1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
|
/*******************************************************************************
Copyright (c) 2016-2023 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_mem.h"
#include "uvm_hal_types.h"
#include "uvm_mmu.h"
#include "uvm_processors.h"
#include "uvm_va_space.h"
#include "uvm_gpu.h"
#include "uvm_global.h"
#include "uvm_kvmalloc.h"
#include "uvm_push.h"
#include "uvm_range_allocator.h"
#include "uvm_hal.h"
#include "uvm_linux.h"
static uvm_range_allocator_t g_free_ranges;
static bool g_mem_initialized;
NV_STATUS uvm_mem_global_init(void)
{
NV_STATUS status = uvm_range_allocator_init(UVM_MEM_VA_SIZE, &g_free_ranges);
if (status != NV_OK)
return status;
g_mem_initialized = true;
return NV_OK;
}
void uvm_mem_global_exit(void)
{
if (!g_mem_initialized)
return;
uvm_range_allocator_deinit(&g_free_ranges);
}
static bool vidmem_can_be_mapped(uvm_mem_t *vidmem, bool is_user_space)
{
UVM_ASSERT(uvm_mem_is_vidmem(vidmem));
// Mapping a vidmem allocation on a user VA space is currently unsupported,
// because there is no use case.
if (is_user_space)
return false;
return true;
}
static bool mem_can_be_mapped_on_cpu(uvm_mem_t *mem, bool is_user_space)
{
if (uvm_mem_is_sysmem(mem))
return true;
if (!vidmem_can_be_mapped(mem, is_user_space))
return false;
return mem->backing_gpu->mem_info.numa.enabled && PAGE_ALIGNED(mem->chunk_size);
}
static bool mem_can_be_mapped_on_cpu_kernel(uvm_mem_t *mem)
{
return mem_can_be_mapped_on_cpu(mem, false);
}
static bool mem_can_be_mapped_on_cpu_user(uvm_mem_t *mem)
{
return mem_can_be_mapped_on_cpu(mem, true);
}
static bool sysmem_can_be_mapped_on_gpu(uvm_mem_t *sysmem)
{
UVM_ASSERT(uvm_mem_is_sysmem(sysmem));
// In Confidential Computing, only unprotected memory can be mapped on the
// GPU
if (g_uvm_global.conf_computing_enabled)
return uvm_mem_is_sysmem_dma(sysmem);
return true;
}
static bool mem_can_be_mapped_on_gpu(uvm_mem_t *mem, uvm_gpu_t *gpu, bool is_user_space)
{
if (uvm_mem_is_sysmem(mem))
return sysmem_can_be_mapped_on_gpu(mem);
if (!vidmem_can_be_mapped(mem, is_user_space))
return false;
return uvm_mem_is_local_vidmem(mem, gpu);
}
static bool mem_can_be_mapped_on_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
return mem_can_be_mapped_on_gpu(mem, gpu, false);
}
static bool mem_can_be_mapped_on_gpu_user(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
return mem_can_be_mapped_on_gpu(mem, gpu, true);
}
bool uvm_mem_mapped_on_gpu_user(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
if (mem->user == NULL)
return false;
return uvm_global_processor_mask_test(&mem->user->mapped_on, gpu->global_id);
}
bool uvm_mem_mapped_on_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
return uvm_global_processor_mask_test(&mem->kernel.mapped_on, gpu->global_id);
}
bool uvm_mem_mapped_on_cpu_user(uvm_mem_t *mem)
{
if (mem->user == NULL)
return false;
return uvm_global_processor_mask_test(&mem->user->mapped_on, UVM_GLOBAL_ID_CPU);
}
bool uvm_mem_mapped_on_cpu_kernel(uvm_mem_t *mem)
{
return uvm_global_processor_mask_test(&mem->kernel.mapped_on, UVM_GLOBAL_ID_CPU);
}
static void mem_set_mapped_on_gpu_user(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(mem->user != NULL);
UVM_ASSERT(mem_can_be_mapped_on_gpu_user(mem, gpu));
UVM_ASSERT(!uvm_mem_mapped_on_gpu_user(mem, gpu));
uvm_global_processor_mask_set(&mem->user->mapped_on, gpu->global_id);
}
static void mem_set_mapped_on_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(mem_can_be_mapped_on_gpu_kernel(mem, gpu));
UVM_ASSERT(!uvm_mem_mapped_on_gpu_kernel(mem, gpu));
uvm_global_processor_mask_set(&mem->kernel.mapped_on, gpu->global_id);
}
static void mem_set_mapped_on_cpu_user(uvm_mem_t *mem)
{
UVM_ASSERT(mem->user != NULL);
UVM_ASSERT(mem_can_be_mapped_on_cpu_user(mem));
UVM_ASSERT(!uvm_mem_mapped_on_cpu_user(mem));
uvm_global_processor_mask_set(&mem->user->mapped_on, UVM_GLOBAL_ID_CPU);
}
static void mem_set_mapped_on_cpu_kernel(uvm_mem_t *mem)
{
UVM_ASSERT(mem_can_be_mapped_on_cpu_kernel(mem));
UVM_ASSERT(!uvm_mem_mapped_on_cpu_kernel(mem));
uvm_global_processor_mask_set(&mem->kernel.mapped_on, UVM_GLOBAL_ID_CPU);
}
static void mem_clear_mapped_on_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
uvm_global_processor_mask_clear(&mem->kernel.mapped_on, gpu->global_id);
}
