1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
|
/*******************************************************************************
Copyright (c) 2017-2022 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "linux/sort.h"
#include "nv_uvm_interface.h"
#include "uvm_gpu_access_counters.h"
#include "uvm_global.h"
#include "uvm_gpu.h"
#include "uvm_hal.h"
#include "uvm_kvmalloc.h"
#include "uvm_tools.h"
#include "uvm_va_block.h"
#include "uvm_va_range.h"
#include "uvm_va_space_mm.h"
#include "uvm_pmm_sysmem.h"
#include "uvm_perf_module.h"
#include "uvm_ats.h"
#include "uvm_ats_faults.h"
#define UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN 1
#define UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_DEFAULT 256
#define UVM_PERF_ACCESS_COUNTER_GRANULARITY UVM_ACCESS_COUNTER_GRANULARITY_2M
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN 1
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX ((1 << 16) - 1)
#define UVM_PERF_ACCESS_COUNTER_THRESHOLD_DEFAULT 256
#define UVM_ACCESS_COUNTER_ACTION_CLEAR 0x1
#define UVM_ACCESS_COUNTER_PHYS_ON_MANAGED 0x2
// Each page in a tracked physical range may belong to a different VA Block. We
// preallocate an array of reverse map translations. However, access counter
// granularity can be set to up to 16G, which would require an array too large
// to hold all possible translations. Thus, we set an upper bound for reverse
// map translations, and we perform as many translation requests as needed to
// cover the whole tracked range.
#define UVM_MAX_TRANSLATION_SIZE (2 * 1024 * 1024ULL)
#define UVM_SUB_GRANULARITY_REGIONS 32
static unsigned g_uvm_access_counter_threshold;
// Per-VA space access counters information
typedef struct
{
// VA space-specific configuration settings. These override the global
// settings
struct
{
atomic_t enable_mimc_migrations;
atomic_t enable_momc_migrations;
} params;
uvm_va_space_t *va_space;
} va_space_access_counters_info_t;
// Enable/disable access-counter-guided migrations
//
static int uvm_perf_access_counter_mimc_migration_enable = -1;
static int uvm_perf_access_counter_momc_migration_enable = -1;
// Number of entries that are fetched from the GPU access counter notification
// buffer and serviced in batch
static unsigned uvm_perf_access_counter_batch_count = UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_DEFAULT;
// See module param documentation below
static unsigned uvm_perf_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_DEFAULT;
// Module parameters for the tunables
module_param(uvm_perf_access_counter_mimc_migration_enable, int, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_mimc_migration_enable,
"Whether MIMC access counters will trigger migrations."
"Valid values: <= -1 (default policy), 0 (off), >= 1 (on)");
module_param(uvm_perf_access_counter_momc_migration_enable, int, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_momc_migration_enable,
"Whether MOMC access counters will trigger migrations."
"Valid values: <= -1 (default policy), 0 (off), >= 1 (on)");
module_param(uvm_perf_access_counter_batch_count, uint, S_IRUGO);
module_param(uvm_perf_access_counter_threshold, uint, S_IRUGO);
MODULE_PARM_DESC(uvm_perf_access_counter_threshold,
"Number of remote accesses on a region required to trigger a notification."
"Valid values: [1, 65535]");
static void access_counter_buffer_flush_locked(uvm_gpu_t *gpu, uvm_gpu_buffer_flush_mode_t flush_mode);
static uvm_perf_module_event_callback_desc_t g_callbacks_access_counters[] = {};
// Performance heuristics module for access_counters
static uvm_perf_module_t g_module_access_counters;
// Get the access counters tracking struct for the given VA space if it exists.
// This information is allocated at VA space creation and freed during VA space
// destruction.
static va_space_access_counters_info_t *va_space_access_counters_info_get_or_null(uvm_va_space_t *va_space)
{
return uvm_perf_module_type_data(va_space->perf_modules_data, UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);
}
// Get the access counters tracking struct for the given VA space. It asserts
// that the information has been previously created.
static va_space_access_counters_info_t *va_space_access_counters_info_get(uvm_va_space_t *va_space)
{
va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get_or_null(va_space);
UVM_ASSERT(va_space_access_counters);
return va_space_access_counters;
}
// Whether access counter migrations are enabled or not. The policy is as
// follows:
// - MIMC migrations are disabled by default on all non-ATS systems.
// - MOMC migrations are disabled by default on all systems
// - Users can override this policy by specifying on/off
static bool is_migration_enabled(uvm_access_counter_type_t type)
{
int val;
if (type == UVM_ACCESS_COUNTER_TYPE_MIMC) {
val = uvm_perf_access_counter_mimc_migration_enable;
}
else {
val = uvm_perf_access_counter_momc_migration_enable;
UVM_ASSERT(type == UVM_ACCESS_COUNTER_TYPE_MOMC);
}
if (val == 0)
return false;
else if (val > 0)
return true;
if (type == UVM_ACCESS_COUNTER_TYPE_MOMC)
return false;
if (UVM_ATS_SUPPORTED())
return g_uvm_global.ats.supported;
return false;
}
// Create the access counters tracking struct for the given VA space
//
// VA space lock needs to be held in write mode
static va_space_access_counters_info_t *va_space_access_counters_info_create(uvm_va_space_t *va_space)
{
va_space_access_counters_info_t *va_space_access_counters;
uvm_assert_rwsem_locked_write(&va_space->lock);
UVM_ASSERT(va_space_access_counters_info_get_or_null(va_space) == NULL);
va_space_access_counters = uvm_kvmalloc_zero(sizeof(*va_space_access_counters));
if (va_space_access_counters) {
uvm_perf_module_type_set_data(va_space->perf_modules_data,
va_space_access_counters,
UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);
// Snap the access_counters parameters so that they can be tuned per VA space
atomic_set(&va_space_access_counters->params.enable_mimc_migrations,
is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MIMC));
atomic_set(&va_space_access_counters->params.enable_momc_migrations,
is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MOMC));
va_space_access_counters->va_space = va_space;
}
return va_space_access_counters;
}
// Destroy the access counters tracking struct for the given VA space
//
// VA space lock needs to be in write mode
static void va_space_access_counters_info_destroy(uvm_va_space_t *va_space)
{
va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get_or_null(va_space);
uvm_assert_rwsem_locked_write(&va_space->lock);
if (va_space_access_counters) {
uvm_perf_module_type_unset_data(va_space->perf_modules_data, UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS);
uvm_kvfree(va_space_access_counters);
}
}
static NV_STATUS config_granularity_to_bytes(UVM_ACCESS_COUNTER_GRANULARITY granularity, NvU64 *bytes)
{
switch (granularity) {
case UVM_ACCESS_COUNTER_GRANULARITY_64K:
*bytes = 64 * 1024ULL;
break;
case UVM_ACCESS_COUNTER_GRANULARITY_2M:
*bytes = 2 * UVM_SIZE_1MB;
break;
case UVM_ACCESS_COUNTER_GRANULARITY_16M:
*bytes = 16 * UVM_SIZE_1MB;
break;
case UVM_ACCESS_COUNTER_GRANULARITY_16G:
*bytes = 16 * UVM_SIZE_1GB;
break;
default:
return NV_ERR_INVALID_ARGUMENT;
}
return NV_OK;
}
// Clear the access counter notifications and add it to the per-GPU clear
// tracker.
static NV_STATUS access_counter_clear_notifications(uvm_gpu_t *gpu,
uvm_access_counter_buffer_entry_t **notification_start,
NvU32 num_notifications)
{
NvU32 i;
NV_STATUS status;
uvm_push_t push;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
status = uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_MEMOPS, &push, "Clear access counter batch");
if (status != NV_OK) {
UVM_ERR_PRINT("Error creating push to clear access counters: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
for (i = 0; i < num_notifications; i++)
gpu->parent->host_hal->access_counter_clear_targeted(&push, notification_start[i]);
uvm_push_end(&push);
uvm_tracker_remove_completed(&access_counters->clear_tracker);
return uvm_tracker_add_push_safe(&access_counters->clear_tracker, &push);
}
// Clear all access counters and add the operation to the per-GPU clear tracker
static NV_STATUS access_counter_clear_all(uvm_gpu_t *gpu)
{
NV_STATUS status;
uvm_push_t push;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
status = uvm_push_begin(gpu->channel_manager,
UVM_CHANNEL_TYPE_MEMOPS,
&push,
"Clear access counter: all");
if (status != NV_OK) {
UVM_ERR_PRINT("Error creating push to clear access counters: %s, GPU %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
gpu->parent->host_hal->access_counter_clear_all(&push);
uvm_push_end(&push);
uvm_tracker_remove_completed(&access_counters->clear_tracker);
return uvm_tracker_add_push_safe(&access_counters->clear_tracker, &push);
}
static const uvm_gpu_access_counter_type_config_t *
get_config_for_type(const uvm_access_counter_buffer_info_t *access_counters, uvm_access_counter_type_t counter_type)
{
return counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? &(access_counters)->current_config.mimc :
&(access_counters)->current_config.momc;
}
bool uvm_gpu_access_counters_pending(uvm_parent_gpu_t *parent_gpu)
{
UVM_ASSERT(parent_gpu->access_counters_supported);
// Fast path 1: we left some notifications unserviced in the buffer in the last pass
if (parent_gpu->access_counter_buffer_info.cached_get != parent_gpu->access_counter_buffer_info.cached_put)
return true;
// Fast path 2: read the valid bit of the notification buffer entry pointed by the cached get pointer
if (!parent_gpu->access_counter_buffer_hal->entry_is_valid(parent_gpu,
parent_gpu->access_counter_buffer_info.cached_get)) {
// Slow path: read the put pointer from the GPU register via BAR0 over PCIe
parent_gpu->access_counter_buffer_info.cached_put =
UVM_GPU_READ_ONCE(*parent_gpu->access_counter_buffer_info.rm_info.pAccessCntrBufferPut);
// No interrupt pending
if (parent_gpu->access_counter_buffer_info.cached_get == parent_gpu->access_counter_buffer_info.cached_put)
return false;
}
return true;
}
// Initialize the configuration and pre-compute some required values for the
// given access counter type
static void init_access_counter_types_config(const UvmGpuAccessCntrConfig *config,
uvm_access_counter_type_t counter_type,
uvm_gpu_access_counter_type_config_t *counter_type_config)
{
NV_STATUS status;
NvU64 tracking_size = 0;
UVM_ACCESS_COUNTER_GRANULARITY granularity = counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? config->mimcGranularity:
config->momcGranularity;
UVM_ACCESS_COUNTER_USE_LIMIT use_limit = counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC? config->mimcUseLimit:
config->momcUseLimit;
counter_type_config->rm.granularity = granularity;
counter_type_config->rm.use_limit = use_limit;
// Precompute the maximum size to use in reverse map translations and the
// number of translations that are required per access counter notification.
