index,
                                                     NvU32 *out_index)
{
    NvU32 i;
    NvU32 flags = 0;
    NV_STATUS status = NV_OK;
    NV_STATUS flags_status;
    uvm_gpu_t *gpu = gpu_va_space->gpu;
    uvm_va_space_t *va_space = gpu_va_space->va_space;
    uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;
    uvm_access_counter_buffer_entry_t **notifications = batch_context->virt.notifications;

    UVM_ASSERT(va_block);
    UVM_ASSERT(index < batch_context->virt.num_notifications);

    uvm_assert_rwsem_locked(&va_space->lock);

    uvm_page_mask_zero(accessed_pages);

    uvm_mutex_lock(&va_block->lock);

    for (i = index; i < batch_context->virt.num_notifications; i++) {
        uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
        NvU64 address = current_entry->address.address;

        if ((current_entry->virtual_info.va_space == va_space) && (address <= va_block->end))
            expand_notification_block(gpu_va_space, va_block, accessed_pages, current_entry);
        else
            break;
    }

    *out_index = i;

    // Atleast one notification should have been processed.
    UVM_ASSERT(index < *out_index);

    status = service_notification_va_block_helper(mm, va_block, gpu->id, batch_context);

    uvm_mutex_unlock(&va_block->lock);

    if (status == NV_OK)
        flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;

    flags_status = notify_tools_and_process_flags(gpu, &notifications[index], *out_index - index, flags);

    if ((status == NV_OK) && (flags_status != NV_OK))
        status = flags_status;

    return status;
}

static NV_STATUS service_virt_notification_ats(uvm_gpu_va_space_t *gpu_va_space,
                                               struct mm_struct *mm,
                                               uvm_access_counter_service_batch_context_t *batch_context,
                                               NvU32 index,
                                               NvU32 *out_index)
{

    NvU32 i;
    NvU64 base;
    NvU64 end;
    NvU64 address;
    NvU32 flags = UVM_ACCESS_COUNTER_ACTION_CLEAR;
    NV_STATUS status = NV_OK;
    NV_STATUS flags_status;
    struct vm_area_struct *vma = NULL;
    uvm_gpu_t *gpu = gpu_va_space->gpu;
    uvm_va_space_t *va_space = gpu_va_space->va_space;
    uvm_ats_fault_context_t *ats_context = &batch_context->ats_context;
    uvm_access_counter_buffer_entry_t **notifications = batch_context->virt.notifications;

    UVM_ASSERT(index < batch_context->virt.num_notifications);

    uvm_assert_mmap_lock_locked(mm);
    uvm_assert_rwsem_locked(&va_space->lock);

    address = notifications[index]->address.address;

    vma = find_vma_intersection(mm, address, address + 1);
    if (!vma) {
        // Clear the notification entry to continue receiving access counter
        // notifications when a new VMA is allocated in this range.
        status = notify_tools_and_process_flags(gpu, &notifications[index], 1, flags);
        *out_index = index + 1;
        return status;
    }

    base = UVM_VA_BLOCK_ALIGN_DOWN(address);
    end = min(base + UVM_VA_BLOCK_SIZE, (NvU64)vma->vm_end);

    uvm_page_mask_zero(&ats_context->accessed_mask);

    for (i = index; i < batch_context->virt.num_notifications; i++) {
        uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
        address = current_entry->address.address;

        if ((current_entry->virtual_info.va_space == va_space) && (address < end))
            uvm_page_mask_set(&ats_context->accessed_mask, (address - base) / PAGE_SIZE);
        else
            break;
    }

    *out_index = i;

    // Atleast one notification should have been processed.
    UVM_ASSERT(index < *out_index);

    // TODO: Bug 2113632: [UVM] Don't clear access counters when the preferred
    //                    location is set
    // If no pages were actually migrated, don't clear the access counters.
    status = uvm_ats_service_access_counters(gpu_va_space, vma, base, ats_context);
    if (status != NV_OK)
        flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;

    flags_status = notify_tools_and_process_flags(gpu, &notifications[index], *out_index - index, flags);
    if ((status == NV_OK) && (flags_status != NV_OK))
        status = flags_status;

    return status;
}

static NV_STATUS service_virt_notifications_batch(uvm_gpu_va_space_t *gpu_va_space,
                                                  struct mm_struct *mm,
                                                  uvm_access_counter_service_batch_context_t *batch_context,
                                                  NvU32 index,
                                                  NvU32 *out_index)
{
    NV_STATUS status;
    uvm_va_range_t *va_range;
    uvm_va_space_t *va_space = gpu_va_space->va_space;
    uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[index];
    NvU64 address = current_entry->address.address;

