1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
|
/*******************************************************************************
Copyright (c) 2016-2022 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_common.h"
#include "uvm_linux.h"
#include "uvm_forward_decl.h"
#include "uvm_lock.h"
#include "uvm_mmu.h"
#include "uvm_api.h"
#include "uvm_global.h"
#include "uvm_gpu.h"
#include "uvm_push.h"
#include "uvm_va_space.h"
#include "uvm_va_range.h"
#include "uvm_tracker.h"
#include "uvm_hal.h"
#include "uvm_hal_types.h"
#include "uvm_map_external.h"
#include "uvm_pte_batch.h"
#include "uvm_tlb_batch.h"
#include "nv_uvm_interface.h"
#include "uvm_pushbuffer.h"
// Assume almost all of the push space can be used for PTEs leaving 1K of margin.
#define MAX_COPY_SIZE_PER_PUSH ((size_t)(UVM_MAX_PUSH_SIZE - 1024))
typedef struct
{
// The VA range the buffer is for
uvm_va_range_t *va_range;
// The GPU that's mapping the VA range
uvm_gpu_t *gpu;
// Mapping info used for querying PTEs from RM
UvmGpuExternalMappingInfo mapping_info;
// Size of the buffer
size_t buffer_size;
// Page size in bytes
NvU32 page_size;
// Size of a single PTE in bytes
NvU32 pte_size;
// Max PTE offset covered by the VA range.
//
// Notably the mapping might not start at offset 0 and max PTE offset can be
// larger than number of PTEs covering the VA range.
size_t max_pte_offset;
// Number of PTEs currently in the buffer
size_t num_ptes;
// PTE offset at which the currently buffered PTEs start.
size_t pte_offset;
} uvm_pte_buffer_t;
// Max PTE buffer size is the size of the buffer used for querying PTEs from RM.
// It has to be big enough to amortize the cost of calling into RM, but small
// enough to fit in CPU caches as it's written and read multiple times on the
// CPU before it ends up in the pushbuffer.
// 96K seems to be a sweet spot at least on a Xeon W5580 system. This could use
// some benchmarking on more systems though.
#define MAX_PTE_BUFFER_SIZE ((size_t)96 * 1024)
static NV_STATUS uvm_pte_buffer_init(uvm_va_range_t *va_range,
uvm_gpu_t *gpu,
const uvm_map_rm_params_t *map_rm_params,
NvU64 length,
NvU32 page_size,
uvm_pte_buffer_t *pte_buffer)
{
uvm_gpu_va_space_t *gpu_va_space = uvm_gpu_va_space_get(va_range->va_space, gpu);
uvm_page_tree_t *tree = &gpu_va_space->page_tables;
size_t num_all_ptes;
memset(pte_buffer, 0, sizeof(*pte_buffer));
pte_buffer->va_range = va_range;
pte_buffer->gpu = gpu;
pte_buffer->mapping_info.cachingType = map_rm_params->caching_type;
pte_buffer->mapping_info.mappingType = map_rm_params->mapping_type;
pte_buffer->mapping_info.formatType = map_rm_params->format_type;
pte_buffer->mapping_info.elementBits = map_rm_params->element_bits;
pte_buffer->mapping_info.compressionType = map_rm_params->compression_type;
if (va_range->type == UVM_VA_RANGE_TYPE_EXTERNAL)
pte_buffer->mapping_info.mappingPageSize = page_size;
pte_buffer->page_size = page_size;
pte_buffer->pte_size = uvm_mmu_pte_size(tree, page_size);
num_all_ptes = uvm_div_pow2_64(length, page_size);
pte_buffer->max_pte_offset = uvm_div_pow2_64(map_rm_params->map_offset, page_size) + num_all_ptes;
pte_buffer->buffer_size = min(MAX_PTE_BUFFER_SIZE, num_all_ptes * pte_buffer->pte_size);
pte_buffer->mapping_info.pteBuffer = uvm_kvmalloc(pte_buffer->buffer_size);
if (!pte_buffer->mapping_info.pteBuffer)
return NV_ERR_NO_MEMORY;
return NV_OK;
}
static void uvm_pte_buffer_deinit(uvm_pte_buffer_t *pte_buffer)
{
uvm_kvfree(pte_buffer->mapping_info.pteBuffer);
}
// Get the PTEs for mapping the [map_offset, map_offset + map_size) VA range.
static NV_STATUS uvm_pte_buffer_get(uvm_pte_buffer_t *pte_buffer,
NvHandle mem_handle,
NvU64 map_offset,
NvU64 map_size,
NvU64 **ptes_out)
{
NV_STATUS status;
size_t pte_offset;
size_t num_ptes;
size_t ptes_left;
uvm_va_range_t *va_range = pte_buffer->va_range;
uvm_gpu_va_space_t *gpu_va_space = uvm_gpu_va_space_get(va_range->va_space, pte_buffer->gpu);
UVM_ASSERT(IS_ALIGNED(map_offset, pte_buffer->page_size));
UVM_ASSERT(IS_ALIGNED(map_size, pte_buffer->page_size));
pte_offset = uvm_div_pow2_64(map_offset, pte_buffer->page_size);
num_ptes = uvm_div_pow2_64(map_size, pte_buffer->page_size);
UVM_ASSERT(num_ptes <= pte_buffer->buffer_size / pte_buffer->pte_size);
// If the requested range is already fully cached, just calculate its
// offset within the buffer and return.
if (pte_buffer->pte_offset <= pte_offset && pte_buffer->pte_offset + pte_buffer->num_ptes >= pte_offset + num_ptes) {
pte_offset -= pte_buffer->pte_offset;
*ptes_out = (NvU64 *)((char *)pte_buffer->mapping_info.pteBuffer + pte_offset * pte_buffer->pte_size);
return NV_OK;
}
// Otherwise get max possible PTEs from RM starting at the requested offset.
pte_buffer->pte_offset = pte_offset;
ptes_left = pte_buffer->max_pte_offset - pte_offset;
pte_buffer->num_ptes = min(pte_buffer->buffer_size / pte_buffer->pte_size, ptes_left);
UVM_ASSERT_MSG(pte_buffer->num_ptes >= num_ptes, "buffer num ptes %zu < num ptes %zu\n",
pte_buffer->num_ptes, num_ptes);
// TODO: Bug 1735291: RM can determine the buffer size from the map_size
// parameter.