status = config_granularity_to_bytes(granularity, &tracking_size);
UVM_ASSERT(status == NV_OK);
// sub_granularity field is only filled for tracking granularities larger
// than 64K
if (granularity == UVM_ACCESS_COUNTER_GRANULARITY_64K)
counter_type_config->sub_granularity_region_size = tracking_size;
else
counter_type_config->sub_granularity_region_size = tracking_size / UVM_SUB_GRANULARITY_REGIONS;
counter_type_config->translation_size = min(UVM_MAX_TRANSLATION_SIZE, tracking_size);
counter_type_config->translations_per_counter =
max(counter_type_config->translation_size / UVM_MAX_TRANSLATION_SIZE, 1ULL);
counter_type_config->sub_granularity_regions_per_translation =
max(counter_type_config->translation_size / counter_type_config->sub_granularity_region_size, 1ULL);
UVM_ASSERT(counter_type_config->sub_granularity_regions_per_translation <= UVM_SUB_GRANULARITY_REGIONS);
}
NV_STATUS uvm_gpu_init_access_counters(uvm_parent_gpu_t *parent_gpu)
{
NV_STATUS status = NV_OK;
uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;
uvm_access_counter_service_batch_context_t *batch_context = &access_counters->batch_service_context;
NvU64 granularity_bytes = 0;
if (uvm_perf_access_counter_threshold < UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN) {
g_uvm_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_MIN;
pr_info("Value %u too small for uvm_perf_access_counter_threshold, using %u instead\n",
uvm_perf_access_counter_threshold,
g_uvm_access_counter_threshold);
}
else if (uvm_perf_access_counter_threshold > UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX) {
g_uvm_access_counter_threshold = UVM_PERF_ACCESS_COUNTER_THRESHOLD_MAX;
pr_info("Value %u too large for uvm_perf_access_counter_threshold, using %u instead\n",
uvm_perf_access_counter_threshold,
g_uvm_access_counter_threshold);
}
else {
g_uvm_access_counter_threshold = uvm_perf_access_counter_threshold;
}
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
UVM_ASSERT(parent_gpu->access_counter_buffer_hal != NULL);
status = uvm_rm_locked_call(nvUvmInterfaceInitAccessCntrInfo(parent_gpu->rm_device,
&access_counters->rm_info,
0));
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init notify buffer info from RM: %s, GPU %s\n",
nvstatusToString(status),
parent_gpu->name);
// nvUvmInterfaceInitAccessCntrInfo may leave fields in rm_info
// populated when it returns an error. Set the buffer handle to zero as
// it is used by the deinitialization logic to determine if it was
// correctly initialized.
access_counters->rm_info.accessCntrBufferHandle = 0;
goto fail;
}
UVM_ASSERT(access_counters->rm_info.bufferSize %
parent_gpu->access_counter_buffer_hal->entry_size(parent_gpu) == 0);
status = config_granularity_to_bytes(UVM_PERF_ACCESS_COUNTER_GRANULARITY, &granularity_bytes);
UVM_ASSERT(status == NV_OK);
if (granularity_bytes > UVM_MAX_TRANSLATION_SIZE)
UVM_ASSERT(granularity_bytes % UVM_MAX_TRANSLATION_SIZE == 0);
parent_gpu->access_counter_buffer_info.notifications_ignored_count = 0;
parent_gpu->access_counter_buffer_info.reconfiguration_owner = NULL;
uvm_tracker_init(&access_counters->clear_tracker);
access_counters->max_notifications = parent_gpu->access_counter_buffer_info.rm_info.bufferSize /
parent_gpu->access_counter_buffer_hal->entry_size(parent_gpu);
// Check provided module parameter value
access_counters->max_batch_size = max(uvm_perf_access_counter_batch_count,
(NvU32)UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN);
access_counters->max_batch_size = min(access_counters->max_batch_size,
access_counters->max_notifications);
if (access_counters->max_batch_size != uvm_perf_access_counter_batch_count) {
pr_info("Invalid uvm_perf_access_counter_batch_count value on GPU %s: %u. Valid range [%u:%u] Using %u instead\n",
parent_gpu->name,
uvm_perf_access_counter_batch_count,
UVM_PERF_ACCESS_COUNTER_BATCH_COUNT_MIN,
access_counters->max_notifications,
access_counters->max_batch_size);
}
batch_context->notification_cache = uvm_kvmalloc_zero(access_counters->max_notifications *
sizeof(*batch_context->notification_cache));
if (!batch_context->notification_cache) {
status = NV_ERR_NO_MEMORY;
goto fail;
}
batch_context->virt.notifications = uvm_kvmalloc_zero(access_counters->max_notifications *
sizeof(*batch_context->virt.notifications));
if (!batch_context->virt.notifications) {
status = NV_ERR_NO_MEMORY;
goto fail;
}
batch_context->phys.notifications = uvm_kvmalloc_zero(access_counters->max_notifications *
sizeof(*batch_context->phys.notifications));
if (!batch_context->phys.notifications) {
status = NV_ERR_NO_MEMORY;
goto fail;
}
batch_context->phys.translations = uvm_kvmalloc_zero((UVM_MAX_TRANSLATION_SIZE / PAGE_SIZE) *
sizeof(*batch_context->phys.translations));
if (!batch_context->phys.translations) {
status = NV_ERR_NO_MEMORY;
goto fail;
}
return NV_OK;
fail:
uvm_gpu_deinit_access_counters(parent_gpu);
return status;
}
void uvm_gpu_deinit_access_counters(uvm_parent_gpu_t *parent_gpu)
{
uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;
uvm_access_counter_service_batch_context_t *batch_context = &access_counters->batch_service_context;
UVM_ASSERT(parent_gpu->isr.access_counters.handling_ref_count == 0);
if (access_counters->rm_info.accessCntrBufferHandle) {
NV_STATUS status = uvm_rm_locked_call(nvUvmInterfaceDestroyAccessCntrInfo(parent_gpu->rm_device,
&access_counters->rm_info));
UVM_ASSERT(status == NV_OK);
access_counters->rm_info.accessCntrBufferHandle = 0;
uvm_tracker_deinit(&access_counters->clear_tracker);
}
uvm_kvfree(batch_context->notification_cache);
uvm_kvfree(batch_context->virt.notifications);
uvm_kvfree(batch_context->phys.notifications);
uvm_kvfree(batch_context->phys.translations);
batch_context->notification_cache = NULL;
batch_context->virt.notifications = NULL;
batch_context->phys.notifications = NULL;
batch_context->phys.translations = NULL;
}
bool uvm_gpu_access_counters_required(const uvm_parent_gpu_t *parent_gpu)
{
if (!parent_gpu->access_counters_supported)
return false;
if (parent_gpu->rm_info.isSimulated)
return true;
return is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MIMC) || is_migration_enabled(UVM_ACCESS_COUNTER_TYPE_MOMC);
}
// This function enables access counters with the given configuration and takes
// ownership from RM. The function also stores the new configuration within the
// uvm_gpu_t struct.
static NV_STATUS access_counters_take_ownership(uvm_gpu_t *gpu, UvmGpuAccessCntrConfig *config)
{
NV_STATUS status, disable_status;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
UVM_ASSERT(gpu->parent->access_counters_supported);
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
status = uvm_rm_locked_call(nvUvmInterfaceEnableAccessCntr(gpu->parent->rm_device,
&access_counters->rm_info,
config));
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to enable access counter notification from RM: %s, GPU %s\n",
nvstatusToString(status), uvm_gpu_name(gpu));
return status;
}
status = access_counter_clear_all(gpu);
if (status != NV_OK)
goto error;
status = uvm_tracker_wait(&access_counters->clear_tracker);
if (status != NV_OK)
goto error;
// Read current get pointer as this might not be the first time we have
// taken control of the notify buffer since the GPU was initialized. Then
// flush old notifications. This will update the cached_put pointer.