static void mem_clear_mapped_on_gpu_user(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(mem->user != NULL);
uvm_global_processor_mask_clear(&mem->user->mapped_on, gpu->global_id);
}
static void mem_clear_mapped_on_cpu_user(uvm_mem_t *mem)
{
UVM_ASSERT(mem->user != NULL);
uvm_global_processor_mask_clear(&mem->user->mapped_on, UVM_GLOBAL_ID_CPU);
}
static void mem_clear_mapped_on_cpu_kernel(uvm_mem_t *mem)
{
uvm_global_processor_mask_clear(&mem->kernel.mapped_on, UVM_GLOBAL_ID_CPU);
}
static bool sysmem_mapped_on_gpu_phys(uvm_mem_t *sysmem, uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_mem_is_sysmem(sysmem));
return uvm_global_processor_mask_test(&sysmem->sysmem.mapped_on_phys, gpu->global_id);
}
static void sysmem_set_mapped_on_gpu_phys(uvm_mem_t *sysmem, uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_mem_is_sysmem(sysmem));
UVM_ASSERT(!sysmem_mapped_on_gpu_phys(sysmem, gpu));
uvm_global_processor_mask_set(&sysmem->sysmem.mapped_on_phys, gpu->global_id);
}
static void sysmem_clear_mapped_on_gpu_phys(uvm_mem_t *sysmem, uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_mem_is_sysmem(sysmem));
uvm_global_processor_mask_clear(&sysmem->sysmem.mapped_on_phys, gpu->global_id);
}
NV_STATUS uvm_mem_translate_gpu_attributes(const UvmGpuMappingAttributes *attrs,
uvm_va_space_t *va_space,
uvm_gpu_t **gpu_out,
uvm_mem_gpu_mapping_attrs_t *attrs_out)
{
uvm_gpu_t *gpu;
switch (attrs->gpuMappingType) {
case UvmGpuMappingTypeDefault:
break;
case UvmGpuMappingTypeReadWriteAtomic:
attrs_out->protection = UVM_PROT_READ_WRITE_ATOMIC;
break;
case UvmGpuMappingTypeReadWrite:
attrs_out->protection = UVM_PROT_READ_WRITE;
break;
case UvmGpuMappingTypeReadOnly:
attrs_out->protection = UVM_PROT_READ_ONLY;
break;
default:
return NV_ERR_INVALID_ARGUMENT;
}
switch (attrs->gpuCachingType) {
case UvmGpuCachingTypeDefault:
break;
case UvmGpuCachingTypeForceUncached:
attrs_out->is_cacheable = false;
break;
case UvmGpuCachingTypeForceCached:
attrs_out->is_cacheable = true;
break;
default:
return NV_ERR_INVALID_ARGUMENT;
}
gpu = uvm_va_space_get_gpu_by_uuid(va_space, &attrs->gpuUuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
if (gpu_out)
*gpu_out = gpu;
return NV_OK;
}
static struct page *uvm_virt_to_page(const void *addr)
{
if (virt_addr_valid(addr))
return virt_to_page(addr);
if (is_vmalloc_addr(addr))
return vmalloc_to_page(addr);
return NULL;
}
uvm_chunk_sizes_mask_t uvm_mem_kernel_chunk_sizes(uvm_gpu_t *gpu)
{
// Get the mmu mode hal directly as the internal address space tree has not
// been created yet.
uvm_mmu_mode_hal_t *hal = gpu->parent->arch_hal->mmu_mode_hal(gpu->big_page.internal_size);
NvU32 page_sizes = hal->page_sizes();
return (uvm_chunk_sizes_mask_t)(page_sizes & UVM_CHUNK_SIZES_MASK);
}
static NvU32 mem_pick_chunk_size(uvm_mem_t *mem)
{
NvU32 biggest_page_size;
NvU32 chunk_size;
if (uvm_mem_is_sysmem(mem))
return PAGE_SIZE;
biggest_page_size = uvm_mmu_biggest_page_size_up_to(&mem->backing_gpu->address_space_tree, UVM_CHUNK_SIZE_MAX);
if (mem->size < mem->backing_gpu->big_page.internal_size)
chunk_size = UVM_PAGE_SIZE_4K;
else if (mem->size < biggest_page_size)
chunk_size = mem->backing_gpu->big_page.internal_size;
else
chunk_size = biggest_page_size;
// When UVM_PAGE_SIZE_DEFAULT is used on NUMA-enabled GPUs, we force
// chunk_size to be PAGE_SIZE at least, to allow CPU mappings.
if (mem->backing_gpu->mem_info.numa.enabled)
chunk_size = max(chunk_size, (NvU32)PAGE_SIZE);
return chunk_size;
}
static NvU32 mem_pick_gpu_page_size(uvm_mem_t *mem, uvm_gpu_t *gpu, uvm_page_tree_t *gpu_page_tree)
{
if (uvm_mem_is_vidmem(mem)) {
// For vidmem allocations the chunk size is picked out of the supported
// page sizes and can be used directly.
return mem->chunk_size;
}
// For sysmem, check whether the GPU supports mapping it with large pages.
if (gpu->parent->can_map_sysmem_with_large_pages) {
// If it's supported, pick the largest page size not bigger than
// the chunk size.
return uvm_mmu_biggest_page_size_up_to(gpu_page_tree, mem->chunk_size);
}
// Otherwise just use 4K.
return UVM_PAGE_SIZE_4K;
}
static void mem_free_vidmem_chunks(uvm_mem_t *mem)
{
size_t i;
UVM_ASSERT(uvm_mem_is_vidmem(mem));
if (!mem->vidmem.chunks)
return;
for (i = 0; i < mem->chunks_count; ++i) {
// On allocation error PMM guarantees the chunks array to be zeroed so
// just check for NULL.