    UVM_ASSERT(va_space);

    if (mm)
        uvm_assert_mmap_lock_locked(mm);

    uvm_assert_rwsem_locked(&va_space->lock);

    // Virtual address notifications are always 64K aligned
    UVM_ASSERT(IS_ALIGNED(address, UVM_PAGE_SIZE_64K));

    va_range = uvm_va_range_find(va_space, address);
    if (va_range) {
        // Avoid clearing the entry by default.
        NvU32 flags = 0;
        uvm_va_block_t *va_block = NULL;

        if (va_range->type == UVM_VA_RANGE_TYPE_MANAGED) {
            size_t index = uvm_va_range_block_index(va_range, address);

            va_block = uvm_va_range_block(va_range, index);

            // If the va_range is a managed range, the notification belongs to a
            // recently freed va_range if va_block is NULL. If va_block is not
            // NULL, service_virt_notifications_in_block will process flags.
            // Clear the notification entry to continue receiving notifications
            // when a new va_range is allocated in that region.
            flags = UVM_ACCESS_COUNTER_ACTION_CLEAR;
        }

        if (va_block) {
            status = service_virt_notifications_in_block(gpu_va_space, mm, va_block, batch_context, index, out_index);
        }
        else {
            status = notify_tools_and_process_flags(gpu_va_space->gpu, batch_context->virt.notifications, 1, flags);
            *out_index = index + 1;
        }
    }
    else if (uvm_ats_can_service_faults(gpu_va_space, mm)) {
        status = service_virt_notification_ats(gpu_va_space, mm, batch_context, index, out_index);
    }
    else {
        NvU32 flags;
        uvm_va_block_t *va_block = NULL;

        status = uvm_hmm_va_block_find(va_space, address, &va_block);

        // TODO: Bug 4309292: [UVM][HMM] Re-enable access counter HMM block
        //                    migrations for virtual notifications
        //
        // - If the va_block is HMM, don't clear the notification since HMM
        // migrations are currently disabled.
        //
        // - If the va_block isn't HMM, the notification belongs to a recently
        // freed va_range. Clear the notification entry to continue receiving
        // notifications when a new va_range is allocated in this region.
        flags = va_block ? 0 : UVM_ACCESS_COUNTER_ACTION_CLEAR;

        UVM_ASSERT((status == NV_ERR_OBJECT_NOT_FOUND) ||
                   (status == NV_ERR_INVALID_ADDRESS)  ||
                   uvm_va_block_is_hmm(va_block));

        // Clobber status to continue processing the rest of the notifications
        // in the batch.
        status = notify_tools_and_process_flags(gpu_va_space->gpu, batch_context->virt.notifications, 1, flags);

        *out_index = index + 1;
    }

    return status;
}

static NV_STATUS service_virt_notifications(uvm_gpu_t *gpu,
                                            uvm_access_counter_service_batch_context_t *batch_context)
{
    NvU32 i = 0;
    NV_STATUS status = NV_OK;
    struct mm_struct *mm = NULL;
    uvm_va_space_t *va_space = NULL;
    uvm_va_space_t *prev_va_space = NULL;
    uvm_gpu_va_space_t *gpu_va_space = NULL;

    // TODO: Bug 4299018 : Add support for virtual access counter migrations on
    //                     4K page sizes.
    if (PAGE_SIZE == UVM_PAGE_SIZE_4K) {
        return notify_tools_and_process_flags(gpu,
                                              batch_context->virt.notifications,
                                              batch_context->virt.num_notifications,
                                              0);
    }

    preprocess_virt_notifications(gpu, batch_context);

    while (i < batch_context->virt.num_notifications) {
        uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[i];
        va_space = current_entry->virtual_info.va_space;

        if (va_space != prev_va_space) {

            // New va_space detected, drop locks of the old va_space.
            if (prev_va_space) {
                uvm_va_space_up_read(prev_va_space);
                uvm_va_space_mm_release_unlock(prev_va_space, mm);

                mm = NULL;
                gpu_va_space = NULL;
            }

            // Acquire locks for the new va_space.
            if (va_space) {
                mm = uvm_va_space_mm_retain_lock(va_space);
                uvm_va_space_down_read(va_space);

                gpu_va_space = uvm_gpu_va_space_get_by_parent_gpu(va_space, gpu->parent);
            }

            prev_va_space = va_space;
        }

        if (va_space && gpu_va_space && uvm_va_space_has_access_counter_migrations(va_space)) {
            status = service_virt_notifications_batch(gpu_va_space, mm, batch_context, i, &i);
        }
        else {
            status = notify_tools_and_process_flags(gpu, &batch_context->virt.notifications[i], 1, 0);
            i++;
        }

        if (status != NV_OK)
            break;
    }

    if (va_space) {
        uvm_va_space_up_read(va_space);
        uvm_va_space_mm_release_unlock(va_space, mm);
    }

    return status;
}


void uvm_gpu_service_access_counters(uvm_gpu_t *gpu)
{
    NV_STATUS status = NV_OK;
    uvm_access_counter_service_batch_context_t *batch_context = &gpu->parent->access_counter_buffer_info.batch_service_context;