access_counters->cached_get = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferGet);
access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT);
access_counters->current_config.threshold = config->threshold;
init_access_counter_types_config(config, UVM_ACCESS_COUNTER_TYPE_MIMC, &access_counters->current_config.mimc);
init_access_counter_types_config(config, UVM_ACCESS_COUNTER_TYPE_MOMC, &access_counters->current_config.momc);
return NV_OK;
error:
disable_status = uvm_rm_locked_call(nvUvmInterfaceDisableAccessCntr(gpu->parent->rm_device,
&access_counters->rm_info));
UVM_ASSERT(disable_status == NV_OK);
return status;
}
// If ownership is yielded as part of reconfiguration, the access counters
// handling refcount may not be 0
static void access_counters_yield_ownership(uvm_gpu_t *gpu)
{
NV_STATUS status;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
UVM_ASSERT(gpu->parent->access_counters_supported);
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
// Wait for any pending clear operation befor releasing ownership
status = uvm_tracker_wait(&access_counters->clear_tracker);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
status = uvm_rm_locked_call(nvUvmInterfaceDisableAccessCntr(gpu->parent->rm_device,
&access_counters->rm_info));
UVM_ASSERT(status == NV_OK);
}
// Increment the refcount of access counter enablement. If this is the first
// reference, enable the HW feature.
static NV_STATUS gpu_access_counters_enable(uvm_gpu_t *gpu, UvmGpuAccessCntrConfig *config)
{
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
UVM_ASSERT(gpu->parent->access_counters_supported);
UVM_ASSERT(gpu->parent->access_counter_buffer_info.rm_info.accessCntrBufferHandle);
// There cannot be a concurrent modification of the handling count, since
// the only two writes of that field happen in the enable/disable functions
// and those are protected by the access counters ISR lock.
if (gpu->parent->isr.access_counters.handling_ref_count == 0) {
NV_STATUS status = access_counters_take_ownership(gpu, config);
if (status != NV_OK)
return status;
}
++gpu->parent->isr.access_counters.handling_ref_count;
return NV_OK;
}
// Decrement the refcount of access counter enablement. If this is the last
// reference, disable the HW feature.
static void gpu_access_counters_disable(uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
UVM_ASSERT(gpu->parent->access_counters_supported);
UVM_ASSERT(gpu->parent->isr.access_counters.handling_ref_count > 0);
if (--gpu->parent->isr.access_counters.handling_ref_count == 0)
access_counters_yield_ownership(gpu);
}
// Invoked during registration of the GPU in the VA space
NV_STATUS uvm_gpu_access_counters_enable(uvm_gpu_t *gpu, uvm_va_space_t *va_space)
{
NV_STATUS status;
UVM_ASSERT(gpu->parent->access_counters_supported);
uvm_gpu_access_counters_isr_lock(gpu->parent);
if (uvm_processor_mask_test(&va_space->access_counters_enabled_processors, gpu->id)) {
status = NV_ERR_INVALID_DEVICE;
}
else {
UvmGpuAccessCntrConfig default_config =
{
.mimcGranularity = UVM_PERF_ACCESS_COUNTER_GRANULARITY,
.momcGranularity = UVM_PERF_ACCESS_COUNTER_GRANULARITY,
.mimcUseLimit = UVM_ACCESS_COUNTER_USE_LIMIT_FULL,
.momcUseLimit = UVM_ACCESS_COUNTER_USE_LIMIT_FULL,
.threshold = g_uvm_access_counter_threshold,
};
status = gpu_access_counters_enable(gpu, &default_config);
// No VA space lock is currently held, so the mask is atomically
// modified to protect from concurrent enablement of access counters in
// another GPU
if (status == NV_OK)
uvm_processor_mask_set_atomic(&va_space->access_counters_enabled_processors, gpu->id);
}
// If this is the first reference taken on access counters, dropping the
// ISR lock will enable interrupts.
uvm_gpu_access_counters_isr_unlock(gpu->parent);
return status;
}
void uvm_gpu_access_counters_disable(uvm_gpu_t *gpu, uvm_va_space_t *va_space)
{
UVM_ASSERT(gpu->parent->access_counters_supported);
uvm_gpu_access_counters_isr_lock(gpu->parent);
if (uvm_processor_mask_test_and_clear_atomic(&va_space->access_counters_enabled_processors, gpu->id)) {
gpu_access_counters_disable(gpu);
// If this is VA space reconfigured access counters, clear the
// ownership to allow for other processes to invoke the reconfiguration
if (gpu->parent->access_counter_buffer_info.reconfiguration_owner == va_space)
gpu->parent->access_counter_buffer_info.reconfiguration_owner = NULL;
}
uvm_gpu_access_counters_isr_unlock(gpu->parent);
}
static void write_get(uvm_parent_gpu_t *parent_gpu, NvU32 get)
{
uvm_access_counter_buffer_info_t *access_counters = &parent_gpu->access_counter_buffer_info;
UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.access_counters.service_lock));
// Write get on the GPU only if it's changed.
if (access_counters->cached_get == get)
return;
access_counters->cached_get = get;
// Update get pointer on the GPU
UVM_GPU_WRITE_ONCE(*access_counters->rm_info.pAccessCntrBufferGet, get);
}
static void access_counter_buffer_flush_locked(uvm_gpu_t *gpu, uvm_gpu_buffer_flush_mode_t flush_mode)
{
NvU32 get;
NvU32 put;
uvm_spin_loop_t spin;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
UVM_ASSERT(gpu->parent->access_counters_supported);
// Read PUT pointer from the GPU if requested
UVM_ASSERT(flush_mode != UVM_GPU_BUFFER_FLUSH_MODE_WAIT_UPDATE_PUT);
if (flush_mode == UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT)
access_counters->cached_put = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferPut);
get = access_counters->cached_get;
put = access_counters->cached_put;
while (get != put) {
// Wait until valid bit is set
UVM_SPIN_WHILE(!gpu->parent->access_counter_buffer_hal->entry_is_valid(gpu->parent, get), &spin) {
if (uvm_global_get_status() != NV_OK)
goto done;
}
gpu->parent->access_counter_buffer_hal->entry_clear_valid(gpu->parent, get);
++get;
if (get == access_counters->max_notifications)
get = 0;
}
done:
write_get(gpu->parent, get);
}
void uvm_gpu_access_counter_buffer_flush(uvm_gpu_t *gpu)
{
UVM_ASSERT(gpu->parent->access_counters_supported);
// Disables access counter interrupts and notification servicing
uvm_gpu_access_counters_isr_lock(gpu->parent);
if (gpu->parent->isr.access_counters.handling_ref_count > 0)
access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_UPDATE_PUT);
uvm_gpu_access_counters_isr_unlock(gpu->parent);
}
static inline int cmp_access_counter_instance_ptr(const uvm_access_counter_buffer_entry_t *a,
const uvm_access_counter_buffer_entry_t *b)
{
int result;
result = uvm_gpu_phys_addr_cmp(a->virtual_info.instance_ptr, b->virtual_info.instance_ptr);
// On Volta+ we need to sort by {instance_ptr + subctx_id} pair since it can
// map to a different VA space
if (result != 0)
return result;
return UVM_CMP_DEFAULT(a->virtual_info.ve_id, b->virtual_info.ve_id);
}
// Sort comparator for pointers to GVA access counter notification buffer
// entries that sorts by instance pointer
static int cmp_sort_virt_notifications_by_instance_ptr(const void *_a, const void *_b)
{
const uvm_access_counter_buffer_entry_t *a = *(const uvm_access_counter_buffer_entry_t **)_a;
const uvm_access_counter_buffer_entry_t *b = *(const uvm_access_counter_buffer_entry_t **)_b;
UVM_ASSERT(a->address.is_virtual);
UVM_ASSERT(b->address.is_virtual);
return cmp_access_counter_instance_ptr(a, b);
}
// Sort comparator for pointers to GVA access counter notification buffer
// entries that sorts by va_space, and fault address.
static int cmp_sort_virt_notifications_by_va_space_address(const void *_a, const void *_b)
{
const uvm_access_counter_buffer_entry_t **a = (const uvm_access_counter_buffer_entry_t **)_a;
const uvm_access_counter_buffer_entry_t **b = (const uvm_access_counter_buffer_entry_t **)_b;
int result;
result = UVM_CMP_DEFAULT((*a)->virtual_info.va_space, (*b)->virtual_info.va_space);
if (result != 0)
return result;
return UVM_CMP_DEFAULT((*a)->address.address, (*b)->address.address);
}
// Sort comparator for pointers to GPA access counter notification buffer
// entries that sorts by physical address' aperture
static int cmp_sort_phys_notifications_by_processor_id(const void *_a, const void *_b)
{
const uvm_access_counter_buffer_entry_t *a = *(const uvm_access_counter_buffer_entry_t **)_a;
const uvm_access_counter_buffer_entry_t *b = *(const uvm_access_counter_buffer_entry_t **)_b;
UVM_ASSERT(!a->address.is_virtual);
UVM_ASSERT(!b->address.is_virtual);
return uvm_id_cmp(a->physical_info.resident_id, b->physical_info.resident_id);
}
typedef enum
{
// Fetch a batch of notifications from the buffer. Stop at the first entry
// that is not ready yet
NOTIFICATION_FETCH_MODE_BATCH_READY,
// Fetch all notifications in the buffer before PUT. Wait for all
// notifications to become ready
NOTIFICATION_FETCH_MODE_ALL,
} notification_fetch_mode_t;
static NvU32 fetch_access_counter_buffer_entries(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context,
notification_fetch_mode_t fetch_mode)
{
NvU32 get;
NvU32 put;
NvU32 notification_index;
uvm_access_counter_buffer_entry_t *notification_cache;
uvm_spin_loop_t spin;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
NvU32 last_instance_ptr_idx = 0;
uvm_aperture_t last_aperture = UVM_APERTURE_PEER_MAX;
UVM_ASSERT(uvm_sem_is_locked(&gpu->parent->isr.access_counters.service_lock));
UVM_ASSERT(gpu->parent->access_counters_supported);
notification_cache = batch_context->notification_cache;
get = access_counters->cached_get;
// Read put pointer from GPU and cache it
if (get == access_counters->cached_put) {
access_counters->cached_put = UVM_GPU_READ_ONCE(*access_counters->rm_info.pAccessCntrBufferPut);
}
put = access_counters->cached_put;
if (get == put)
return 0;
batch_context->phys.num_notifications = 0;
batch_context->virt.num_notifications = 0;
batch_context->virt.is_single_instance_ptr = true;
batch_context->phys.is_single_aperture = true;
notification_index = 0;
// Parse until get != put and have enough space to cache.