pte_buffer->mapping_info.pteBufferSize = pte_buffer->num_ptes * pte_buffer->pte_size;
if (va_range->type == UVM_VA_RANGE_TYPE_CHANNEL) {
status = uvm_rm_locked_call(nvUvmInterfaceGetChannelResourcePtes(gpu_va_space->duped_gpu_va_space,
va_range->channel.rm_descriptor,
map_offset,
pte_buffer->num_ptes * pte_buffer->page_size,
&pte_buffer->mapping_info));
}
else {
status = uvm_rm_locked_call(nvUvmInterfaceGetExternalAllocPtes(gpu_va_space->duped_gpu_va_space,
mem_handle,
map_offset,
pte_buffer->num_ptes * pte_buffer->page_size,
&pte_buffer->mapping_info));
}
if (status != NV_OK) {
if (status != NV_ERR_NOT_READY) {
UVM_ERR_PRINT("Failed to get %s mappings for VA range [0x%llx, 0x%llx], offset 0x%llx, size 0x%llx: %s\n",
va_range->type == UVM_VA_RANGE_TYPE_CHANNEL ? "channel" : "external",
va_range->node.start,
va_range->node.end,
map_offset,
map_size,
nvstatusToString(status));
}
return status;
}
*ptes_out = pte_buffer->mapping_info.pteBuffer;
return NV_OK;
}
// Copies the input ptes buffer to the given physical address, with an optional
// TLB invalidate. The copy acquires the input tracker then updates it.
static NV_STATUS copy_ptes(uvm_page_tree_t *tree,
NvU64 page_size,
uvm_gpu_phys_address_t pte_addr,
NvU64 *ptes,
NvU32 num_ptes,
bool last_mapping,
uvm_range_tree_node_t *range_node,
uvm_tracker_t *tracker)
{
uvm_push_t push;
NV_STATUS status;
NvU32 pte_size = uvm_mmu_pte_size(tree, page_size);
UVM_ASSERT(((NvU64)pte_size) * num_ptes == pte_size * num_ptes);
UVM_ASSERT(pte_size * num_ptes <= MAX_COPY_SIZE_PER_PUSH);
status = uvm_push_begin_acquire(tree->gpu->channel_manager,
UVM_CHANNEL_TYPE_MEMOPS,
tracker,
&push,
"Writing %u bytes of PTEs to {%s, 0x%llx}",
pte_size * num_ptes,
uvm_aperture_string(pte_addr.aperture),
pte_addr.address);
if (status != NV_OK)
return status;
uvm_pte_batch_single_write_ptes(&push, pte_addr, ptes, pte_size, num_ptes);
if (last_mapping) {
// Do a TLB invalidate if this is the last mapping in the VA range
// Membar: This is a permissions upgrade, so no post-invalidate membar
// is needed.
uvm_tlb_batch_single_invalidate(tree,
&push,
range_node->start,
uvm_range_tree_node_size(range_node),
page_size,
UVM_MEMBAR_NONE);
}
else {
// For pushes prior to the last one, the PTE batch write has
// already pushed a membar that's enough to order the PTE writes
// with the TLB invalidate in the last push and that's all
// that's needed.
// If a failure happens before the push for the last mapping, it is
// still ok as what will follow is more CE writes to unmap the PTEs and
// those will get ordered by the membar from the PTE batch.
uvm_push_set_flag(&push, UVM_PUSH_FLAG_NEXT_MEMBAR_NONE);
}
uvm_push_end(&push);
// The push acquired the tracker so it's ok to just overwrite it with
// the entry tracking the push.
uvm_tracker_overwrite_with_push(tracker, &push);
return NV_OK;
}
// Map all of pt_range, which is contained with the va_range and begins at
// virtual address map_start. The PTE values are queried from RM and the pushed
// writes are added to the input tracker.
//
// If the mapped range ends on range_node->end, a TLB invalidate for upgrade is
// also issued.
static NV_STATUS map_rm_pt_range(uvm_page_tree_t *tree,
uvm_page_table_range_t *pt_range,
uvm_pte_buffer_t *pte_buffer,
uvm_range_tree_node_t *range_node,
NvHandle mem_handle,
NvU64 map_start,
NvU64 map_offset,
uvm_tracker_t *tracker)
{
uvm_gpu_phys_address_t pte_addr;
NvU64 page_size = pt_range->page_size;
NvU32 pte_size = uvm_mmu_pte_size(tree, page_size);
NvU64 addr, end;
size_t max_ptes, ptes_left, num_ptes;
NvU64 map_size;
bool last_mapping;
NV_STATUS status = NV_OK;
end = map_start + uvm_page_table_range_size(pt_range) - 1;
UVM_ASSERT(map_start >= range_node->start);
UVM_ASSERT(end <= range_node->end);
UVM_ASSERT(page_size & tree->hal->page_sizes());
UVM_ASSERT(IS_ALIGNED(map_start, page_size));
UVM_ASSERT(IS_ALIGNED(map_offset, page_size));
pte_addr = uvm_page_table_range_entry_address(tree, pt_range, 0);
max_ptes = min((size_t)(uvm_mmu_pde_coverage(tree, page_size) / page_size), MAX_COPY_SIZE_PER_PUSH / pte_size);
max_ptes = min(max_ptes, pte_buffer->buffer_size / pte_size);
addr = map_start;
ptes_left = (size_t)uvm_div_pow2_64(uvm_page_table_range_size(pt_range), page_size);
while (addr < end) {
NvU64 *pte_bits;
num_ptes = min(max_ptes, ptes_left);
map_size = num_ptes * page_size;
UVM_ASSERT(addr + map_size <= end + 1);
status = uvm_pte_buffer_get(pte_buffer, mem_handle, map_offset, map_size, &pte_bits);
if (status != NV_OK)
return status;
last_mapping = (addr + map_size - 1 == range_node->end);
// These copies are technically independent, except for the last one
// which issues the TLB invalidate and thus must wait for all others.
// However, since each copy will saturate the bus anyway we force them
// to serialize to avoid bus contention.
status = copy_ptes(tree,
page_size,
pte_addr,
pte_bits,
num_ptes,
last_mapping,
range_node,
tracker);
if (status != NV_OK)
return status;
ptes_left -= num_ptes;
pte_addr.address += num_ptes * pte_size;
addr += map_size;
map_offset += map_size;
}
return NV_OK;
}
// Determine the appropriate membar for downgrades on a VA range with type
// UVM_VA_RANGE_TYPE_EXTERNAL or UVM_VA_RANGE_TYPE_CHANNEL.
static uvm_membar_t va_range_downgrade_membar(uvm_va_range_t *va_range, uvm_ext_gpu_map_t *ext_gpu_map)
{
if (va_range->type == UVM_VA_RANGE_TYPE_CHANNEL) {
return uvm_hal_downgrade_membar_type(va_range->channel.gpu_va_space->gpu,
va_range->channel.aperture == UVM_APERTURE_VID);
}
// If there is no mem_handle, this is a sparse mapping.