if (mem->vidmem.chunks[i] == NULL)
break;
uvm_pmm_gpu_free(&mem->backing_gpu->pmm, mem->vidmem.chunks[i], NULL);
}
uvm_kvfree(mem->vidmem.chunks);
mem->vidmem.chunks = NULL;
}
static void mem_free_sysmem_dma_chunks(uvm_mem_t *mem)
{
size_t i;
NvU32 gpu_index;
UVM_ASSERT(uvm_mem_is_sysmem_dma(mem));
gpu_index = uvm_global_id_gpu_index(mem->dma_owner->global_id);
if (!mem->sysmem.pages || !mem->sysmem.va)
goto end;
for (i = 0; i < mem->chunks_count; ++i) {
if (!mem->sysmem.va[i])
break;
uvm_gpu_dma_free_page(mem->dma_owner->parent,
mem->sysmem.va[i],
mem->sysmem.dma_addrs[gpu_index][i]);
}
end:
sysmem_clear_mapped_on_gpu_phys(mem, mem->dma_owner);
uvm_kvfree(mem->sysmem.dma_addrs[gpu_index]);
mem->sysmem.dma_addrs[gpu_index] = NULL;
uvm_kvfree(mem->sysmem.pages);
mem->sysmem.pages = NULL;
uvm_kvfree(mem->sysmem.va);
mem->sysmem.va = NULL;
}
static void mem_free_sysmem_chunks(uvm_mem_t *mem)
{
size_t i;
UVM_ASSERT(uvm_mem_is_sysmem(mem));
if (!mem->sysmem.pages)
return;
for (i = 0; i < mem->chunks_count; ++i) {
if (!mem->sysmem.pages[i])
break;
__free_pages(mem->sysmem.pages[i], get_order(mem->chunk_size));
}
uvm_kvfree(mem->sysmem.pages);
mem->sysmem.pages = NULL;
}
static void mem_free_chunks(uvm_mem_t *mem)
{
if (uvm_mem_is_vidmem(mem))
mem_free_vidmem_chunks(mem);
else if (uvm_mem_is_sysmem_dma(mem))
mem_free_sysmem_dma_chunks(mem);
else
mem_free_sysmem_chunks(mem);
}
static NV_STATUS mem_alloc_dma_addrs(uvm_mem_t *mem, const uvm_gpu_t *gpu)
{
NvU64 *dma_addrs = NULL;
NvU32 gpu_index = uvm_global_id_gpu_index(gpu->global_id);
dma_addrs = uvm_kvmalloc_zero(sizeof(*dma_addrs) * mem->chunks_count);
if (!dma_addrs)
return NV_ERR_NO_MEMORY;
mem->sysmem.dma_addrs[gpu_index] = dma_addrs;
return NV_OK;
}
static gfp_t sysmem_allocation_gfp_flags(int order, bool zero)
{
gfp_t gfp_flags = NV_UVM_GFP_FLAGS;
if (zero)
gfp_flags |= __GFP_ZERO;
// High-order page allocations require the __GFP_COMP flag to work with
// vm_insert_page.
if (order > 0)
gfp_flags |= __GFP_COMP;
return gfp_flags;
}
// This allocation is a non-protected memory allocation under Confidential
// Computing.
//
// There is a tighter coupling between allocation and mapping because of the
// allocator UVM must use. Hence, this function does the equivalent of
// uvm_mem_map_gpu_phys().
//
// In case of failure, the caller is required to handle cleanup by calling
// uvm_mem_free
static NV_STATUS mem_alloc_sysmem_dma_chunks(uvm_mem_t *mem, gfp_t gfp_flags)
{
size_t i;
NV_STATUS status;
NvU64 *dma_addrs;
UVM_ASSERT_MSG(mem->chunk_size == PAGE_SIZE,
"mem->chunk_size is 0x%x. PAGE_SIZE is only supported.",
mem->chunk_size);
UVM_ASSERT(uvm_mem_is_sysmem_dma(mem));
mem->sysmem.pages = uvm_kvmalloc_zero(sizeof(*mem->sysmem.pages) * mem->chunks_count);
mem->sysmem.va = uvm_kvmalloc_zero(sizeof(*mem->sysmem.va) * mem->chunks_count);
if (!mem->sysmem.pages || !mem->sysmem.va)
goto err_no_mem;
status = mem_alloc_dma_addrs(mem, mem->dma_owner);
if (status != NV_OK)
goto error;
dma_addrs = mem->sysmem.dma_addrs[uvm_global_id_gpu_index(mem->dma_owner->global_id)];
for (i = 0; i < mem->chunks_count; ++i) {
mem->sysmem.va[i] = uvm_gpu_dma_alloc_page(mem->dma_owner->parent, gfp_flags, &dma_addrs[i]);
if (!mem->sysmem.va[i])
goto err_no_mem;
mem->sysmem.pages[i] = uvm_virt_to_page(mem->sysmem.va[i]);
if (!mem->sysmem.pages[i])
goto err_no_mem;
}
sysmem_set_mapped_on_gpu_phys(mem, mem->dma_owner);
return NV_OK;
err_no_mem:
status = NV_ERR_NO_MEMORY;
error:
mem_free_sysmem_dma_chunks(mem);
return status;
}
// In case of failure, the caller is required to handle cleanup by calling
// uvm_mem_free
static NV_STATUS mem_alloc_sysmem_chunks(uvm_mem_t *mem, gfp_t gfp_flags)
{
size_t i;
int order;
UVM_ASSERT(uvm_mem_is_sysmem(mem) && !uvm_mem_is_sysmem_dma(mem));
mem->sysmem.pages = uvm_kvmalloc_zero(sizeof(*mem->sysmem.pages) * mem->chunks_count);
if (!mem->sysmem.pages)
return NV_ERR_NO_MEMORY;
order = get_order(mem->chunk_size);
for (i = 0; i < mem->chunks_count; ++i) {
mem->sysmem.pages[i] = alloc_pages(gfp_flags, order);
if (!mem->sysmem.pages[i])
return NV_ERR_NO_MEMORY;
}
return NV_OK;
}
// In case of failure, the caller is required to handle cleanup by calling
// uvm_mem_free
static NV_STATUS mem_alloc_vidmem_chunks(uvm_mem_t *mem, bool zero, bool is_unprotected)
{
NV_STATUS status;
uvm_pmm_gpu_memory_type_t mem_type;
UVM_ASSERT(uvm_mem_is_vidmem(mem));
// TODO: Bug 2446832: A non-zeroing request may not be obeyed because PMM
// does not support explicit allocation of non-zeroed (or zeroed) chunks.