while ((get != put) &&
(fetch_mode == NOTIFICATION_FETCH_MODE_ALL || notification_index < access_counters->max_batch_size)) {
uvm_access_counter_buffer_entry_t *current_entry = ¬ification_cache[notification_index];
// We cannot just wait for the last entry (the one pointed by put) to
// become valid, we have to do it individually since entries can be
// written out of order
UVM_SPIN_WHILE(!gpu->parent->access_counter_buffer_hal->entry_is_valid(gpu->parent, get), &spin) {
// We have some entry to work on. Let's do the rest later.
if (fetch_mode != NOTIFICATION_FETCH_MODE_ALL && notification_index > 0)
goto done;
// There's no entry to work on and something has gone wrong. Ignore
// the rest.
if (uvm_global_get_status() != NV_OK)
goto done;
}
// Prevent later accesses being moved above the read of the valid bit
smp_mb__after_atomic();
// Got valid bit set. Let's cache.
gpu->parent->access_counter_buffer_hal->parse_entry(gpu->parent, get, current_entry);
if (current_entry->address.is_virtual) {
batch_context->virt.notifications[batch_context->virt.num_notifications++] = current_entry;
if (batch_context->virt.is_single_instance_ptr) {
if (batch_context->virt.num_notifications == 1) {
last_instance_ptr_idx = notification_index;
}
else if (cmp_access_counter_instance_ptr(¬ification_cache[last_instance_ptr_idx],
current_entry) != 0) {
batch_context->virt.is_single_instance_ptr = false;
}
}
}
else {
const NvU64 translation_size = get_config_for_type(access_counters, current_entry->counter_type)->translation_size;
current_entry->address.address = UVM_ALIGN_DOWN(current_entry->address.address, translation_size);
batch_context->phys.notifications[batch_context->phys.num_notifications++] = current_entry;
current_entry->physical_info.resident_id =
uvm_gpu_get_processor_id_by_address(gpu, uvm_gpu_phys_address(current_entry->address.aperture,
current_entry->address.address));
if (batch_context->phys.is_single_aperture) {
if (batch_context->phys.num_notifications == 1)
last_aperture = current_entry->address.aperture;
else if (current_entry->address.aperture != last_aperture)
batch_context->phys.is_single_aperture = false;
}
if (current_entry->counter_type == UVM_ACCESS_COUNTER_TYPE_MOMC)
UVM_ASSERT(uvm_id_equal(current_entry->physical_info.resident_id, gpu->id));
else
UVM_ASSERT(!uvm_id_equal(current_entry->physical_info.resident_id, gpu->id));
}
++notification_index;
++get;
if (get == access_counters->max_notifications)
get = 0;
}
done:
write_get(gpu->parent, get);
return notification_index;
}
static void translate_virt_notifications_instance_ptrs(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context)
{
NvU32 i;
NV_STATUS status;
for (i = 0; i < batch_context->virt.num_notifications; ++i) {
uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[i];
if (i == 0 ||
cmp_access_counter_instance_ptr(current_entry, batch_context->virt.notifications[i - 1]) != 0) {
// If instance_ptr is different, make a new translation. If the
// translation fails then va_space will be NULL and the entry will
// simply be ignored in subsequent processing.
status = uvm_gpu_access_counter_entry_to_va_space(gpu,
current_entry,
¤t_entry->virtual_info.va_space);
if (status != NV_OK)
UVM_ASSERT(current_entry->virtual_info.va_space == NULL);
}
else {
current_entry->virtual_info.va_space = batch_context->virt.notifications[i - 1]->virtual_info.va_space;
}
}
}
// GVA notifications provide an instance_ptr and ve_id that can be directly
// translated to a VA space. In order to minimize translations, we sort the
// entries by instance_ptr, va_space and notification address in that order.
static void preprocess_virt_notifications(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context)
{
if (!batch_context->virt.is_single_instance_ptr) {
sort(batch_context->virt.notifications,
batch_context->virt.num_notifications,
sizeof(*batch_context->virt.notifications),
cmp_sort_virt_notifications_by_instance_ptr,
NULL);
}
translate_virt_notifications_instance_ptrs(gpu, batch_context);
sort(batch_context->virt.notifications,
batch_context->virt.num_notifications,
sizeof(*batch_context->virt.notifications),
cmp_sort_virt_notifications_by_va_space_address,
NULL);
}
// GPA notifications provide a physical address and an aperture. Sort
// accesses by aperture to try to coalesce operations on the same target
// processor.
static void preprocess_phys_notifications(uvm_access_counter_service_batch_context_t *batch_context)
{
if (!batch_context->phys.is_single_aperture) {
sort(batch_context->phys.notifications,
batch_context->phys.num_notifications,
sizeof(*batch_context->phys.notifications),
cmp_sort_phys_notifications_by_processor_id,
NULL);
}
}
static NV_STATUS notify_tools_and_process_flags(uvm_gpu_t *gpu,
uvm_access_counter_buffer_entry_t **notification_start,
NvU32 num_entries,
NvU32 flags)
{
NV_STATUS status = NV_OK;
if (uvm_enable_builtin_tests) {
// TODO: Bug 4310744: [UVM][TOOLS] Attribute access counter tools events
// to va_space instead of broadcasting.
NvU32 i;
for (i = 0; i < num_entries; i++)
uvm_tools_broadcast_access_counter(gpu, notification_start[i], flags & UVM_ACCESS_COUNTER_PHYS_ON_MANAGED);
}
if (flags & UVM_ACCESS_COUNTER_ACTION_CLEAR)
status = access_counter_clear_notifications(gpu, notification_start, num_entries);
return status;
}
static NV_STATUS service_va_block_locked(uvm_processor_id_t processor,
uvm_va_block_t *va_block,
uvm_va_block_retry_t *va_block_retry,
uvm_service_block_context_t *service_context,
uvm_page_mask_t *accessed_pages)
{
NV_STATUS status = NV_OK;
uvm_va_space_t *va_space = uvm_va_block_get_va_space(va_block);
uvm_range_group_range_iter_t iter;
uvm_page_index_t page_index;
uvm_page_index_t first_page_index;
uvm_page_index_t last_page_index;
NvU32 page_count = 0;
const uvm_page_mask_t *residency_mask;
uvm_assert_mutex_locked(&va_block->lock);
// GPU VA space could be gone since we received the notification. We handle
// this case by skipping service if processor is not in the mapped mask.
// Using this approach we also filter out notifications for pages that
// moved since they were reported by the GPU. This is fine because:
// - If the GPU is still accessing them, it should have faulted
// - If the GPU gets remote mappings in the future, we will get new
// notifications and we will act accordingly
// - If the GPU does not access the pages again, we do not want to migrate
// them
if (!uvm_processor_mask_test(&va_block->mapped, processor))
return NV_OK;
if (uvm_processor_mask_test(&va_block->resident, processor))
residency_mask = uvm_va_block_resident_mask_get(va_block, processor);
else
residency_mask = NULL;
first_page_index = PAGES_PER_UVM_VA_BLOCK;
last_page_index = 0;
// Initialize fault service block context
uvm_processor_mask_zero(&service_context->resident_processors);
service_context->read_duplicate_count = 0;
service_context->thrashing_pin_count = 0;
// If the page is already resident on the accessing processor, the
// notification for this page is stale. Skip it.
if (residency_mask)
uvm_page_mask_andnot(accessed_pages, accessed_pages, residency_mask);
uvm_range_group_range_migratability_iter_first(va_space, va_block->start, va_block->end, &iter);
for_each_va_block_page_in_mask(page_index, accessed_pages, va_block) {
uvm_perf_thrashing_hint_t thrashing_hint;
NvU64 address = uvm_va_block_cpu_page_address(va_block, page_index);
bool read_duplicate = false;
uvm_processor_id_t new_residency;
const uvm_va_policy_t *policy;
// Ensure that the migratability iterator covers the current address
while (iter.end < address)
uvm_range_group_range_migratability_iter_next(va_space, &iter, va_block->end);
UVM_ASSERT(iter.start <= address && iter.end >= address);
// If the range is not migratable, skip the page
if (!iter.migratable)
continue;
thrashing_hint = uvm_perf_thrashing_get_hint(va_block, address, processor);
if (thrashing_hint.type == UVM_PERF_THRASHING_HINT_TYPE_THROTTLE) {
// If the page is throttling, ignore the access counter
// notification
continue;
}
else if (thrashing_hint.type == UVM_PERF_THRASHING_HINT_TYPE_PIN) {
if (service_context->thrashing_pin_count++ == 0)
uvm_page_mask_zero(&service_context->thrashing_pin_mask);
uvm_page_mask_set(&service_context->thrashing_pin_mask, page_index);
}
// If the underlying VMA is gone, skip HMM migrations.