// UVM_MEMBAR_GPU is sufficient because the debug pages remain allocated
// until the GPU is torn down. GPU tear down implies that our context has
// been switched out. In turn, this implies a sysmembar.
if (!ext_gpu_map->mem_handle)
return UVM_MEMBAR_GPU;
return uvm_hal_downgrade_membar_type(ext_gpu_map->gpu,
!ext_gpu_map->is_sysmem && ext_gpu_map->gpu == ext_gpu_map->owning_gpu);
}
NV_STATUS uvm_va_range_map_rm_allocation(uvm_va_range_t *va_range,
uvm_gpu_t *mapping_gpu,
const UvmGpuMemoryInfo *mem_info,
const uvm_map_rm_params_t *map_rm_params,
uvm_ext_gpu_map_t *ext_gpu_map,
uvm_tracker_t *out_tracker)
{
uvm_gpu_va_space_t *gpu_va_space = uvm_gpu_va_space_get(va_range->va_space, mapping_gpu);
uvm_page_tree_t *page_tree;
uvm_pte_buffer_t pte_buffer;
uvm_page_table_range_vec_t *pt_range_vec;
uvm_page_table_range_t *pt_range;
uvm_range_tree_node_t *node;
NvU64 addr, size;
NvU64 map_offset = map_rm_params->map_offset;
size_t i;
NV_STATUS status;
uvm_tracker_t *tracker;
// Track local pushes in a separate tracker, instead of adding them
// directly to the output tracker, to avoid false dependencies
// (serialization) on unrelated work. The local tracker is added to the
// output tracker before the function returns.
uvm_tracker_t local_tracker = UVM_TRACKER_INIT();
// Local tracker is used when this function is called to map allocations
// other than external allocations. Otherwise, the external allocations
// use their own tracker.
if (ext_gpu_map)
tracker = &ext_gpu_map->tracker;
else
tracker = &local_tracker;
UVM_ASSERT(gpu_va_space);
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_EXTERNAL || va_range->type == UVM_VA_RANGE_TYPE_CHANNEL);
UVM_ASSERT(IS_ALIGNED(mem_info->size, mem_info->pageSize));
UVM_ASSERT(out_tracker);
page_tree = &gpu_va_space->page_tables;
UVM_ASSERT(uvm_mmu_page_size_supported(page_tree, mem_info->pageSize));
if (va_range->type == UVM_VA_RANGE_TYPE_EXTERNAL) {
// We should be never called with ext_gpu_map == NULL
// and UVM_VA_RANGE_TYPE_EXTERNAL
UVM_ASSERT(ext_gpu_map != NULL);
node = &ext_gpu_map->node;
pt_range_vec = &ext_gpu_map->pt_range_vec;
}
else {
node = &va_range->node;
pt_range_vec = &va_range->channel.pt_range_vec;
}
if (map_offset + uvm_range_tree_node_size(node) > mem_info->size)
return NV_ERR_INVALID_OFFSET;
UVM_ASSERT(IS_ALIGNED(node->start, mem_info->pageSize) &&
IS_ALIGNED(node->end + 1, mem_info->pageSize) &&
IS_ALIGNED(map_offset, mem_info->pageSize));
status = uvm_pte_buffer_init(va_range,
mapping_gpu,
map_rm_params,
uvm_range_tree_node_size(node),
mem_info->pageSize,
&pte_buffer);
if (status != NV_OK)
return status;
// Allocate all page tables for this VA range.
//
// TODO: Bug 1766649: Benchmark to see if we get any performance improvement
// from parallelizing page range allocation with writing PTEs for
// earlier ranges.
status = uvm_page_table_range_vec_init(page_tree,
node->start,
uvm_range_tree_node_size(node),
mem_info->pageSize,
UVM_PMM_ALLOC_FLAGS_EVICT,
pt_range_vec);
if (status != NV_OK)
goto out;
addr = node->start;
for (i = 0; i < pt_range_vec->range_count; i++) {
pt_range = &pt_range_vec->ranges[i];
// External allocations track pushes in their own trackers. User channel
// mappings don't have their own trackers, so for those the local tracker
// is used.
status = map_rm_pt_range(page_tree,
pt_range,
&pte_buffer,
node,
ext_gpu_map ? ext_gpu_map->mem_handle->rm_handle : 0,
addr,
map_offset,
tracker);
if (status != NV_OK)
goto out;
size = uvm_page_table_range_size(pt_range);
addr += size;
map_offset += size;
}
status = uvm_tracker_add_tracker(out_tracker, tracker);
out:
if (status != NV_OK) {
// We could have any number of mappings in flight to these page tables,
// so wait for everything before we clear and free them.
if (uvm_tracker_wait(tracker) != NV_OK) {
// System-fatal error. Just leak.
return status;
}
if (pt_range_vec->ranges) {
uvm_page_table_range_vec_clear_ptes(pt_range_vec, va_range_downgrade_membar(va_range, ext_gpu_map));
uvm_page_table_range_vec_deinit(pt_range_vec);
}
}
uvm_pte_buffer_deinit(&pte_buffer);
uvm_tracker_deinit(&local_tracker);
return status;
}
static bool uvm_api_mapping_type_invalid(UvmGpuMappingType map_type)
{
BUILD_BUG_ON((int)UvmGpuMappingTypeDefault != (int)UvmRmGpuMappingTypeDefault);
BUILD_BUG_ON((int)UvmGpuMappingTypeReadWriteAtomic != (int)UvmRmGpuMappingTypeReadWriteAtomic);
BUILD_BUG_ON((int)UvmGpuMappingTypeReadWrite != (int)UvmRmGpuMappingTypeReadWrite);
BUILD_BUG_ON((int)UvmGpuMappingTypeReadOnly != (int)UvmRmGpuMappingTypeReadOnly);
BUILD_BUG_ON((int)UvmGpuMappingTypeCount != (int)UvmRmGpuMappingTypeCount);
switch (map_type) {
case UvmGpuMappingTypeDefault:
case UvmGpuMappingTypeReadWriteAtomic:
case UvmGpuMappingTypeReadWrite:
case UvmGpuMappingTypeReadOnly:
return false;
default:
return true;
}
}
static bool uvm_api_caching_type_invalid(UvmGpuCachingType cache_type)
{
BUILD_BUG_ON((int)UvmGpuCachingTypeDefault != (int)UvmRmGpuCachingTypeDefault);
BUILD_BUG_ON((int)UvmGpuCachingTypeForceUncached != (int)UvmRmGpuCachingTypeForceUncached);
BUILD_BUG_ON((int)UvmGpuCachingTypeForceCached != (int)UvmRmGpuCachingTypeForceCached);