    UVM_ASSERT(gpu->parent->access_counters_supported);

    if (gpu->parent->access_counter_buffer_info.notifications_ignored_count > 0)
        return;

    while (1) {
        batch_context->num_cached_notifications = fetch_access_counter_buffer_entries(gpu,
                                                                                      batch_context,
                                                                                      NOTIFICATION_FETCH_MODE_BATCH_READY);
        if (batch_context->num_cached_notifications == 0)
            break;

        ++batch_context->batch_id;

        status = service_virt_notifications(gpu, batch_context);
        if (status != NV_OK)
            break;

        status = service_phys_notifications(gpu, batch_context);
        if (status != NV_OK)
            break;
    }

    if (status != NV_OK) {
        UVM_DBG_PRINT("Error %s servicing access counter notifications on GPU: %s\n",
                      nvstatusToString(status),
                      uvm_gpu_name(gpu));
    }
}

static const NvU32 g_uvm_access_counters_threshold_max = (1 << 15) - 1;

static NV_STATUS access_counters_config_from_test_params(const UVM_TEST_RECONFIGURE_ACCESS_COUNTERS_PARAMS *params,
                                                         UvmGpuAccessCntrConfig *config)
{
    NvU64 tracking_size;
    memset(config, 0, sizeof(*config));

    if (params->threshold == 0 || params->threshold > g_uvm_access_counters_threshold_max)
        return NV_ERR_INVALID_ARGUMENT;

    if (config_granularity_to_bytes(params->mimc_granularity, &tracking_size) != NV_OK)
        return NV_ERR_INVALID_ARGUMENT;

    if (config_granularity_to_bytes(params->momc_granularity, &tracking_size) != NV_OK)
        return NV_ERR_INVALID_ARGUMENT;

    // Since values for granularity/use limit are shared between tests and
    // nv_uvm_types.h, the value will be checked in the call to
    // nvUvmInterfaceEnableAccessCntr
    config->mimcGranularity = params->mimc_granularity;
    config->momcGranularity = params->momc_granularity;

    config->mimcUseLimit = params->mimc_use_limit;
    config->momcUseLimit = params->momc_use_limit;

    config->threshold = params->threshold;

    return NV_OK;
}

bool uvm_va_space_has_access_counter_migrations(uvm_va_space_t *va_space)
{
    va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get(va_space);

    return atomic_read(&va_space_access_counters->params.enable_mimc_migrations);
}

NV_STATUS uvm_perf_access_counters_init(void)
{
    uvm_perf_module_init("perf_access_counters",
                         UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS,
                         g_callbacks_access_counters,
                         ARRAY_SIZE(g_callbacks_access_counters),
                         &g_module_access_counters);

    return NV_OK;
}

void uvm_perf_access_counters_exit(void)
{
}

NV_STATUS uvm_perf_access_counters_load(uvm_va_space_t *va_space)
{
    va_space_access_counters_info_t *va_space_access_counters;
    NV_STATUS status;

    status = uvm_perf_module_load(&g_module_access_counters, va_space);
    if (status != NV_OK)
        return status;

    va_space_access_counters = va_space_access_counters_info_create(va_space);
    if (!va_space_access_counters)
        return NV_ERR_NO_MEMORY;

    return NV_OK;
}

void uvm_perf_access_counters_unload(uvm_va_space_t *va_space)
{
    uvm_perf_module_unload(&g_module_access_counters, va_space);

    va_space_access_counters_info_destroy(va_space);
}

NV_STATUS uvm_test_access_counters_enabled_by_default(UVM_TEST_ACCESS_COUNTERS_ENABLED_BY_DEFAULT_PARAMS *params,
                                                      struct file *filp)
{
    uvm_va_space_t *va_space = uvm_va_space_get(filp);
    uvm_gpu_t *gpu = NULL;

    gpu = uvm_va_space_retain_gpu_by_uuid(va_space, &params->gpu_uuid);
    if (!gpu)
        return NV_ERR_INVALID_DEVICE;

    params->enabled = uvm_gpu_access_counters_required(gpu->parent);