if (uvm_va_block_is_hmm(va_block)) {
status = uvm_hmm_find_vma(service_context->block_context.mm,
&service_context->block_context.hmm.vma,
address);
if (status == NV_ERR_INVALID_ADDRESS)
continue;
UVM_ASSERT(status == NV_OK);
}
policy = uvm_va_policy_get(va_block, address);
new_residency = uvm_va_block_select_residency(va_block,
&service_context->block_context,
page_index,
processor,
uvm_fault_access_type_mask_bit(UVM_FAULT_ACCESS_TYPE_PREFETCH),
policy,
&thrashing_hint,
UVM_SERVICE_OPERATION_ACCESS_COUNTERS,
&read_duplicate);
if (!uvm_processor_mask_test_and_set(&service_context->resident_processors, new_residency))
uvm_page_mask_zero(&service_context->per_processor_masks[uvm_id_value(new_residency)].new_residency);
uvm_page_mask_set(&service_context->per_processor_masks[uvm_id_value(new_residency)].new_residency, page_index);
if (page_index < first_page_index)
first_page_index = page_index;
if (page_index > last_page_index)
last_page_index = page_index;
++page_count;
service_context->access_type[page_index] = UVM_FAULT_ACCESS_TYPE_PREFETCH;
}
// Apply the changes computed in the service block context, if there are
// pages to be serviced
if (page_count > 0) {
uvm_processor_id_t id;
uvm_processor_mask_t update_processors;
uvm_processor_mask_and(&update_processors, &va_block->resident, &service_context->resident_processors);
// Remove pages that are already resident in the destination processors
for_each_id_in_mask(id, &update_processors) {
bool migrate_pages;
uvm_page_mask_t *residency_mask = uvm_va_block_resident_mask_get(va_block, id);
UVM_ASSERT(residency_mask);
migrate_pages = uvm_page_mask_andnot(&service_context->per_processor_masks[uvm_id_value(id)].new_residency,
&service_context->per_processor_masks[uvm_id_value(id)].new_residency,
residency_mask);
if (!migrate_pages)
uvm_processor_mask_clear(&service_context->resident_processors, id);
}
if (!uvm_processor_mask_empty(&service_context->resident_processors)) {
while (first_page_index <= last_page_index) {
uvm_page_index_t outer = last_page_index + 1;
const uvm_va_policy_t *policy;
if (uvm_va_block_is_hmm(va_block)) {
status = NV_ERR_INVALID_ADDRESS;
if (service_context->block_context.mm) {
status = uvm_hmm_find_policy_vma_and_outer(va_block,
&service_context->block_context.hmm.vma,
first_page_index,
&policy,
&outer);
}
if (status != NV_OK)
break;
}
service_context->region = uvm_va_block_region(first_page_index, outer);
first_page_index = outer;
status = uvm_va_block_service_locked(processor, va_block, va_block_retry, service_context);
if (status != NV_OK)
break;
}
}
}
++service_context->num_retries;
return status;
}
static void reverse_mappings_to_va_block_page_mask(uvm_va_block_t *va_block,
const uvm_reverse_map_t *reverse_mappings,
size_t num_reverse_mappings,
uvm_page_mask_t *page_mask)
{
NvU32 index;
UVM_ASSERT(page_mask);
if (num_reverse_mappings > 0)
UVM_ASSERT(reverse_mappings);
uvm_page_mask_zero(page_mask);
// Populate the mask of accessed pages within the VA Block
for (index = 0; index < num_reverse_mappings; ++index) {
const uvm_reverse_map_t *reverse_map = &reverse_mappings[index];
uvm_va_block_region_t region = reverse_map->region;
UVM_ASSERT(reverse_map->va_block == va_block);
// The VA Block could have been split since we obtained the reverse
// mappings. Clamp the region to the current VA block size, to handle
// the case in which it was split.
region.outer = min(region.outer, (uvm_page_index_t)uvm_va_block_num_cpu_pages(va_block));
region.first = min(region.first, region.outer);
uvm_page_mask_region_fill(page_mask, region);
}
}
static NV_STATUS service_phys_single_va_block(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context,
const uvm_access_counter_buffer_entry_t *current_entry,
const uvm_reverse_map_t *reverse_mappings,
size_t num_reverse_mappings,
NvU32 *out_flags)
{
size_t index;
uvm_va_block_t *va_block = reverse_mappings[0].va_block;
uvm_va_space_t *va_space = NULL;
struct mm_struct *mm = NULL;
NV_STATUS status = NV_OK;
const uvm_processor_id_t processor = current_entry->counter_type == UVM_ACCESS_COUNTER_TYPE_MIMC?
gpu->id: UVM_ID_CPU;
*out_flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;
UVM_ASSERT(num_reverse_mappings > 0);
uvm_mutex_lock(&va_block->lock);
va_space = uvm_va_block_get_va_space_maybe_dead(va_block);
uvm_mutex_unlock(&va_block->lock);
if (va_space) {
uvm_va_block_retry_t va_block_retry;
va_space_access_counters_info_t *va_space_access_counters;
uvm_service_block_context_t *service_context = &batch_context->block_service_context;
uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;
// If an mm is registered with the VA space, we have to retain it
// in order to lock it before locking the VA space.
mm = uvm_va_space_mm_retain_lock(va_space);
uvm_va_space_down_read(va_space);
// Re-check that the VA block is valid after taking the VA block lock.
if (uvm_va_block_is_dead(va_block))
goto done;
va_space_access_counters = va_space_access_counters_info_get(va_space);
if (UVM_ID_IS_CPU(processor) && !atomic_read(&va_space_access_counters->params.enable_momc_migrations))
goto done;
if (!UVM_ID_IS_CPU(processor) && !atomic_read(&va_space_access_counters->params.enable_mimc_migrations))
goto done;
service_context->operation = UVM_SERVICE_OPERATION_ACCESS_COUNTERS;
service_context->num_retries = 0;
service_context->block_context.mm = mm;
if (uvm_va_block_is_hmm(va_block)) {
uvm_hmm_service_context_init(service_context);
uvm_hmm_migrate_begin_wait(va_block);
}
uvm_mutex_lock(&va_block->lock);
reverse_mappings_to_va_block_page_mask(va_block, reverse_mappings, num_reverse_mappings, accessed_pages);
status = UVM_VA_BLOCK_RETRY_LOCKED(va_block, &va_block_retry,
service_va_block_locked(processor,
va_block,
&va_block_retry,
service_context,
accessed_pages));
uvm_mutex_unlock(&va_block->lock);
if (uvm_va_block_is_hmm(va_block))
uvm_hmm_migrate_finish(va_block);
if (status == NV_OK)
*out_flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;
}
done:
if (va_space) {
uvm_va_space_up_read(va_space);
uvm_va_space_mm_release_unlock(va_space, mm);
}
// Drop the refcounts taken by the reverse map translation routines
for (index = 0; index < num_reverse_mappings; ++index)
uvm_va_block_release(va_block);
return status;
}
static NV_STATUS service_phys_va_blocks(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context,
const uvm_access_counter_buffer_entry_t *current_entry,
const uvm_reverse_map_t *reverse_mappings,
size_t num_reverse_mappings,
NvU32 *out_flags)
{
NV_STATUS status = NV_OK;
size_t index;
*out_flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;
for (index = 0; index < num_reverse_mappings; ++index) {
NvU32 out_flags_local = 0;
status = service_phys_single_va_block(gpu,
batch_context,
current_entry,
reverse_mappings + index,
1,
&out_flags_local);
if (status != NV_OK)
break;
UVM_ASSERT((out_flags_local & ~UVM_ACCESS_COUNTER_ACTION_CLEAR) == 0);
*out_flags |= out_flags_local;
}
// In the case of failure, drop the refcounts for the remaining reverse mappings
while (++index < num_reverse_mappings)
uvm_va_block_release(reverse_mappings[index].va_block);
return status;
}
// Iterate over all regions set in the given sub_granularity mask
#define for_each_sub_granularity_region(region_start, region_end, sub_granularity, num_regions) \
for ((region_start) = find_first_bit(&(sub_granularity), (num_regions)), \
(region_end) = find_next_zero_bit(&(sub_granularity), (num_regions), (region_start) + 1); \
(region_start) < (num_regions); \
(region_start) = find_next_bit(&(sub_granularity), (num_regions), (region_end) + 1), \
(region_end) = find_next_zero_bit(&(sub_granularity), (num_regions), (region_start) + 1))
static bool are_reverse_mappings_on_single_block(const uvm_reverse_map_t *reverse_mappings, size_t num_reverse_mappings)
{
size_t index;
uvm_va_block_t *prev_va_block = NULL;
for (index = 0; index < num_reverse_mappings; ++index) {
uvm_va_block_t *va_block = reverse_mappings[index].va_block;
UVM_ASSERT(va_block);
if (prev_va_block && prev_va_block != va_block)
return false;
prev_va_block = va_block;
}
return true;
}
// Service the given translation range. It will return the count of the reverse
// mappings found during servicing in num_reverse_mappings, even if the function
// doesn't return NV_OK.
static NV_STATUS service_phys_notification_translation(uvm_gpu_t *gpu,
uvm_gpu_t *resident_gpu,
uvm_access_counter_service_batch_context_t *batch_context,
const uvm_gpu_access_counter_type_config_t *config,
const uvm_access_counter_buffer_entry_t *current_entry,
NvU64 address,
unsigned long sub_granularity,
size_t *num_reverse_mappings,
NvU32 *out_flags)
{
NV_STATUS status;
NvU32 region_start, region_end;
*num_reverse_mappings = 0;
// Get the reverse_map translations for all the regions set in the
// sub_granularity field of the counter.