BUILD_BUG_ON((int)UvmGpuCachingTypeCount != (int)UvmRmGpuCachingTypeCount);
switch (cache_type) {
case UvmGpuCachingTypeDefault:
case UvmGpuCachingTypeForceUncached:
case UvmGpuCachingTypeForceCached:
return false;
default:
return true;
}
}
static bool uvm_api_kind_type_invalid(UvmGpuFormatType format_type,
UvmGpuFormatElementBits element_bits,
UvmGpuCompressionType compression_type)
{
BUILD_BUG_ON((int)UvmGpuFormatTypeDefault != (int)UvmRmGpuFormatTypeDefault);
BUILD_BUG_ON((int)UvmGpuFormatTypeBlockLinear != (int)UvmRmGpuFormatTypeBlockLinear);
BUILD_BUG_ON((int)UvmGpuFormatTypeCount != (int)UvmRmGpuFormatTypeCount);
BUILD_BUG_ON((int)UvmGpuFormatElementBitsDefault != (int)UvmRmGpuFormatElementBitsDefault);
BUILD_BUG_ON((int)UvmGpuFormatElementBits8 != (int)UvmRmGpuFormatElementBits8);
BUILD_BUG_ON((int)UvmGpuFormatElementBits16 != (int)UvmRmGpuFormatElementBits16);
BUILD_BUG_ON((int)UvmGpuFormatElementBits32 != (int)UvmRmGpuFormatElementBits32);
BUILD_BUG_ON((int)UvmGpuFormatElementBits64 != (int)UvmRmGpuFormatElementBits64);
BUILD_BUG_ON((int)UvmGpuFormatElementBits128 != (int)UvmRmGpuFormatElementBits128);
BUILD_BUG_ON((int)UvmGpuFormatElementBitsCount != (int)UvmRmGpuFormatElementBitsCount);
BUILD_BUG_ON((int)UvmGpuCompressionTypeDefault != (int)UvmRmGpuCompressionTypeDefault);
BUILD_BUG_ON((int)UvmGpuCompressionTypeEnabledNoPlc != (int)UvmRmGpuCompressionTypeEnabledNoPlc);
BUILD_BUG_ON((int)UvmGpuCompressionTypeCount != (int)UvmRmGpuCompressionTypeCount);
if (compression_type >= UvmGpuCompressionTypeCount)
return true;
switch (format_type) {
case UvmGpuFormatTypeDefault:
case UvmGpuFormatTypeBlockLinear:
break;
default:
return true;
}
switch (element_bits) {
case UvmGpuFormatElementBitsDefault:
case UvmGpuFormatElementBits8:
case UvmGpuFormatElementBits16:
// CUDA does not support 24-bit width
case UvmGpuFormatElementBits32:
case UvmGpuFormatElementBits64:
case UvmGpuFormatElementBits128:
break;
default:
return true;
}
if (((format_type != UvmGpuFormatTypeDefault) && (element_bits == UvmGpuFormatElementBitsDefault)) ||
((element_bits != UvmGpuFormatElementBitsDefault) && (format_type == UvmGpuFormatTypeDefault)))
return true;
return false;
}
static void uvm_release_rm_handle(struct nv_kref *ref)
{
uvm_ext_gpu_mem_handle *mem_handle = container_of(ref, uvm_ext_gpu_mem_handle, ref_count);
if (mem_handle->rm_handle) {
NV_STATUS status;
status = uvm_rm_locked_call(nvUvmInterfaceFreeDupedHandle(uvm_gpu_device_handle(mem_handle->gpu),
mem_handle->rm_handle));
UVM_ASSERT(status == NV_OK);
}
uvm_kvfree(mem_handle);
}
static NV_STATUS uvm_create_external_range(uvm_va_space_t *va_space, UVM_CREATE_EXTERNAL_RANGE_PARAMS *params)
{
uvm_va_range_t *va_range = NULL;
struct mm_struct *mm;
NV_STATUS status = NV_OK;
// Before we know the page size used by the allocation, we can only enforce
// 4K alignment as that's the minimum page size used for GPU allocations.
// Later uvm_map_external_allocation_on_gpu() will enforce alignment to the
// page size used by the allocation.
if (uvm_api_range_invalid_4k(params->base, params->length))
return NV_ERR_INVALID_ADDRESS;
// The mm needs to be locked in order to remove stale HMM va_blocks.
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_write(va_space);
// Create the new external VA range.
// uvm_va_range_create_external handles any collisions when it attempts to
// insert the new range into the va_space range tree.
status = uvm_va_range_create_external(va_space, mm, params->base, params->length, &va_range);
if (status != NV_OK) {
UVM_DBG_PRINT_RL("Failed to create external VA range [0x%llx, 0x%llx)\n",
params->base,
params->base + params->length);
}
uvm_va_space_up_write(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return status;
}
NV_STATUS uvm_api_create_external_range(UVM_CREATE_EXTERNAL_RANGE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_create_external_range(va_space, params);
}
static NV_STATUS set_ext_gpu_map_location(uvm_ext_gpu_map_t *ext_gpu_map,
uvm_va_space_t *va_space,
uvm_gpu_t *mapping_gpu,
const UvmGpuMemoryInfo *mem_info)
{
uvm_gpu_t *owning_gpu;
if (!mem_info->deviceDescendant && !mem_info->sysmem) {
ext_gpu_map->owning_gpu = NULL;
ext_gpu_map->is_sysmem = false;
return NV_OK;
}
// This is a local or peer allocation, so the owning GPU must have been
// registered.
owning_gpu = uvm_va_space_get_gpu_by_uuid(va_space, &mem_info->uuid);
if (!owning_gpu)
return NV_ERR_INVALID_DEVICE;
// Even if the allocation is in sysmem then it still matters which GPU owns
// it, because our dup is not enough to keep the owning GPU around and that
// exposes a bug in RM where the memory can outlast the GPU and then cause
// crashes when it's eventually freed.
// TODO: Bug 1811006: Bug tracking the RM issue, its fix might change the
// semantics of sysmem allocations.
if (mem_info->sysmem) {
ext_gpu_map->owning_gpu = owning_gpu;
ext_gpu_map->is_sysmem = true;
return NV_OK;
}
if (owning_gpu != mapping_gpu) {
// TODO: Bug 1757136: In SLI, the returned UUID may be different but a
// local mapping must be used. We need to query SLI groups to know
// that.