//
// The zeroing case can be implemented even without resolving that bug, by
// clearing the chunks after PMM allocation. But this functionality has not
// been implemented, because the only expected use case is a memory that
// gets mapped on user space, and vidmem never is.
UVM_ASSERT(!zero);
mem->vidmem.chunks = uvm_kvmalloc_zero(mem->chunks_count * sizeof(*mem->vidmem.chunks));
if (!mem->vidmem.chunks)
return NV_ERR_NO_MEMORY;
// When CC is disabled the behavior is identical to that of PMM, and the
// protection flag is ignored (squashed by PMM internally).
if (is_unprotected)
mem_type = UVM_PMM_GPU_MEMORY_TYPE_KERNEL_UNPROTECTED;
else
mem_type = UVM_PMM_GPU_MEMORY_TYPE_KERNEL_PROTECTED;
status = uvm_pmm_gpu_alloc(&mem->backing_gpu->pmm,
mem->chunks_count,
mem->chunk_size,
mem_type,
UVM_PMM_ALLOC_FLAGS_NONE,
mem->vidmem.chunks,
NULL);
if (status != NV_OK) {
UVM_ERR_PRINT("uvm_pmm_gpu_alloc (count=%zd, size=0x%x) failed: %s\n",
mem->chunks_count,
mem->chunk_size,
nvstatusToString(status));
return status;
}
return NV_OK;
}
static NV_STATUS mem_alloc_chunks(uvm_mem_t *mem, struct mm_struct *mm, bool zero, bool is_unprotected)
{
if (uvm_mem_is_sysmem(mem)) {
gfp_t gfp_flags;
uvm_memcg_context_t memcg_context;
NV_STATUS status;
UVM_ASSERT(PAGE_ALIGNED(mem->chunk_size));
gfp_flags = sysmem_allocation_gfp_flags(get_order(mem->chunk_size), zero);
if (UVM_CGROUP_ACCOUNTING_SUPPORTED() && mm)
gfp_flags |= NV_UVM_GFP_FLAGS_ACCOUNT;
uvm_memcg_context_start(&memcg_context, mm);
if (uvm_mem_is_sysmem_dma(mem))
status = mem_alloc_sysmem_dma_chunks(mem, gfp_flags);
else
status = mem_alloc_sysmem_chunks(mem, gfp_flags);
uvm_memcg_context_end(&memcg_context);
return status;
}
return mem_alloc_vidmem_chunks(mem, zero, is_unprotected);
}
NV_STATUS uvm_mem_map_kernel(uvm_mem_t *mem, const uvm_global_processor_mask_t *mask)
{
uvm_gpu_t *gpu;
NV_STATUS status;
if (!mask)
return NV_OK;
if (uvm_global_processor_mask_test(mask, UVM_GLOBAL_ID_CPU)) {
status = uvm_mem_map_cpu_kernel(mem);
if (status != NV_OK)
return status;
}
for_each_global_gpu_in_mask(gpu, mask) {
status = uvm_mem_map_gpu_kernel(mem, gpu);
if (status != NV_OK)
return status;
}
return NV_OK;
}
NV_STATUS uvm_mem_alloc(const uvm_mem_alloc_params_t *params, uvm_mem_t **mem_out)
{
NV_STATUS status;
NvU64 physical_size;
uvm_mem_t *mem = NULL;
bool is_unprotected = false;
UVM_ASSERT(params->size > 0);
mem = uvm_kvmalloc_zero(sizeof(*mem));
if (mem == NULL)
return NV_ERR_NO_MEMORY;
mem->backing_gpu = params->backing_gpu;
mem->dma_owner = params->dma_owner;
UVM_ASSERT(!mem->dma_owner || !mem->backing_gpu);
mem->size = params->size;
mem->chunk_size = params->page_size;
if (mem->chunk_size == UVM_PAGE_SIZE_DEFAULT)
mem->chunk_size = mem_pick_chunk_size(mem);
UVM_ASSERT(mem->chunk_size > 0);
physical_size = UVM_ALIGN_UP(mem->size, mem->chunk_size);
mem->chunks_count = physical_size / mem->chunk_size;
if (params->is_unprotected)
UVM_ASSERT(uvm_mem_is_vidmem(mem));
is_unprotected = params->is_unprotected;
status = mem_alloc_chunks(mem, params->mm, params->zero, is_unprotected);
if (status != NV_OK)
goto error;
*mem_out = mem;
return NV_OK;
error:
uvm_mem_free(mem);
return status;
}
static NV_STATUS mem_init_user_mapping(uvm_mem_t *mem, uvm_va_space_t *user_va_space, void *user_addr)
{
UVM_ASSERT(user_va_space);
UVM_ASSERT(user_addr);
// If the user structure exists, the VA space and address should match
if (mem->user != NULL) {
UVM_ASSERT(mem->user->va_space == user_va_space);
UVM_ASSERT(mem->user->addr == user_addr);
return NV_OK;
}
UVM_ASSERT(IS_ALIGNED((NvU64)user_addr, mem->chunk_size));
UVM_ASSERT(uvm_mem_physical_size(mem) == mem->size);
mem->user = uvm_kvmalloc_zero(sizeof(*mem->user));
if (mem->user == NULL)
return NV_ERR_NO_MEMORY;
mem->user->va_space = user_va_space;
mem->user->addr = user_addr;
return NV_OK;
}
static void mem_deinit_user_mapping(uvm_mem_t *mem)
{
if (mem->user == NULL)
return;
if (!uvm_global_processor_mask_empty(&mem->user->mapped_on))
return;
uvm_kvfree(mem->user);
mem->user = NULL;
}
static NvU64 reserved_gpu_va(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(mem->kernel.range_alloc.aligned_start + uvm_mem_physical_size(mem) < gpu->parent->uvm_mem_va_size);
return gpu->parent->uvm_mem_va_base + mem->kernel.range_alloc.aligned_start;
}
static struct page *mem_cpu_page(uvm_mem_t *mem, NvU64 offset)
{
struct page *base_page = mem->sysmem.pages[offset / mem->chunk_size];
UVM_ASSERT_MSG(PAGE_ALIGNED(offset), "offset 0x%llx\n", offset);
offset = offset % mem->chunk_size;
return pfn_to_page(page_to_pfn(base_page) + offset / PAGE_SIZE);
}
static NV_STATUS mem_map_cpu_to_sysmem_kernel(uvm_mem_t *mem)
{
struct page **pages = mem->sysmem.pages;
size_t num_pages = uvm_mem_physical_size(mem) / PAGE_SIZE;
pgprot_t prot = PAGE_KERNEL;
UVM_ASSERT(uvm_mem_is_sysmem(mem));
// If chunk size is different than PAGE_SIZE then create a temporary array
// of all the pages to map so that vmap() can be used.