for_each_sub_granularity_region(region_start,
region_end,
sub_granularity,
config->sub_granularity_regions_per_translation) {
NvU64 local_address = address + region_start * config->sub_granularity_region_size;
NvU32 local_translation_size = (region_end - region_start) * config->sub_granularity_region_size;
uvm_reverse_map_t *local_reverse_mappings = batch_context->phys.translations + *num_reverse_mappings;
// Obtain the virtual addresses of the pages within the reported
// DMA range
if (resident_gpu) {
*num_reverse_mappings += uvm_pmm_gpu_phys_to_virt(&resident_gpu->pmm,
local_address,
local_translation_size,
local_reverse_mappings);
}
else {
*num_reverse_mappings += uvm_pmm_sysmem_mappings_dma_to_virt(&gpu->pmm_reverse_sysmem_mappings,
local_address,
local_translation_size,
local_reverse_mappings,
local_translation_size / PAGE_SIZE);
}
}
if (*num_reverse_mappings == 0)
return NV_OK;
// Service all the translations
if (are_reverse_mappings_on_single_block(batch_context->phys.translations, *num_reverse_mappings)) {
status = service_phys_single_va_block(gpu,
batch_context,
current_entry,
batch_context->phys.translations,
*num_reverse_mappings,
out_flags);
}
else {
status = service_phys_va_blocks(gpu,
batch_context,
current_entry,
batch_context->phys.translations,
*num_reverse_mappings,
out_flags);
}
return status;
}
static NV_STATUS service_phys_notification(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context,
const uvm_access_counter_buffer_entry_t *current_entry,
NvU32 *out_flags)
{
NvU64 address;
NvU64 translation_index;
uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
uvm_access_counter_type_t counter_type = current_entry->counter_type;
const uvm_gpu_access_counter_type_config_t *config = get_config_for_type(access_counters, counter_type);
unsigned long sub_granularity;
size_t total_reverse_mappings = 0;
uvm_gpu_t *resident_gpu = NULL;
NV_STATUS status = NV_OK;
NvU32 flags = 0;
address = current_entry->address.address;
UVM_ASSERT(address % config->translation_size == 0);
sub_granularity = current_entry->sub_granularity;
if (config->rm.granularity == UVM_ACCESS_COUNTER_GRANULARITY_64K)
sub_granularity = 1;
if (UVM_ID_IS_GPU(current_entry->physical_info.resident_id)) {
resident_gpu = uvm_gpu_get_by_processor_id(current_entry->physical_info.resident_id);
UVM_ASSERT(resident_gpu != NULL);
if (gpu != resident_gpu && uvm_gpus_are_nvswitch_connected(gpu, resident_gpu)) {
UVM_ASSERT(address >= resident_gpu->parent->nvswitch_info.fabric_memory_window_start);
address -= resident_gpu->parent->nvswitch_info.fabric_memory_window_start;
}
// On P9 systems, the CPU accesses the reserved heap on vidmem via
// coherent NVLINK mappings. This can trigger notifications that
// fall outside of the allocatable address range. We just drop
// them.
if (address >= resident_gpu->mem_info.max_allocatable_address)
return NV_OK;
}
for (translation_index = 0; translation_index < config->translations_per_counter; ++translation_index) {
size_t num_reverse_mappings;
NvU32 out_flags_local = 0;
status = service_phys_notification_translation(gpu,
resident_gpu,
batch_context,
config,
current_entry,
address,
sub_granularity,
&num_reverse_mappings,
&out_flags_local);
total_reverse_mappings += num_reverse_mappings;
UVM_ASSERT((out_flags_local & ~UVM_ACCESS_COUNTER_ACTION_CLEAR) == 0);
flags |= out_flags_local;
if (status != NV_OK)
break;
address += config->translation_size;
sub_granularity = sub_granularity >> config->sub_granularity_regions_per_translation;
}
if (uvm_enable_builtin_tests)
*out_flags |= ((total_reverse_mappings != 0) ? UVM_ACCESS_COUNTER_PHYS_ON_MANAGED : 0);
if (status == NV_OK && (flags & UVM_ACCESS_COUNTER_ACTION_CLEAR))
*out_flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;
return status;
}
// TODO: Bug 2018899: Add statistics for dropped access counter notifications
static NV_STATUS service_phys_notifications(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context)
{
NvU32 i;
uvm_access_counter_buffer_entry_t **notifications = batch_context->phys.notifications;
preprocess_phys_notifications(batch_context);
for (i = 0; i < batch_context->phys.num_notifications; ++i) {
NV_STATUS status;
uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
NvU32 flags = 0;
if (!UVM_ID_IS_VALID(current_entry->physical_info.resident_id))
continue;
status = service_phys_notification(gpu, batch_context, current_entry, &flags);
notify_tools_and_process_flags(gpu, ¬ifications[i], 1, flags);
if (status != NV_OK)
return status;
}
return NV_OK;
}
static NV_STATUS service_notification_va_block_helper(struct mm_struct *mm,
uvm_va_block_t *va_block,
uvm_processor_id_t processor,
uvm_access_counter_service_batch_context_t *batch_context)
{
uvm_va_block_retry_t va_block_retry;
uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;
uvm_service_block_context_t *service_context = &batch_context->block_service_context;
if (uvm_page_mask_empty(accessed_pages))
return NV_OK;
uvm_assert_mutex_locked(&va_block->lock);
service_context->operation = UVM_SERVICE_OPERATION_ACCESS_COUNTERS;
service_context->num_retries = 0;
service_context->block_context.mm = mm;
return UVM_VA_BLOCK_RETRY_LOCKED(va_block,
&va_block_retry,
service_va_block_locked(processor,
va_block,
&va_block_retry,
service_context,
accessed_pages));
}
static void expand_notification_block(uvm_gpu_va_space_t *gpu_va_space,
uvm_va_block_t *va_block,
uvm_page_mask_t *accessed_pages,
const uvm_access_counter_buffer_entry_t *current_entry)
{
NvU64 addr;
NvU64 granularity = 0;
uvm_gpu_t *resident_gpu = NULL;
uvm_processor_id_t resident_id;
uvm_page_index_t page_index;
uvm_gpu_t *gpu = gpu_va_space->gpu;
const uvm_access_counter_buffer_info_t *access_counters = &gpu->parent->access_counter_buffer_info;
const uvm_gpu_access_counter_type_config_t *config = get_config_for_type(access_counters,
UVM_ACCESS_COUNTER_TYPE_MIMC);
config_granularity_to_bytes(config->rm.granularity, &granularity);
// Granularities other than 2MB can only be enabled by UVM tests. Do nothing
// in that case.
if (granularity != UVM_PAGE_SIZE_2M)
return;
addr = current_entry->address.address;
uvm_assert_rwsem_locked(&gpu_va_space->va_space->lock);
uvm_assert_mutex_locked(&va_block->lock);
page_index = uvm_va_block_cpu_page_index(va_block, addr);
resident_id = uvm_va_block_page_get_closest_resident(va_block, page_index, gpu->id);
// resident_id might be invalid or might already be the same as the GPU
// which received the notification if the memory was already migrated before
// acquiring the locks either during the servicing of previous notifications
// or during faults or because of explicit migrations or if the VA range was
// freed after receiving the notification. Return NV_OK in such cases.
if (!UVM_ID_IS_VALID(resident_id) || uvm_id_equal(resident_id, gpu->id))
return;
if (UVM_ID_IS_GPU(resident_id))
resident_gpu = uvm_va_space_get_gpu(gpu_va_space->va_space, resident_id);
if (uvm_va_block_get_physical_size(va_block, resident_id, page_index) != granularity) {
uvm_page_mask_set(accessed_pages, page_index);
}
else {
NvU32 region_start;
NvU32 region_end;
unsigned long sub_granularity = current_entry->sub_granularity;
NvU32 num_regions = config->sub_granularity_regions_per_translation;
NvU32 num_sub_pages = config->sub_granularity_region_size / PAGE_SIZE;
uvm_page_mask_t *resident_mask = uvm_va_block_resident_mask_get(va_block, resident_id);
UVM_ASSERT(num_sub_pages >= 1);
// region_start and region_end refer to sub_granularity indices, not
// page_indices.
for_each_sub_granularity_region(region_start, region_end, sub_granularity, num_regions) {
uvm_page_mask_region_fill(accessed_pages,
uvm_va_block_region(region_start * num_sub_pages,
region_end * num_sub_pages));
}
// Remove pages in the va_block which are not resident on resident_id.
// If the GPU is heavily accessing those pages, future access counter
// migrations will migrate them to the GPU.
uvm_page_mask_and(accessed_pages, accessed_pages, resident_mask);
}
}
static NV_STATUS service_virt_notifications_in_block(uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm,
uvm_va_block_t *va_block,
uvm_access_counter_service_batch_context_t *batch_context,
NvU32 index,
NvU32 *out_index)
{
NvU32 i;
NvU32 flags = 0;
NV_STATUS status = NV_OK;
NV_STATUS flags_status;
uvm_gpu_t *gpu = gpu_va_space->gpu;
uvm_va_space_t *va_space = gpu_va_space->va_space;
uvm_page_mask_t *accessed_pages = &batch_context->accessed_pages;
uvm_access_counter_buffer_entry_t **notifications = batch_context->virt.notifications;
UVM_ASSERT(va_block);
UVM_ASSERT(index < batch_context->virt.num_notifications);
uvm_assert_rwsem_locked(&va_space->lock);
uvm_page_mask_zero(accessed_pages);
uvm_mutex_lock(&va_block->lock);
for (i = index; i < batch_context->virt.num_notifications; i++) {
uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
NvU64 address = current_entry->address.address;
if ((current_entry->virtual_info.va_space == va_space) && (address <= va_block->end))
expand_notification_block(gpu_va_space, va_block, accessed_pages, current_entry);
else
break;
}
*out_index = i;
// Atleast one notification should have been processed.