if (!uvm_va_space_peer_enabled(va_space, mapping_gpu, owning_gpu))
return NV_ERR_INVALID_DEVICE;
}
ext_gpu_map->owning_gpu = owning_gpu;
ext_gpu_map->is_sysmem = false;
return NV_OK;
}
static uvm_ext_gpu_map_t *uvm_va_range_ext_gpu_map(uvm_va_range_t *va_range, uvm_gpu_t *mapping_gpu, NvU64 addr)
{
uvm_ext_gpu_map_t *ext_gpu_map = NULL;
uvm_range_tree_node_t *node;
uvm_ext_gpu_range_tree_t *range_tree;
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_EXTERNAL);
uvm_assert_rwsem_locked(&va_range->va_space->lock);
range_tree = uvm_ext_gpu_range_tree(va_range, mapping_gpu);
if (uvm_processor_mask_test(&va_range->external.mapped_gpus, mapping_gpu->id)) {
UVM_ASSERT(!uvm_range_tree_empty(&range_tree->tree));
node = uvm_range_tree_find(&range_tree->tree, addr);
if (node) {
ext_gpu_map = uvm_ext_gpu_map_container(node);
UVM_ASSERT(ext_gpu_map->gpu == mapping_gpu);
}
}
else {
UVM_ASSERT(uvm_range_tree_empty(&range_tree->tree));
}
return ext_gpu_map;
}
static NV_STATUS uvm_ext_gpu_map_split(uvm_range_tree_t *tree,
uvm_ext_gpu_map_t *existing_map,
NvU64 new_end,
uvm_ext_gpu_map_t **new_map)
{
uvm_ext_gpu_map_t *new;
NV_STATUS status;
NvU64 new_start = new_end + 1;
if (!IS_ALIGNED(new_start, existing_map->pt_range_vec.page_size))
return NV_ERR_INVALID_ADDRESS;
UVM_ASSERT(new_start >= existing_map->node.start && new_start < existing_map->node.end);
new = uvm_kvmalloc_zero(sizeof(*new));
if (!new)
return NV_ERR_NO_MEMORY;
RB_CLEAR_NODE(&new->node.rb_node);
new->mem_handle = existing_map->mem_handle;
new->gpu = existing_map->gpu;
new->owning_gpu = existing_map->owning_gpu;
new->is_sysmem = existing_map->is_sysmem;
// Initialize the new ext_gpu_map tracker as a copy of the existing_map tracker.
// This way, any operations on any of the two ext_gpu_maps will be able to
// wait for any uncompleted work prior to the split.
status = uvm_tracker_init_from(&new->tracker, &existing_map->tracker);
if (status != NV_OK) {
uvm_kvfree(new);
return status;
}
status = uvm_page_table_range_vec_split_upper(&existing_map->pt_range_vec, new_start - 1, &new->pt_range_vec);
if (status != NV_OK) {
uvm_tracker_deinit(&new->tracker);
uvm_kvfree(new);
return status;
}
new->node.start = new_start;
// Sparse mappings don't have actual allocations.
if (new->mem_handle)
nv_kref_get(&new->mem_handle->ref_count);
uvm_range_tree_split(tree, &existing_map->node, &new->node);
if (new_map)
*new_map = new;
return NV_OK;
}
static NV_STATUS uvm_unmap_external_in_range(uvm_va_range_t *va_range,
uvm_gpu_t *gpu,
NvU64 start,
NvU64 end,
struct list_head *deferred_list)
{
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, gpu);
uvm_ext_gpu_map_t *ext_map, *ext_map_next = NULL;
NV_STATUS status = NV_OK;
uvm_assert_mutex_locked(&range_tree->lock);
// If a previously existing sub-range is found (ext_map != NULL), the
// new sub-range can be overlapping with the existing one in one of the
// following ways:
//
// 1. complete overlap (exact start and end boundary match is special
// cases of this):
// [---- existing ----]
// [---- new ----]
// 2. partial overlap at the start (end boundary match is a special case
// of this):
// [---- existing ----]
// [---- new ----]
// 3. partial overlap at the end (start boundary match is a special case
// of this):
// [---- existing ----]
// [---- new ----]
// 4. completely contained (start of new != start of existing and end of
// new != end of existing, otherwise see 1):
// [---- existing ----]
// [-- new --]
//
// The algorithm below is:
// 1. If the start of the new mapping is greater than the start of the
// existing mapping, split the existing mapping at start. The newly
// created uvm_ext_gpu_map_t will be inserted into the tree. Note that
// the newly created uvm_ext_gpu_map_t is the one that we want to visit
// next. When the loop visits the newly created uvm_ext_gpu_map_t and
// its boundaries are completely overlapped by the new mapping, it will
// cause the algorithm to destroy it.
// 2. If the end of the new mapping is less than the end of the existing
// mapping, split the existing mapping at end. The newly created
// uvm_ext_gpu_map_t will be inserted into the tree. The overlapping
// portion of the existing mapping will be destroyed.
// 3. If the existing mapping is completely overlapped by the new mapping,
// the existing mapping is destroyed.
//
// The loop cannot use any of the existing iterators because:
// 1. It needs to be able to destroy ext_gpu_map structures. This means it
// can't use non-safe iterators.
// 2. It needs to visit newly created uvm_ext_gpu_map_t, as a result of
// splits. This means it can't use safe iterators as they will skip the
// newly created uvm_ext_gpu_map_t.
ext_map = uvm_ext_gpu_map_iter_first(va_range, gpu, start, end);
while (ext_map) {
if (start > ext_map->node.start) {
status = uvm_ext_gpu_map_split(&range_tree->tree, ext_map, start - 1, &ext_map_next);
if (status != NV_OK)
break;
}
else {
if (end < ext_map->node.end) {
status = uvm_ext_gpu_map_split(&range_tree->tree, ext_map, end, NULL);
if (status != NV_OK)
break;
ext_map_next = NULL;
}
else {
ext_map_next = uvm_ext_gpu_map_iter_next(va_range, ext_map, end);
}
uvm_ext_gpu_map_destroy(va_range, ext_map, deferred_list);
}
ext_map = ext_map_next;
}
return status;
}
static NV_STATUS uvm_map_external_allocation_on_gpu(uvm_va_range_t *va_range,
uvm_gpu_t *mapping_gpu,
const uvm_rm_user_object_t *user_rm_mem,
const uvm_map_rm_params_t *map_rm_params,
NvU64 base,
NvU64 length,
uvm_tracker_t *out_tracker)
{
uvm_va_space_t *va_space = va_range->va_space;
uvm_ext_gpu_map_t *ext_gpu_map = NULL;
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, mapping_gpu);
UvmGpuMemoryInfo mem_info;
uvm_gpu_va_space_t *gpu_va_space = uvm_gpu_va_space_get(va_space, mapping_gpu);
NvU32 mapping_page_size;
NvU64 alignments;
NvU32 smallest_alignment;
NV_STATUS status;
uvm_assert_rwsem_locked_read(&va_space->lock);
if ((map_rm_params->compression_type == UvmGpuCompressionTypeEnabledNoPlc) && !mapping_gpu->parent->plc_supported)
return NV_ERR_INVALID_DEVICE;
// Check if the GPU can access the VA
if (!uvm_gpu_can_address(mapping_gpu, base, length))
return NV_ERR_OUT_OF_RANGE;
uvm_mutex_lock(&range_tree->lock);
status = uvm_unmap_external_in_range(va_range, mapping_gpu, base, base + length - 1, NULL);
if (status != NV_OK)
goto error;
ext_gpu_map = uvm_kvmalloc_zero(sizeof(*ext_gpu_map));
if (!ext_gpu_map) {
status = NV_ERR_NO_MEMORY;
goto error;
}
// Insert the ext_gpu_map into the VA range immediately since some of the
// below calls require it to be there.