if (mem->chunk_size != PAGE_SIZE) {
size_t page_index;
pages = uvm_kvmalloc(sizeof(*pages) * num_pages);
if (!pages)
return NV_ERR_NO_MEMORY;
for (page_index = 0; page_index < num_pages; ++page_index)
pages[page_index] = mem_cpu_page(mem, page_index * PAGE_SIZE);
}
if (g_uvm_global.conf_computing_enabled && uvm_mem_is_sysmem_dma(mem))
prot = uvm_pgprot_decrypted(PAGE_KERNEL_NOENC);
mem->kernel.cpu_addr = vmap(pages, num_pages, VM_MAP, prot);
if (mem->chunk_size != PAGE_SIZE)
uvm_kvfree(pages);
if (!mem->kernel.cpu_addr)
return NV_ERR_NO_MEMORY;
return NV_OK;
}
static NV_STATUS mem_map_cpu_to_vidmem_kernel(uvm_mem_t *mem)
{
struct page **pages;
size_t num_chunk_pages = mem->chunk_size / PAGE_SIZE;
size_t num_pages = uvm_mem_physical_size(mem) / PAGE_SIZE;
size_t page_index;
size_t chunk_index;
UVM_ASSERT(uvm_mem_is_vidmem(mem));
pages = uvm_kvmalloc(sizeof(*pages) * num_pages);
if (!pages)
return NV_ERR_NO_MEMORY;
page_index = 0;
for (chunk_index = 0; chunk_index < mem->chunks_count; ++chunk_index) {
uvm_gpu_chunk_t *chunk = mem->vidmem.chunks[chunk_index];
struct page *page = uvm_gpu_chunk_to_page(&mem->backing_gpu->pmm, chunk);
size_t chunk_page_index;
for (chunk_page_index = 0; chunk_page_index < num_chunk_pages; ++chunk_page_index)
pages[page_index++] = page + chunk_page_index;
}
UVM_ASSERT(page_index == num_pages);
mem->kernel.cpu_addr = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
uvm_kvfree(pages);
if (!mem->kernel.cpu_addr)
return NV_ERR_NO_MEMORY;
return NV_OK;
}
void uvm_mem_unmap_cpu_kernel(uvm_mem_t *mem)
{
if (!uvm_mem_mapped_on_cpu_kernel(mem))
return;
vunmap(mem->kernel.cpu_addr);
mem->kernel.cpu_addr = NULL;
mem_clear_mapped_on_cpu_kernel(mem);
}
static NV_STATUS mem_map_cpu_to_sysmem_user(uvm_mem_t *mem, struct vm_area_struct *vma)
{
NV_STATUS status;
NvU64 offset;
UVM_ASSERT(mem->user != NULL);
UVM_ASSERT(uvm_mem_is_sysmem(mem));
uvm_assert_mmap_lock_locked(vma->vm_mm);
// TODO: Bug 1995015: high-order page allocations need to be allocated as
// compound pages in order to be able to use vm_insert_page on them. This
// is not currently being exercised because the only allocations using this
// are semaphore pools (which typically use a single page).