UVM_ASSERT(index < *out_index);
status = service_notification_va_block_helper(mm, va_block, gpu->id, batch_context);
uvm_mutex_unlock(&va_block->lock);
if (status == NV_OK)
flags |= UVM_ACCESS_COUNTER_ACTION_CLEAR;
flags_status = notify_tools_and_process_flags(gpu, ¬ifications[index], *out_index - index, flags);
if ((status == NV_OK) && (flags_status != NV_OK))
status = flags_status;
return status;
}
static NV_STATUS service_virt_notification_ats(uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm,
uvm_access_counter_service_batch_context_t *batch_context,
NvU32 index,
NvU32 *out_index)
{
NvU32 i;
NvU64 base;
NvU64 end;
NvU64 address;
NvU32 flags = UVM_ACCESS_COUNTER_ACTION_CLEAR;
NV_STATUS status = NV_OK;
NV_STATUS flags_status;
struct vm_area_struct *vma = NULL;
uvm_gpu_t *gpu = gpu_va_space->gpu;
uvm_va_space_t *va_space = gpu_va_space->va_space;
uvm_ats_fault_context_t *ats_context = &batch_context->ats_context;
uvm_access_counter_buffer_entry_t **notifications = batch_context->virt.notifications;
UVM_ASSERT(index < batch_context->virt.num_notifications);
uvm_assert_mmap_lock_locked(mm);
uvm_assert_rwsem_locked(&va_space->lock);
address = notifications[index]->address.address;
vma = find_vma_intersection(mm, address, address + 1);
if (!vma) {
// Clear the notification entry to continue receiving access counter
// notifications when a new VMA is allocated in this range.
status = notify_tools_and_process_flags(gpu, ¬ifications[index], 1, flags);
*out_index = index + 1;
return status;
}
base = UVM_VA_BLOCK_ALIGN_DOWN(address);
end = min(base + UVM_VA_BLOCK_SIZE, (NvU64)vma->vm_end);
uvm_page_mask_zero(&ats_context->accessed_mask);
for (i = index; i < batch_context->virt.num_notifications; i++) {
uvm_access_counter_buffer_entry_t *current_entry = notifications[i];
address = current_entry->address.address;
if ((current_entry->virtual_info.va_space == va_space) && (address < end))
uvm_page_mask_set(&ats_context->accessed_mask, (address - base) / PAGE_SIZE);
else
break;
}
*out_index = i;
// Atleast one notification should have been processed.
UVM_ASSERT(index < *out_index);
// TODO: Bug 2113632: [UVM] Don't clear access counters when the preferred
// location is set
// If no pages were actually migrated, don't clear the access counters.
status = uvm_ats_service_access_counters(gpu_va_space, vma, base, ats_context);
if (status != NV_OK)
flags &= ~UVM_ACCESS_COUNTER_ACTION_CLEAR;
flags_status = notify_tools_and_process_flags(gpu, ¬ifications[index], *out_index - index, flags);
if ((status == NV_OK) && (flags_status != NV_OK))
status = flags_status;
return status;
}
static NV_STATUS service_virt_notifications_batch(uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm,
uvm_access_counter_service_batch_context_t *batch_context,
NvU32 index,
NvU32 *out_index)
{
NV_STATUS status;
uvm_va_range_t *va_range;
uvm_va_space_t *va_space = gpu_va_space->va_space;
uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[index];
NvU64 address = current_entry->address.address;
UVM_ASSERT(va_space);
if (mm)
uvm_assert_mmap_lock_locked(mm);
uvm_assert_rwsem_locked(&va_space->lock);
// Virtual address notifications are always 64K aligned
UVM_ASSERT(IS_ALIGNED(address, UVM_PAGE_SIZE_64K));
va_range = uvm_va_range_find(va_space, address);
if (va_range) {
// Avoid clearing the entry by default.
NvU32 flags = 0;
uvm_va_block_t *va_block = NULL;
if (va_range->type == UVM_VA_RANGE_TYPE_MANAGED) {
size_t index = uvm_va_range_block_index(va_range, address);
va_block = uvm_va_range_block(va_range, index);
// If the va_range is a managed range, the notification belongs to a
// recently freed va_range if va_block is NULL. If va_block is not
// NULL, service_virt_notifications_in_block will process flags.
// Clear the notification entry to continue receiving notifications
// when a new va_range is allocated in that region.
flags = UVM_ACCESS_COUNTER_ACTION_CLEAR;
}
if (va_block) {
status = service_virt_notifications_in_block(gpu_va_space, mm, va_block, batch_context, index, out_index);
}
else {
status = notify_tools_and_process_flags(gpu_va_space->gpu, batch_context->virt.notifications, 1, flags);
*out_index = index + 1;
}
}
else if (uvm_ats_can_service_faults(gpu_va_space, mm)) {
status = service_virt_notification_ats(gpu_va_space, mm, batch_context, index, out_index);
}
else {
NvU32 flags;
uvm_va_block_t *va_block = NULL;
status = uvm_hmm_va_block_find(va_space, address, &va_block);
// TODO: Bug 4309292: [UVM][HMM] Re-enable access counter HMM block
// migrations for virtual notifications
//
// - If the va_block is HMM, don't clear the notification since HMM
// migrations are currently disabled.
//
// - If the va_block isn't HMM, the notification belongs to a recently
// freed va_range. Clear the notification entry to continue receiving
// notifications when a new va_range is allocated in this region.
flags = va_block ? 0 : UVM_ACCESS_COUNTER_ACTION_CLEAR;
UVM_ASSERT((status == NV_ERR_OBJECT_NOT_FOUND) ||
(status == NV_ERR_INVALID_ADDRESS) ||
uvm_va_block_is_hmm(va_block));
// Clobber status to continue processing the rest of the notifications
// in the batch.
status = notify_tools_and_process_flags(gpu_va_space->gpu, batch_context->virt.notifications, 1, flags);
*out_index = index + 1;
}
return status;
}
static NV_STATUS service_virt_notifications(uvm_gpu_t *gpu,
uvm_access_counter_service_batch_context_t *batch_context)
{
NvU32 i = 0;
NV_STATUS status = NV_OK;
struct mm_struct *mm = NULL;
uvm_va_space_t *va_space = NULL;
uvm_va_space_t *prev_va_space = NULL;
uvm_gpu_va_space_t *gpu_va_space = NULL;
// TODO: Bug 4299018 : Add support for virtual access counter migrations on
// 4K page sizes.
if (PAGE_SIZE == UVM_PAGE_SIZE_4K) {
return notify_tools_and_process_flags(gpu,
batch_context->virt.notifications,
batch_context->virt.num_notifications,
0);
}
preprocess_virt_notifications(gpu, batch_context);
while (i < batch_context->virt.num_notifications) {
uvm_access_counter_buffer_entry_t *current_entry = batch_context->virt.notifications[i];
va_space = current_entry->virtual_info.va_space;
if (va_space != prev_va_space) {
// New va_space detected, drop locks of the old va_space.
if (prev_va_space) {
uvm_va_space_up_read(prev_va_space);
uvm_va_space_mm_release_unlock(prev_va_space, mm);
mm = NULL;
gpu_va_space = NULL;
}
// Acquire locks for the new va_space.
if (va_space) {
mm = uvm_va_space_mm_retain_lock(va_space);
uvm_va_space_down_read(va_space);
gpu_va_space = uvm_gpu_va_space_get_by_parent_gpu(va_space, gpu->parent);
}
prev_va_space = va_space;
}
if (va_space && gpu_va_space && uvm_va_space_has_access_counter_migrations(va_space)) {
status = service_virt_notifications_batch(gpu_va_space, mm, batch_context, i, &i);
}
else {
status = notify_tools_and_process_flags(gpu, &batch_context->virt.notifications[i], 1, 0);
i++;
}
if (status != NV_OK)
break;
}
if (va_space) {
uvm_va_space_up_read(va_space);
uvm_va_space_mm_release_unlock(va_space, mm);
}
return status;
}
void uvm_gpu_service_access_counters(uvm_gpu_t *gpu)
{
NV_STATUS status = NV_OK;
uvm_access_counter_service_batch_context_t *batch_context = &gpu->parent->access_counter_buffer_info.batch_service_context;
UVM_ASSERT(gpu->parent->access_counters_supported);
if (gpu->parent->access_counter_buffer_info.notifications_ignored_count > 0)
return;
while (1) {
batch_context->num_cached_notifications = fetch_access_counter_buffer_entries(gpu,
batch_context,
NOTIFICATION_FETCH_MODE_BATCH_READY);
if (batch_context->num_cached_notifications == 0)
break;
++batch_context->batch_id;
status = service_virt_notifications(gpu, batch_context);
if (status != NV_OK)
break;
status = service_phys_notifications(gpu, batch_context);
if (status != NV_OK)
break;
}
if (status != NV_OK) {
UVM_DBG_PRINT("Error %s servicing access counter notifications on GPU: %s\n",
nvstatusToString(status),
uvm_gpu_name(gpu));
}
}
static const NvU32 g_uvm_access_counters_threshold_max = (1 << 15) - 1;
static NV_STATUS access_counters_config_from_test_params(const UVM_TEST_RECONFIGURE_ACCESS_COUNTERS_PARAMS *params,
UvmGpuAccessCntrConfig *config)
{
NvU64 tracking_size;
memset(config, 0, sizeof(*config));
if (params->threshold == 0 || params->threshold > g_uvm_access_counters_threshold_max)
return NV_ERR_INVALID_ARGUMENT;
if (config_granularity_to_bytes(params->mimc_granularity, &tracking_size) != NV_OK)
return NV_ERR_INVALID_ARGUMENT;
if (config_granularity_to_bytes(params->momc_granularity, &tracking_size) != NV_OK)
return NV_ERR_INVALID_ARGUMENT;
// Since values for granularity/use limit are shared between tests and
// nv_uvm_types.h, the value will be checked in the call to
// nvUvmInterfaceEnableAccessCntr
config->mimcGranularity = params->mimc_granularity;
config->momcGranularity = params->momc_granularity;
config->mimcUseLimit = params->mimc_use_limit;
config->momcUseLimit = params->momc_use_limit;
config->threshold = params->threshold;
return NV_OK;
}
bool uvm_va_space_has_access_counter_migrations(uvm_va_space_t *va_space)
{
va_space_access_counters_info_t *va_space_access_counters = va_space_access_counters_info_get(va_space);
return atomic_read(&va_space_access_counters->params.enable_mimc_migrations);
}
NV_STATUS uvm_perf_access_counters_init(void)
{
uvm_perf_module_init("perf_access_counters",
UVM_PERF_MODULE_TYPE_ACCESS_COUNTERS,
g_callbacks_access_counters,
ARRAY_SIZE(g_callbacks_access_counters),
&g_module_access_counters);
return NV_OK;
}
void uvm_perf_access_counters_exit(void)
{
}
NV_STATUS uvm_perf_access_counters_load(uvm_va_space_t *va_space)
{
va_space_access_counters_info_t *va_space_access_counters;
NV_STATUS status;
status = uvm_perf_module_load(&g_module_access_counters, va_space);
if (status != NV_OK)
return status;
va_space_access_counters = va_space_access_counters_info_create(va_space);
if (!va_space_access_counters)
return NV_ERR_NO_MEMORY;
return NV_OK;
}
void uvm_perf_access_counters_unload(uvm_va_space_t *va_space)
{
uvm_perf_module_unload(&g_module_access_counters, va_space);
va_space_access_counters_info_destroy(va_space);
}
NV_STATUS uvm_test_access_counters_enabled_by_default(UVM_TEST_ACCESS_COUNTERS_ENABLED_BY_DEFAULT_PARAMS *params,
struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_gpu_t *gpu = NULL;
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
params->enabled = uvm_gpu_access_counters_required(gpu->parent);
uvm_gpu_release(gpu);
return NV_OK;
}
NV_STATUS uvm_test_reconfigure_access_counters(UVM_TEST_RECONFIGURE_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu = NULL;
UvmGpuAccessCntrConfig config = {0};
va_space_access_counters_info_t *va_space_access_counters;
uvm_va_space_t *va_space_reconfiguration_owner;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
status = access_counters_config_from_test_params(params, &config);
if (status != NV_OK)
return status;
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
if (!gpu->parent->access_counters_supported) {
status = NV_ERR_NOT_SUPPORTED;
goto exit_release_gpu;
}
// ISR lock ensures that we own GET/PUT registers. It disables interrupts
// and ensures that no other thread (nor the top half) will be able to
// re-enable interrupts during reconfiguration.