ext_gpu_map->node.start = base;
ext_gpu_map->node.end = base + length - 1;
RB_CLEAR_NODE(&ext_gpu_map->node.rb_node);
uvm_tracker_init(&ext_gpu_map->tracker);
ext_gpu_map->mem_handle = uvm_kvmalloc_zero(sizeof(*ext_gpu_map->mem_handle));
if (!ext_gpu_map->mem_handle) {
status = NV_ERR_NO_MEMORY;
goto error;
}
// Due to the fact that any overlapping mappings were already unmapped,
// adding the new mapping to the tree cannot fail.
status = uvm_range_tree_add(&range_tree->tree, &ext_gpu_map->node);
UVM_ASSERT(status == NV_OK);
uvm_processor_mask_set_atomic(&va_range->external.mapped_gpus, mapping_gpu->id);
ext_gpu_map->gpu = mapping_gpu;
ext_gpu_map->mem_handle->gpu = mapping_gpu;
nv_kref_init(&ext_gpu_map->mem_handle->ref_count);
// Error paths after this point may call uvm_va_range_ext_gpu_map, so do a
// sanity check now to make sure it doesn't trigger any asserts.
UVM_ASSERT(uvm_va_range_ext_gpu_map(va_range, mapping_gpu, base) == ext_gpu_map);
// Dup the memory. This verifies the input handles, takes a ref count on the
// physical allocation so it can't go away under us, and returns us the
// allocation info.
status = uvm_rm_locked_call(nvUvmInterfaceDupMemory(uvm_gpu_device_handle(mapping_gpu),
user_rm_mem->user_client,
user_rm_mem->user_object,
&ext_gpu_map->mem_handle->rm_handle,
&mem_info));
if (status != NV_OK) {
UVM_DBG_PRINT("Failed to dup memory handle {0x%x, 0x%x}: %s, GPU: %s\n",
user_rm_mem->user_client,
user_rm_mem->user_object,
nvstatusToString(status),
uvm_gpu_name(mapping_gpu));
goto error;
}
status = set_ext_gpu_map_location(ext_gpu_map, va_space, mapping_gpu, &mem_info);
if (status != NV_OK)
goto error;
// Determine the proper mapping page size.
// This will be the largest supported page size less than or equal to the
// smallest of the base VA address, length, offset, and allocation page size
// alignments.
alignments = mem_info.pageSize | base | length | map_rm_params->map_offset;
smallest_alignment = alignments & ~(alignments - 1);
// Check that alignment bits did not get truncated.
UVM_ASSERT(smallest_alignment);
mapping_page_size = uvm_mmu_biggest_page_size_up_to(&gpu_va_space->page_tables, smallest_alignment);
if (!mapping_page_size) {
status = NV_ERR_INVALID_ADDRESS;
goto error;
}
mem_info.pageSize = mapping_page_size;
status = uvm_va_range_map_rm_allocation(va_range, mapping_gpu, &mem_info, map_rm_params, ext_gpu_map, out_tracker);
if (status != NV_OK)
goto error;
uvm_mutex_unlock(&range_tree->lock);
return NV_OK;
error:
uvm_ext_gpu_map_destroy(va_range, ext_gpu_map, NULL);
uvm_mutex_unlock(&range_tree->lock);
return status;
}
// Actual implementation of UvmMapExternalAllocation
static NV_STATUS uvm_map_external_allocation(uvm_va_space_t *va_space, UVM_MAP_EXTERNAL_ALLOCATION_PARAMS *params)
{
uvm_va_range_t *va_range = NULL;
uvm_gpu_t *mapping_gpu;
uvm_processor_mask_t mapped_gpus;
NV_STATUS status = NV_OK;
size_t i;
uvm_map_rm_params_t map_rm_params;
uvm_rm_user_object_t user_rm_mem =
{
.rm_control_fd = params->rmCtrlFd,
.user_client = params->hClient,
.user_object = params->hMemory
};
uvm_tracker_t tracker = UVM_TRACKER_INIT();
if (uvm_api_range_invalid_4k(params->base, params->length))
return NV_ERR_INVALID_ADDRESS;
if (params->gpuAttributesCount == 0 || params->gpuAttributesCount > UVM_MAX_GPUS)
return NV_ERR_INVALID_ARGUMENT;
uvm_va_space_down_read_rm(va_space);
va_range = uvm_va_range_find(va_space, params->base);
if (!va_range ||
va_range->type != UVM_VA_RANGE_TYPE_EXTERNAL ||
va_range->node.end < params->base + params->length - 1) {
uvm_va_space_up_read_rm(va_space);
return NV_ERR_INVALID_ADDRESS;
}
uvm_processor_mask_zero(&mapped_gpus);
for (i = 0; i < params->gpuAttributesCount; i++) {
if (uvm_api_mapping_type_invalid(params->perGpuAttributes[i].gpuMappingType) ||
uvm_api_caching_type_invalid(params->perGpuAttributes[i].gpuCachingType) ||
uvm_api_kind_type_invalid(params->perGpuAttributes[i].gpuFormatType,
params->perGpuAttributes[i].gpuElementBits,
params->perGpuAttributes[i].gpuCompressionType)) {
status = NV_ERR_INVALID_ARGUMENT;
goto error;
}
mapping_gpu = uvm_va_space_get_gpu_by_uuid_with_gpu_va_space(va_space, ¶ms->perGpuAttributes[i].gpuUuid);
if (!mapping_gpu) {
status = NV_ERR_INVALID_DEVICE;
goto error;
}
// Use a tracker to get as much parallelization as possible among GPUs,
// so one GPU can have its PTE writes in flight while we're working on
// the next one.
map_rm_params.map_offset = params->offset;
map_rm_params.mapping_type = params->perGpuAttributes[i].gpuMappingType;
map_rm_params.caching_type = params->perGpuAttributes[i].gpuCachingType;
map_rm_params.format_type = params->perGpuAttributes[i].gpuFormatType;
map_rm_params.element_bits = params->perGpuAttributes[i].gpuElementBits;
map_rm_params.compression_type = params->perGpuAttributes[i].gpuCompressionType;
status = uvm_map_external_allocation_on_gpu(va_range,
mapping_gpu,
&user_rm_mem,
&map_rm_params,
params->base,
params->length,
&tracker);
if (status != NV_OK)
goto error;
uvm_processor_mask_set(&mapped_gpus, mapping_gpu->id);
}
// Wait for outstanding page table operations to finish across all GPUs. We
// just need to hold the VA space lock to prevent the GPUs on which we're
// waiting from getting unregistered underneath us.
status = uvm_tracker_wait_deinit(&tracker);
uvm_va_space_up_read_rm(va_space);
return status;
error:
// We still have to wait for page table writes to finish, since the teardown
// could free them.