for (offset = 0; offset < uvm_mem_physical_size(mem); offset += PAGE_SIZE) {
int ret = vm_insert_page(vma, (unsigned long)mem->user->addr + offset, mem_cpu_page(mem, offset));
if (ret) {
UVM_ASSERT_MSG(ret == -ENOMEM, "ret: %d\n", ret);
status = errno_to_nv_status(ret);
goto error;
}
}
return NV_OK;
error:
unmap_mapping_range(mem->user->va_space->mapping, (size_t)mem->user->addr, uvm_mem_physical_size(mem), 1);
return status;
}
void uvm_mem_unmap_cpu_user(uvm_mem_t *mem)
{
if (!uvm_mem_mapped_on_cpu_user(mem))
return;
unmap_mapping_range(mem->user->va_space->mapping, (size_t)mem->user->addr, uvm_mem_physical_size(mem), 1);
mem_clear_mapped_on_cpu_user(mem);
mem_deinit_user_mapping(mem);
}
NV_STATUS uvm_mem_map_cpu_user(uvm_mem_t *mem, uvm_va_space_t *user_va_space, struct vm_area_struct *vma)
{
NV_STATUS status;
void *user_addr;
UVM_ASSERT(mem);
UVM_ASSERT(mem_can_be_mapped_on_cpu_user(mem));
if (uvm_mem_mapped_on_cpu_user(mem))
return NV_OK;
UVM_ASSERT((vma->vm_end - vma->vm_start) == mem->size);
user_addr = (void *) (uintptr_t)vma->vm_start;
status = mem_init_user_mapping(mem, user_va_space, user_addr);
if (status != NV_OK)
return status;
status = mem_map_cpu_to_sysmem_user(mem, vma);
if (status != NV_OK)
goto cleanup;
mem_set_mapped_on_cpu_user(mem);
return NV_OK;
cleanup:
mem_deinit_user_mapping(mem);
return status;
}
NV_STATUS uvm_mem_map_cpu_kernel(uvm_mem_t *mem)
{
NV_STATUS status;
UVM_ASSERT(mem);
UVM_ASSERT(mem_can_be_mapped_on_cpu_kernel(mem));
if (uvm_mem_mapped_on_cpu_kernel(mem))
return NV_OK;
if (uvm_mem_is_sysmem(mem))
status = mem_map_cpu_to_sysmem_kernel(mem);
else
status = mem_map_cpu_to_vidmem_kernel(mem);
if (status != NV_OK)
return status;
mem_set_mapped_on_cpu_kernel(mem);
return NV_OK;
}
static void sysmem_unmap_gpu_phys(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
NvU64 *dma_addrs = mem->sysmem.dma_addrs[uvm_global_id_gpu_index(gpu->global_id)];
NvU32 i;
UVM_ASSERT(uvm_mem_is_sysmem(mem));
UVM_ASSERT(gpu != mem->dma_owner);
UVM_ASSERT(dma_addrs);
for (i = 0; i < mem->chunks_count; ++i) {
if (dma_addrs[i] == 0) {
// The DMA address can only be 0 when cleaning up after a failed
// partial map_gpu_sysmem_iommu() operation.
break;
}
uvm_gpu_unmap_cpu_pages(gpu->parent, dma_addrs[i], mem->chunk_size);
dma_addrs[i] = 0;
}
uvm_kvfree(dma_addrs);
mem->sysmem.dma_addrs[uvm_global_id_gpu_index(gpu->global_id)] = NULL;
}
static NV_STATUS sysmem_map_gpu_phys(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
NV_STATUS status;
size_t i;
UVM_ASSERT(uvm_mem_is_sysmem(mem));
UVM_ASSERT(gpu != mem->dma_owner);
status = mem_alloc_dma_addrs(mem, gpu);
if (status != NV_OK)
return status;
for (i = 0; i < mem->chunks_count; ++i) {
status = uvm_gpu_map_cpu_pages(gpu->parent,
mem->sysmem.pages[i],
mem->chunk_size,
&mem->sysmem.dma_addrs[uvm_global_id_gpu_index(gpu->global_id)][i]);
if (status != NV_OK)
goto error;
}
return NV_OK;
error:
sysmem_unmap_gpu_phys(mem, gpu);
return status;
}
static uvm_gpu_chunk_t *mem_get_chunk(uvm_mem_t *mem, size_t mem_offset, size_t *offset_in_chunk)
{
size_t chunk_index = uvm_div_pow2_64(mem_offset, mem->chunk_size);
if (offset_in_chunk)
*offset_in_chunk = mem_offset & (mem->chunk_size - 1);
UVM_ASSERT(uvm_mem_is_vidmem(mem));
return mem->vidmem.chunks[chunk_index];
}
static uvm_gpu_phys_address_t mem_gpu_physical_vidmem(uvm_mem_t *mem, size_t offset)
{
size_t chunk_offset;
uvm_gpu_chunk_t *chunk = mem_get_chunk(mem, offset, &chunk_offset);
return uvm_gpu_phys_address(UVM_APERTURE_VID, chunk->address + chunk_offset);
}
static uvm_gpu_phys_address_t mem_gpu_physical_sysmem(uvm_mem_t *mem, uvm_gpu_t *gpu, size_t offset)
{
NvU64 *dma_addrs = mem->sysmem.dma_addrs[uvm_global_id_gpu_index(gpu->global_id)];
NvU64 dma_addr = dma_addrs[offset / mem->chunk_size];
UVM_ASSERT(uvm_mem_is_sysmem(mem));
UVM_ASSERT(sysmem_mapped_on_gpu_phys(mem, gpu));
return uvm_gpu_phys_address(UVM_APERTURE_SYS, dma_addr + offset % mem->chunk_size);
}
bool uvm_mem_is_physically_contiguous(uvm_mem_t *mem, NvU64 offset, NvU64 size)
{
UVM_ASSERT(size != 0);
UVM_ASSERT((offset + size) <= uvm_mem_physical_size(mem));
return UVM_ALIGN_DOWN(offset, mem->chunk_size) == UVM_ALIGN_DOWN(offset + size - 1, mem->chunk_size);
}
uvm_gpu_phys_address_t uvm_mem_gpu_physical(uvm_mem_t *mem, uvm_gpu_t *gpu, NvU64 offset, NvU64 size)
{
UVM_ASSERT(uvm_mem_is_physically_contiguous(mem, offset, size));
if (uvm_mem_is_vidmem(mem)) {
UVM_ASSERT(uvm_mem_is_local_vidmem(mem, gpu));
return mem_gpu_physical_vidmem(mem, offset);
}
return mem_gpu_physical_sysmem(mem, gpu, offset);
}
uvm_gpu_address_t uvm_mem_gpu_address_copy(uvm_mem_t *mem, uvm_gpu_t *accessing_gpu, NvU64 offset, NvU64 size)
{
uvm_gpu_address_t copy_addr;
size_t chunk_offset;
uvm_gpu_chunk_t *chunk;
UVM_ASSERT(uvm_mem_is_physically_contiguous(mem, offset, size));
if (uvm_mem_is_sysmem(mem) || uvm_mem_is_local_vidmem(mem, accessing_gpu))
return uvm_gpu_address_copy(accessing_gpu, uvm_mem_gpu_physical(mem, accessing_gpu, offset, size));
// Peer GPUs may need to use some form of translation (identity mappings,
// indirect peers) to copy.