    uvm_gpu_release(gpu);

    return NV_OK;
}

NV_STATUS uvm_test_reconfigure_access_counters(UVM_TEST_RECONFIGURE_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
    NV_STATUS status = NV_OK;
    uvm_gpu_t *gpu = NULL;
    UvmGpuAccessCntrConfig config = {0};
    va_space_access_counters_info_t *va_space_access_counters;
    uvm_va_space_t *va_space_reconfiguration_owner;
    uvm_va_space_t *va_space = uvm_va_space_get(filp);

    status = access_counters_config_from_test_params(params, &config);
    if (status != NV_OK)
        return status;

    gpu = uvm_va_space_retain_gpu_by_uuid(va_space, &params->gpu_uuid);
    if (!gpu)
        return NV_ERR_INVALID_DEVICE;

    if (!gpu->parent->access_counters_supported) {
        status = NV_ERR_NOT_SUPPORTED;
        goto exit_release_gpu;
    }

    // ISR lock ensures that we own GET/PUT registers. It disables interrupts
    // and ensures that no other thread (nor the top half) will be able to
    // re-enable interrupts during reconfiguration.
    uvm_gpu_access_counters_isr_lock(gpu->parent);

    uvm_va_space_down_read_rm(va_space);

    if (!uvm_processor_mask_test(&va_space->registered_gpus, gpu->id)) {
        status = NV_ERR_INVALID_STATE;
        goto exit_isr_unlock;
    }

    // Unregistration already started. Fail to avoid an interleaving in which
    // access counters end up been enabled on an unregistered GPU:
    // (thread 0) uvm_va_space_unregister_gpu disables access counters
    // (thread 1) assuming no VA space lock is held yet by the unregistration,
    //            this function enables access counters and runs to completion,
    //            returning NV_OK
    // (thread 0) uvm_va_space_unregister_gpu takes the VA space lock and
    //            completes the unregistration
    if (uvm_processor_mask_test(&va_space->gpu_unregister_in_progress, gpu->id)) {
        status = NV_ERR_INVALID_STATE;
        goto exit_isr_unlock;
    }

    va_space_access_counters = va_space_access_counters_info_get(va_space);

    va_space_reconfiguration_owner = gpu->parent->access_counter_buffer_info.reconfiguration_owner;

    // If any other VA space has reconfigured access counters on this GPU,
    // return error to avoid overwriting its configuration.
    if (va_space_reconfiguration_owner && (va_space_reconfiguration_owner != va_space)) {
        status = NV_ERR_INVALID_STATE;
        goto exit_isr_unlock;
    }

    if (!uvm_processor_mask_test(&va_space->access_counters_enabled_processors, gpu->id)) {
        status = gpu_access_counters_enable(gpu, &config);

        if (status == NV_OK)
            uvm_processor_mask_set_atomic(&va_space->access_counters_enabled_processors, gpu->id);
        else
            goto exit_isr_unlock;
    }

    UVM_ASSERT(gpu->parent->isr.access_counters.handling_ref_count > 0);

    // Disable counters, and renable with the new configuration.
    // Note that we are yielding ownership even when the access counters are
    // enabled in at least gpu. This inconsistent state is not visible to other
    // threads or VA spaces because of the ISR lock, and it is immediately
    // rectified by retaking ownership.
    access_counters_yield_ownership(gpu);
    status = access_counters_take_ownership(gpu, &config);

    // Retaking ownership failed, so RM owns the interrupt.
    if (status != NV_OK) {
        // The state of any other VA space with access counters enabled is
        // corrupt
        // TODO: Bug 2419290: Fail reconfiguration if access
        // counters are enabled on a different VA space.
        if (gpu->parent->isr.access_counters.handling_ref_count > 1) {
            UVM_ASSERT_MSG(status == NV_OK,
                           "Access counters interrupt still owned by RM, other VA spaces may experience failures");
        }

        uvm_processor_mask_clear_atomic(&va_space->access_counters_enabled_processors, gpu->id);
        gpu_access_counters_disable(gpu);
        goto exit_isr_unlock;
    }

    gpu->parent->access_counter_buffer_info.reconfiguration_owner = va_space;

    uvm_va_space_up_read_rm(va_space);
    uvm_va_space_down_write(va_space);
    atomic_set(&va_space_access_counters->params.enable_mimc_migrations, !!params->enable_mimc_migrations);
    atomic_set(&va_space_access_counters->params.enable_momc_migrations, !!params->enable_momc_migrations);
    uvm_va_space_up_write(va_space);

exit_isr_unlock:
    if (status != NV_OK)
        uvm_va_space_up_read_rm(va_space);