(void)uvm_tracker_wait_deinit(&tracker);
// Tear down only those mappings we created during this call
for_each_va_space_gpu_in_mask(mapping_gpu, va_space, &mapped_gpus) {
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, mapping_gpu);
uvm_ext_gpu_map_t *ext_map, *ext_map_next;
uvm_mutex_lock(&range_tree->lock);
uvm_ext_gpu_map_for_each_in_safe(ext_map,
ext_map_next,
va_range,
mapping_gpu,
params->base,
params->base + params->length - 1)
uvm_ext_gpu_map_destroy(va_range, ext_map, NULL);
uvm_mutex_unlock(&range_tree->lock);
}
uvm_va_space_up_read_rm(va_space);
return status;
}
NV_STATUS uvm_api_map_external_allocation(UVM_MAP_EXTERNAL_ALLOCATION_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_map_external_allocation(va_space, params);
}
static NvU64 external_sparse_pte_maker(uvm_page_table_range_vec_t *range_vec, NvU64 offset, void *caller_data)
{
return range_vec->tree->hal->make_sparse_pte();
}
static NV_STATUS uvm_map_external_sparse_on_gpu(uvm_va_range_t *va_range,
uvm_gpu_t *mapping_gpu,
NvU64 base,
NvU64 length,
struct list_head *deferred_free_list)
{
uvm_va_space_t *va_space = va_range->va_space;
uvm_ext_gpu_map_t *ext_gpu_map = NULL;
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, mapping_gpu);
uvm_gpu_va_space_t *gpu_va_space = uvm_gpu_va_space_get(va_space, mapping_gpu);
uvm_page_tree_t *page_tree;
NV_STATUS status;
uvm_assert_rwsem_locked(&va_space->lock);
if (!uvm_gpu_can_address(mapping_gpu, base, length))
return NV_ERR_OUT_OF_RANGE;
UVM_ASSERT(gpu_va_space);
page_tree = &gpu_va_space->page_tables;
uvm_mutex_lock(&range_tree->lock);
status = uvm_unmap_external_in_range(va_range, mapping_gpu, base, base + length - 1, deferred_free_list);
if (status != NV_OK)
goto error;
ext_gpu_map = uvm_kvmalloc_zero(sizeof(*ext_gpu_map));
if (!ext_gpu_map) {
status = NV_ERR_NO_MEMORY;
goto error;
}
ext_gpu_map->node.start = base;
ext_gpu_map->node.end = base + length - 1;
RB_CLEAR_NODE(&ext_gpu_map->node.rb_node);
uvm_tracker_init(&ext_gpu_map->tracker);
// Due to the fact that any overlapping mappings were already unmapped,
// adding the new mapping to the tree cannot fail.
status = uvm_range_tree_add(&range_tree->tree, &ext_gpu_map->node);
UVM_ASSERT(status == NV_OK);
uvm_processor_mask_set_atomic(&va_range->external.mapped_gpus, mapping_gpu->id);
ext_gpu_map->gpu = mapping_gpu;
UVM_ASSERT(uvm_va_range_ext_gpu_map(va_range, mapping_gpu, base) == ext_gpu_map);
status = uvm_page_table_range_vec_init(page_tree,
ext_gpu_map->node.start,
uvm_range_tree_node_size(&ext_gpu_map->node),
UVM_PAGE_SIZE_64K,
UVM_PMM_ALLOC_FLAGS_EVICT,
&ext_gpu_map->pt_range_vec);
if (status != NV_OK)
goto error;
status = uvm_page_table_range_vec_write_ptes(&ext_gpu_map->pt_range_vec,
UVM_MEMBAR_NONE,
external_sparse_pte_maker,
NULL);
if (status != NV_OK)
goto error;
uvm_mutex_unlock(&range_tree->lock);
return NV_OK;
error:
uvm_ext_gpu_map_destroy(va_range, ext_gpu_map, NULL);
uvm_mutex_unlock(&range_tree->lock);
return status;
}
static NV_STATUS uvm_map_external_sparse(uvm_va_space_t *va_space, UVM_MAP_EXTERNAL_SPARSE_PARAMS *params)
{
uvm_va_range_t *va_range = NULL;
uvm_gpu_t *mapping_gpu = NULL;
NV_STATUS status = NV_OK;
LIST_HEAD(deferred_free_list);
if (uvm_api_range_invalid_64k(params->base, params->length))
return NV_ERR_INVALID_ADDRESS;
uvm_va_space_down_read(va_space);
va_range = uvm_va_range_find(va_space, params->base);
if (!va_range ||
va_range->type != UVM_VA_RANGE_TYPE_EXTERNAL ||
va_range->node.end < params->base + params->length - 1) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
mapping_gpu = uvm_va_space_get_gpu_by_uuid_with_gpu_va_space(va_space, ¶ms->gpuUuid);
if (!mapping_gpu) {
status = NV_ERR_INVALID_DEVICE;
goto out;
}
// Sparse mappings are unsupported on GPUs prior to Pascal.
if (!mapping_gpu->parent->sparse_mappings_supported) {
status = NV_ERR_INVALID_DEVICE;
goto out;
}
status = uvm_map_external_sparse_on_gpu(va_range, mapping_gpu, params->base, params->length, &deferred_free_list);
if (!list_empty(&deferred_free_list))
uvm_gpu_retain(mapping_gpu);
out:
uvm_va_space_up_read(va_space);
if (!list_empty(&deferred_free_list)) {
uvm_deferred_free_object_list(&deferred_free_list);
uvm_gpu_release(mapping_gpu);
}
return status;
}
NV_STATUS uvm_api_map_external_sparse(UVM_MAP_EXTERNAL_SPARSE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_map_external_sparse(va_space, params);
}
// Version of free which returns but doesn't release the owning GPU
static uvm_gpu_t *uvm_ext_gpu_map_free_internal(uvm_ext_gpu_map_t *ext_gpu_map)
{
uvm_gpu_t *owning_gpu;
if (!ext_gpu_map)
return NULL;
UVM_ASSERT(!ext_gpu_map->pt_range_vec.ranges);
if (ext_gpu_map->mem_handle)
nv_kref_put(&ext_gpu_map->mem_handle->ref_count, uvm_release_rm_handle);
owning_gpu = ext_gpu_map->owning_gpu;
uvm_kvfree(ext_gpu_map);
return owning_gpu;
}
void uvm_ext_gpu_map_free(uvm_ext_gpu_map_t *ext_gpu_map)
{
uvm_gpu_t *owning_gpu = uvm_ext_gpu_map_free_internal(ext_gpu_map);
if (owning_gpu)
uvm_gpu_release(owning_gpu);
}
void uvm_ext_gpu_map_destroy(uvm_va_range_t *va_range,
uvm_ext_gpu_map_t *ext_gpu_map,
struct list_head *deferred_free_list)
{
uvm_membar_t membar;
uvm_ext_gpu_range_tree_t *range_tree;
uvm_gpu_t *mapped_gpu;
if (!ext_gpu_map)
return;
(void)uvm_tracker_wait_deinit(&ext_gpu_map->tracker);
// The external map is inserted into the tree prior to the rest of the mapping
// steps. So, if it has not been inserted yet, there is nothing to clean up. Just
// free the memory.