chunk = mem_get_chunk(mem, offset, &chunk_offset);
copy_addr = uvm_pmm_gpu_peer_copy_address(&mem->backing_gpu->pmm, chunk, accessing_gpu);
copy_addr.address += chunk_offset;
return copy_addr;
}
typedef struct uvm_mem_pte_maker_data_struct
{
uvm_mem_t *mem;
const uvm_mem_gpu_mapping_attrs_t *attrs;
} uvm_mem_pte_maker_data_t;
static NvU64 mem_pte_maker(uvm_page_table_range_vec_t *range_vec, NvU64 offset, void *vp_data)
{
uvm_mem_pte_maker_data_t *data = (uvm_mem_pte_maker_data_t *)vp_data;
uvm_page_tree_t *tree = range_vec->tree;
uvm_gpu_t *gpu = tree->gpu;
uvm_gpu_phys_address_t phys = uvm_mem_gpu_physical(data->mem, gpu, offset, range_vec->page_size);
return tree->hal->make_pte(phys.aperture,
phys.address,
data->attrs->protection,
data->attrs->is_cacheable ? UVM_MMU_PTE_FLAGS_CACHED : UVM_MMU_PTE_FLAGS_NONE);
}
static void mem_unmap_gpu(uvm_mem_t *mem, uvm_gpu_t *gpu, uvm_page_table_range_vec_t **range_vec)
{
uvm_membar_t tlb_membar = uvm_hal_downgrade_membar_type(gpu, uvm_mem_is_local_vidmem(mem, gpu));
NV_STATUS status = uvm_page_table_range_vec_clear_ptes(*range_vec, tlb_membar);
if (status != NV_OK)
UVM_ERR_PRINT("Clearing PTEs failed: %s, GPU %s\n", nvstatusToString(status), uvm_gpu_name(gpu));
uvm_page_table_range_vec_destroy(*range_vec);
*range_vec = NULL;
}
static NV_STATUS mem_map_gpu(uvm_mem_t *mem,
uvm_gpu_t *gpu,
NvU64 gpu_va,
uvm_page_tree_t *tree,
const uvm_mem_gpu_mapping_attrs_t *attrs,
uvm_page_table_range_vec_t **range_vec)
{
NV_STATUS status;
NvU32 page_size;
uvm_pmm_alloc_flags_t pmm_flags = UVM_PMM_ALLOC_FLAGS_EVICT;
uvm_mem_pte_maker_data_t pte_maker_data = {
.mem = mem,
.attrs = attrs
};
page_size = mem_pick_gpu_page_size(mem, gpu, tree);
UVM_ASSERT_MSG(uvm_mmu_page_size_supported(tree, page_size), "page_size 0x%x\n", page_size);
// When the Confidential Computing feature is enabled, DMA allocations are
// majoritarily allocated and managed by a per-GPU DMA buffer pool
// (uvm_conf_computing_dma_buffer_pool_t). Because we would typically
// already hold the DMA_BUFFER_POOL lock at this time, we cannot hold
// the block lock. Allocate PTEs without eviction in this context.
//
// See uvm_pmm_gpu_alloc()
if (uvm_mem_is_sysmem_dma(mem))
pmm_flags = UVM_PMM_ALLOC_FLAGS_NONE;
status = uvm_page_table_range_vec_create(tree,
gpu_va,
uvm_mem_physical_size(mem),
page_size,
pmm_flags,
range_vec);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to init page mapping at [0x%llx, 0x%llx): %s, GPU %s\n",
gpu_va,
gpu_va + uvm_mem_physical_size(mem),
nvstatusToString(status),
uvm_gpu_name(gpu));
return status;
}
status = uvm_page_table_range_vec_write_ptes(*range_vec, UVM_MEMBAR_NONE, mem_pte_maker, &pte_maker_data);
if (status != NV_OK) {
UVM_ERR_PRINT("Failed to write PTEs for mapping at [0x%llx, 0x%llx): %s, GPU %s\n",
gpu_va,
gpu_va + uvm_mem_physical_size(mem),
nvstatusToString(status),
uvm_gpu_name(gpu));
goto error;
}
return NV_OK;
error:
mem_unmap_gpu(mem, gpu, range_vec);
return status;
}
static NV_STATUS mem_init_gpu_kernel_range(uvm_mem_t *mem)
{
if (mem->kernel.range_alloc.node != NULL)
return NV_OK;
return uvm_range_allocator_alloc(&g_free_ranges,
uvm_mem_physical_size(mem),
mem->chunk_size,
&mem->kernel.range_alloc);
}
static void mem_deinit_gpu_kernel_range(uvm_mem_t *mem)
{
if (mem->kernel.range_alloc.node == NULL)
return;
// Do not remove the range allocation if there is any GPU where the memory
// is still mapped on kernel space.