    uvm_gpu_access_counters_isr_unlock(gpu->parent);

exit_release_gpu:
    uvm_gpu_release(gpu);

    return status;
}

NV_STATUS uvm_test_reset_access_counters(UVM_TEST_RESET_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
    NV_STATUS status = NV_OK;
    uvm_gpu_t *gpu = NULL;
    uvm_access_counter_buffer_info_t *access_counters;
    uvm_va_space_t *va_space = uvm_va_space_get(filp);

    if (params->mode >= UVM_TEST_ACCESS_COUNTER_RESET_MODE_MAX)
        return NV_ERR_INVALID_ARGUMENT;

    if (params->mode == UVM_TEST_ACCESS_COUNTER_RESET_MODE_TARGETED &&
        params->counter_type >= UVM_TEST_ACCESS_COUNTER_TYPE_MAX) {
        return NV_ERR_INVALID_ARGUMENT;
    }

    gpu = uvm_va_space_retain_gpu_by_uuid(va_space, &params->gpu_uuid);
    if (!gpu)
        return NV_ERR_INVALID_DEVICE;

    if (!gpu->parent->access_counters_supported) {
        status = NV_ERR_NOT_SUPPORTED;
        goto exit_release_gpu;
    }

    uvm_gpu_access_counters_isr_lock(gpu->parent);

    // Access counters not enabled. Nothing to reset
    if (gpu->parent->isr.access_counters.handling_ref_count == 0)
        goto exit_isr_unlock;

    access_counters = &gpu->parent->access_counter_buffer_info;

    if (params->mode == UVM_TEST_ACCESS_COUNTER_RESET_MODE_ALL) {
        status = access_counter_clear_all(gpu);
    }
    else {
        uvm_access_counter_buffer_entry_t entry = { 0 };
        uvm_access_counter_buffer_entry_t *notification = &entry;

        if (params->counter_type == UVM_TEST_ACCESS_COUNTER_TYPE_MIMC)
            entry.counter_type = UVM_ACCESS_COUNTER_TYPE_MIMC;
        else
            entry.counter_type = UVM_ACCESS_COUNTER_TYPE_MOMC;

        entry.bank = params->bank;
        entry.tag = params->tag;

        status = access_counter_clear_notifications(gpu, &notification, 1);
    }

    if (status == NV_OK)
        status = uvm_tracker_wait(&access_counters->clear_tracker);

exit_isr_unlock:
    uvm_gpu_access_counters_isr_unlock(gpu->parent);

exit_release_gpu:
    uvm_gpu_release(gpu);

    return status;
}

void uvm_gpu_access_counters_set_ignore(uvm_gpu_t *gpu, bool do_ignore)
{
    bool change_intr_state = false;

    if (!gpu->parent->access_counters_supported)
        return;

    uvm_gpu_access_counters_isr_lock(gpu->parent);

    if (do_ignore) {
        if (gpu->parent->access_counter_buffer_info.notifications_ignored_count++ == 0)
            change_intr_state = true;
    }
    else {
        UVM_ASSERT(gpu->parent->access_counter_buffer_info.notifications_ignored_count >= 1);
        if (--gpu->parent->access_counter_buffer_info.notifications_ignored_count == 0)
            change_intr_state = true;
    }

    if (change_intr_state) {
        // We need to avoid an interrupt storm while ignoring notifications. We
        // just disable the interrupt.
        uvm_spin_lock_irqsave(&gpu->parent->isr.interrupts_lock);

        if (do_ignore)
            uvm_gpu_access_counters_intr_disable(gpu->parent);
        else
            uvm_gpu_access_counters_intr_enable(gpu->parent);

        uvm_spin_unlock_irqrestore(&gpu->parent->isr.interrupts_lock);

        if (!do_ignore)
            access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_CACHED_PUT);
    }

    uvm_gpu_access_counters_isr_unlock(gpu->parent);
}

NV_STATUS uvm_test_set_ignore_access_counters(UVM_TEST_SET_IGNORE_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
    uvm_va_space_t *va_space = uvm_va_space_get(filp);
    NV_STATUS status = NV_OK;
    uvm_gpu_t *gpu = NULL;

    gpu = uvm_va_space_retain_gpu_by_uuid(va_space, &params->gpu_uuid);
    if (!gpu)
        return NV_ERR_INVALID_DEVICE;

    if (gpu->parent->access_counters_supported)
        uvm_gpu_access_counters_set_ignore(gpu, params->ignore);
    else
        status = NV_ERR_NOT_SUPPORTED;

    uvm_gpu_release(gpu);
    return status;
}