if (RB_EMPTY_NODE(&ext_gpu_map->node.rb_node)) {
uvm_kvfree(ext_gpu_map->mem_handle);
uvm_kvfree(ext_gpu_map);
return;
}
mapped_gpu = ext_gpu_map->gpu;
range_tree = uvm_ext_gpu_range_tree(va_range, mapped_gpu);
uvm_assert_mutex_locked(&range_tree->lock);
UVM_ASSERT(uvm_gpu_va_space_get(va_range->va_space, mapped_gpu));
uvm_range_tree_remove(&range_tree->tree, &ext_gpu_map->node);
// Unmap the PTEs
if (ext_gpu_map->pt_range_vec.ranges) {
membar = va_range_downgrade_membar(va_range, ext_gpu_map);
uvm_page_table_range_vec_clear_ptes(&ext_gpu_map->pt_range_vec, membar);
uvm_page_table_range_vec_deinit(&ext_gpu_map->pt_range_vec);
}
if (deferred_free_list && ext_gpu_map->mem_handle) {
// If this is a GPU allocation, we have to prevent that GPU from going
// away until we've freed the handle.
if (ext_gpu_map->owning_gpu)
uvm_gpu_retain(ext_gpu_map->owning_gpu);
uvm_deferred_free_object_add(deferred_free_list,
&ext_gpu_map->deferred_free,
UVM_DEFERRED_FREE_OBJECT_TYPE_EXTERNAL_ALLOCATION);
}
else {
uvm_ext_gpu_map_free_internal(ext_gpu_map);
}
// Check if the sub-range tree is empty. Only then can the GPU be removed from
// the mapped_gpus bitmap.
if (uvm_range_tree_empty(&range_tree->tree))
uvm_processor_mask_clear_atomic(&va_range->external.mapped_gpus, mapped_gpu->id);
}
static NV_STATUS uvm_unmap_external(uvm_va_space_t *va_space,
NvU64 base,
NvU64 length,
const NvProcessorUuid *gpu_uuid)
{
uvm_va_range_t *va_range;
uvm_gpu_t *gpu = NULL;
NV_STATUS status = NV_OK;
uvm_ext_gpu_range_tree_t *range_tree;
LIST_HEAD(deferred_free_list);
if (uvm_api_range_invalid_4k(base, length))
return NV_ERR_INVALID_ADDRESS;
uvm_va_space_down_read(va_space);
va_range = uvm_va_range_find(va_space, base);
if (!va_range || va_range->type != UVM_VA_RANGE_TYPE_EXTERNAL || base + length - 1 > va_range->node.end) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
gpu = uvm_va_space_get_gpu_by_uuid(va_space, gpu_uuid);
if (!gpu) {
status = NV_ERR_INVALID_DEVICE;
goto out;
}
range_tree = uvm_ext_gpu_range_tree(va_range, gpu);
uvm_mutex_lock(&range_tree->lock);
status = uvm_unmap_external_in_range(va_range, gpu, base, base + length - 1, &deferred_free_list);
uvm_mutex_unlock(&range_tree->lock);
// If the deferred_free_list is not empty, retain the GPU which maps the
// allocation because it's the parent of dup_handle. The owning GPU (if any)
// is retained internally by the deferred free layer.
if (!list_empty(&deferred_free_list))
uvm_gpu_retain(gpu);
out:
uvm_va_space_up_read(va_space);
if (!list_empty(&deferred_free_list)) {
uvm_deferred_free_object_list(&deferred_free_list);
uvm_gpu_release(gpu);
}
return status;
}
NV_STATUS uvm_api_unmap_external(UVM_UNMAP_EXTERNAL_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_unmap_external(va_space, params->base, params->length, ¶ms->gpuUuid);
}
// This destroys VA ranges created by UvmMapExternalAllocation,
// UvmMapDynamicParallelismRegion, and UvmAllocSemaphorePool *only*. VA ranges
// created by UvmMemMap and UvmAlloc go through mmap/munmap.
static NV_STATUS uvm_free(uvm_va_space_t *va_space, NvU64 base, NvU64 length)
{
uvm_va_range_t *va_range;
NV_STATUS status = NV_OK;
uvm_global_processor_mask_t retained_mask;
LIST_HEAD(deferred_free_list);
if (uvm_api_range_invalid_4k(base, length))
return NV_ERR_INVALID_ADDRESS;
uvm_va_space_down_write(va_space);
// Non-managed ranges are defined to not require splitting, so a partial
// free attempt is an error.
//
// TODO: Bug 1763676: The length parameter may be needed for MPS. If not, it
// should be removed from the ioctl.
va_range = uvm_va_range_find(va_space, base);
if (!va_range ||
(va_range->type != UVM_VA_RANGE_TYPE_EXTERNAL &&
va_range->type != UVM_VA_RANGE_TYPE_SKED_REFLECTED &&
va_range->type != UVM_VA_RANGE_TYPE_SEMAPHORE_POOL) ||
va_range->node.start != base ||
va_range->node.end != base + length - 1) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
if ((va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL) &&
uvm_mem_mapped_on_cpu_user(va_range->semaphore_pool.mem)) {
// Semaphore pools must be first unmapped from the CPU with munmap to
// invalidate the vma.
status = NV_ERR_INVALID_ARGUMENT;
goto out;
}
if (va_range->type == UVM_VA_RANGE_TYPE_EXTERNAL) {
// External ranges may have deferred free work, so the GPUs may have to
// be retained. Construct the mask of all the GPUs that need to be
// retained.
uvm_va_space_global_gpus_in_mask(va_space, &retained_mask, &va_range->external.mapped_gpus);
}
uvm_va_range_destroy(va_range, &deferred_free_list);
// If there is deferred work, retain the required GPUs.
if (!list_empty(&deferred_free_list))
uvm_global_mask_retain(&retained_mask);
out:
uvm_va_space_up_write(va_space);
if (!list_empty(&deferred_free_list)) {
UVM_ASSERT(status == NV_OK);
uvm_deferred_free_object_list(&deferred_free_list);
uvm_global_mask_release(&retained_mask);
}
return status;
}
NV_STATUS uvm_api_free(UVM_FREE_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
return uvm_free(va_space, params->base, params->length);
}
|