uvm_gpu_access_counters_isr_lock(gpu->parent);
uvm_va_space_down_read_rm(va_space);
if (!uvm_processor_mask_test(&va_space->registered_gpus, gpu->id)) {
status = NV_ERR_INVALID_STATE;
goto exit_isr_unlock;
}
// Unregistration already started. Fail to avoid an interleaving in which
// access counters end up been enabled on an unregistered GPU:
// (thread 0) uvm_va_space_unregister_gpu disables access counters
// (thread 1) assuming no VA space lock is held yet by the unregistration,
// this function enables access counters and runs to completion,
// returning NV_OK
// (thread 0) uvm_va_space_unregister_gpu takes the VA space lock and
// completes the unregistration
if (uvm_processor_mask_test(&va_space->gpu_unregister_in_progress, gpu->id)) {
status = NV_ERR_INVALID_STATE;
goto exit_isr_unlock;
}
va_space_access_counters = va_space_access_counters_info_get(va_space);
va_space_reconfiguration_owner = gpu->parent->access_counter_buffer_info.reconfiguration_owner;
// If any other VA space has reconfigured access counters on this GPU,
// return error to avoid overwriting its configuration.
if (va_space_reconfiguration_owner && (va_space_reconfiguration_owner != va_space)) {
status = NV_ERR_INVALID_STATE;
goto exit_isr_unlock;
}
if (!uvm_processor_mask_test(&va_space->access_counters_enabled_processors, gpu->id)) {
status = gpu_access_counters_enable(gpu, &config);
if (status == NV_OK)
uvm_processor_mask_set_atomic(&va_space->access_counters_enabled_processors, gpu->id);
else
goto exit_isr_unlock;
}
UVM_ASSERT(gpu->parent->isr.access_counters.handling_ref_count > 0);
// Disable counters, and renable with the new configuration.
// Note that we are yielding ownership even when the access counters are
// enabled in at least gpu. This inconsistent state is not visible to other
// threads or VA spaces because of the ISR lock, and it is immediately
// rectified by retaking ownership.
access_counters_yield_ownership(gpu);
status = access_counters_take_ownership(gpu, &config);
// Retaking ownership failed, so RM owns the interrupt.
if (status != NV_OK) {
// The state of any other VA space with access counters enabled is
// corrupt
// TODO: Bug 2419290: Fail reconfiguration if access
// counters are enabled on a different VA space.
if (gpu->parent->isr.access_counters.handling_ref_count > 1) {
UVM_ASSERT_MSG(status == NV_OK,
"Access counters interrupt still owned by RM, other VA spaces may experience failures");
}
uvm_processor_mask_clear_atomic(&va_space->access_counters_enabled_processors, gpu->id);
gpu_access_counters_disable(gpu);
goto exit_isr_unlock;
}
gpu->parent->access_counter_buffer_info.reconfiguration_owner = va_space;
uvm_va_space_up_read_rm(va_space);
uvm_va_space_down_write(va_space);
atomic_set(&va_space_access_counters->params.enable_mimc_migrations, !!params->enable_mimc_migrations);
atomic_set(&va_space_access_counters->params.enable_momc_migrations, !!params->enable_momc_migrations);
uvm_va_space_up_write(va_space);
exit_isr_unlock:
if (status != NV_OK)
uvm_va_space_up_read_rm(va_space);
uvm_gpu_access_counters_isr_unlock(gpu->parent);
exit_release_gpu:
uvm_gpu_release(gpu);
return status;
}
NV_STATUS uvm_test_reset_access_counters(UVM_TEST_RESET_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu = NULL;
uvm_access_counter_buffer_info_t *access_counters;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
if (params->mode >= UVM_TEST_ACCESS_COUNTER_RESET_MODE_MAX)
return NV_ERR_INVALID_ARGUMENT;
if (params->mode == UVM_TEST_ACCESS_COUNTER_RESET_MODE_TARGETED &&
params->counter_type >= UVM_TEST_ACCESS_COUNTER_TYPE_MAX) {
return NV_ERR_INVALID_ARGUMENT;
}
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
if (!gpu->parent->access_counters_supported) {
status = NV_ERR_NOT_SUPPORTED;
goto exit_release_gpu;
}
uvm_gpu_access_counters_isr_lock(gpu->parent);
// Access counters not enabled. Nothing to reset
if (gpu->parent->isr.access_counters.handling_ref_count == 0)
goto exit_isr_unlock;
access_counters = &gpu->parent->access_counter_buffer_info;
if (params->mode == UVM_TEST_ACCESS_COUNTER_RESET_MODE_ALL) {
status = access_counter_clear_all(gpu);
}
else {
uvm_access_counter_buffer_entry_t entry = { 0 };
uvm_access_counter_buffer_entry_t *notification = &entry;
if (params->counter_type == UVM_TEST_ACCESS_COUNTER_TYPE_MIMC)
entry.counter_type = UVM_ACCESS_COUNTER_TYPE_MIMC;
else
entry.counter_type = UVM_ACCESS_COUNTER_TYPE_MOMC;
entry.bank = params->bank;
entry.tag = params->tag;
status = access_counter_clear_notifications(gpu, ¬ification, 1);
}
if (status == NV_OK)
status = uvm_tracker_wait(&access_counters->clear_tracker);
exit_isr_unlock:
uvm_gpu_access_counters_isr_unlock(gpu->parent);
exit_release_gpu:
uvm_gpu_release(gpu);
return status;
}
void uvm_gpu_access_counters_set_ignore(uvm_gpu_t *gpu, bool do_ignore)
{
bool change_intr_state = false;
if (!gpu->parent->access_counters_supported)
return;
uvm_gpu_access_counters_isr_lock(gpu->parent);
if (do_ignore) {
if (gpu->parent->access_counter_buffer_info.notifications_ignored_count++ == 0)
change_intr_state = true;
}
else {
UVM_ASSERT(gpu->parent->access_counter_buffer_info.notifications_ignored_count >= 1);
if (--gpu->parent->access_counter_buffer_info.notifications_ignored_count == 0)
change_intr_state = true;
}
if (change_intr_state) {
// We need to avoid an interrupt storm while ignoring notifications. We
// just disable the interrupt.
uvm_spin_lock_irqsave(&gpu->parent->isr.interrupts_lock);
if (do_ignore)
uvm_gpu_access_counters_intr_disable(gpu->parent);
else
uvm_gpu_access_counters_intr_enable(gpu->parent);
uvm_spin_unlock_irqrestore(&gpu->parent->isr.interrupts_lock);
if (!do_ignore)
access_counter_buffer_flush_locked(gpu, UVM_GPU_BUFFER_FLUSH_MODE_CACHED_PUT);
}
uvm_gpu_access_counters_isr_unlock(gpu->parent);
}
NV_STATUS uvm_test_set_ignore_access_counters(UVM_TEST_SET_IGNORE_ACCESS_COUNTERS_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu = NULL;
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
if (gpu->parent->access_counters_supported)
uvm_gpu_access_counters_set_ignore(gpu, params->ignore);
else
status = NV_ERR_NOT_SUPPORTED;
uvm_gpu_release(gpu);
return status;
}
|