if (UVM_GLOBAL_ID_IS_VALID(uvm_global_processor_mask_find_first_gpu_id(&mem->kernel.mapped_on)))
return;
uvm_range_allocator_free(&g_free_ranges, &mem->kernel.range_alloc);
}
NV_STATUS uvm_mem_map_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
NV_STATUS status;
NvU64 gpu_va;
uvm_page_table_range_vec_t **range_vec;
uvm_mem_gpu_mapping_attrs_t attrs = {
.protection = UVM_PROT_READ_WRITE_ATOMIC,
.is_cacheable = uvm_mem_is_vidmem(mem)
};
UVM_ASSERT(mem_can_be_mapped_on_gpu_kernel(mem, gpu));
if (uvm_mem_mapped_on_gpu_kernel(mem, gpu))
return NV_OK;
status = uvm_mem_map_gpu_phys(mem, gpu);
if (status != NV_OK)
return status;
status = mem_init_gpu_kernel_range(mem);
if (status != NV_OK)
return status;
gpu_va = reserved_gpu_va(mem, gpu);
range_vec = &mem->kernel.range_vecs[uvm_global_id_gpu_index(gpu->global_id)];
status = mem_map_gpu(mem, gpu, gpu_va, &gpu->address_space_tree, &attrs, range_vec);
if (status != NV_OK)
goto cleanup;
mem_set_mapped_on_gpu_kernel(mem, gpu);
return NV_OK;
cleanup:
mem_deinit_gpu_kernel_range(mem);
return status;
}
NV_STATUS uvm_mem_map_gpu_user(uvm_mem_t *mem,
uvm_gpu_t *gpu,
uvm_va_space_t *user_va_space,
void *user_addr,
const uvm_mem_gpu_mapping_attrs_t *attrs)
{
NV_STATUS status;
uvm_gpu_va_space_t *gpu_va_space;
uvm_page_table_range_vec_t **range_vec;
NvU64 gpu_va;
UVM_ASSERT(mem_can_be_mapped_on_gpu_user(mem, gpu));
uvm_assert_rwsem_locked(&user_va_space->lock);
if (uvm_mem_mapped_on_gpu_user(mem, gpu))
return NV_OK;
gpu_va = (NvU64)user_addr;
if (!uvm_gpu_can_address(gpu, gpu_va, mem->size))
return NV_ERR_OUT_OF_RANGE;
status = uvm_mem_map_gpu_phys(mem, gpu);
if (status != NV_OK)
return status;
status = mem_init_user_mapping(mem, user_va_space, user_addr);
if (status != NV_OK)
return status;
gpu_va_space = uvm_gpu_va_space_get(mem->user->va_space, gpu);
range_vec = &mem->user->range_vecs[uvm_global_id_gpu_index(gpu->global_id)];
status = mem_map_gpu(mem, gpu, gpu_va, &gpu_va_space->page_tables, attrs, range_vec);
if (status != NV_OK)
goto cleanup;
mem_set_mapped_on_gpu_user(mem, gpu);
return NV_OK;
cleanup:
mem_deinit_user_mapping(mem);
return status;
}
void uvm_mem_unmap_gpu_user(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
if (!uvm_mem_mapped_on_gpu_user(mem, gpu))
return;
mem_unmap_gpu(mem, gpu, &mem->user->range_vecs[uvm_global_id_gpu_index(gpu->global_id)]);
mem_clear_mapped_on_gpu_user(mem, gpu);
mem_deinit_user_mapping(mem);
}
void uvm_mem_unmap_gpu_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
if (!uvm_mem_mapped_on_gpu_kernel(mem, gpu))
return;
mem_unmap_gpu(mem, gpu, &mem->kernel.range_vecs[uvm_global_id_gpu_index(gpu->global_id)]);
mem_clear_mapped_on_gpu_kernel(mem, gpu);
mem_deinit_gpu_kernel_range(mem);
}
static bool mem_can_be_phys_mapped_on_gpu(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
if (uvm_mem_is_sysmem(mem))
return sysmem_can_be_mapped_on_gpu(mem);
else
return uvm_mem_is_local_vidmem(mem, gpu);
}
NV_STATUS uvm_mem_map_gpu_phys(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
NV_STATUS status;
UVM_ASSERT(mem_can_be_phys_mapped_on_gpu(mem, gpu));
if (uvm_mem_is_vidmem(mem))
return NV_OK;
if (gpu == mem->dma_owner)
return NV_OK;
if (sysmem_mapped_on_gpu_phys(mem, gpu))
return NV_OK;
status = sysmem_map_gpu_phys(mem, gpu);
if (status != NV_OK)
return status;
sysmem_set_mapped_on_gpu_phys(mem, gpu);
return NV_OK;
}
void uvm_mem_unmap_gpu_phys(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(mem);
UVM_ASSERT(gpu);
if (uvm_mem_is_vidmem(mem))
return;
// GPU for which the mapping is managed by the dma_alloc_coherent
// API will be unmapped when the allocation is freed.
if (gpu == mem->dma_owner)
return;
if (!sysmem_mapped_on_gpu_phys(mem, gpu))
return;
uvm_mem_unmap_gpu_user(mem, gpu);
uvm_mem_unmap_gpu_kernel(mem, gpu);
sysmem_unmap_gpu_phys(mem, gpu);
sysmem_clear_mapped_on_gpu_phys(mem, gpu);
}
void uvm_mem_free(uvm_mem_t *mem)
{
uvm_gpu_t *gpu;
if (mem == NULL)
return;
uvm_mem_unmap_cpu_user(mem);
uvm_mem_unmap_cpu_kernel(mem);
if (mem->user != NULL) {
for_each_global_gpu_in_mask(gpu, &mem->user->mapped_on) {
uvm_mem_unmap_gpu_user(mem, gpu);
// If we unmapped the last device, the user mapping is freed, so
// exit the loop before the iterator accesses a non-existing mask.
if (mem->user == NULL)
break;
}
}
for_each_global_gpu_in_mask(gpu, &mem->kernel.mapped_on)
uvm_mem_unmap_gpu_kernel(mem, gpu);
if (uvm_mem_is_sysmem(mem)) {
for_each_global_gpu_in_mask(gpu, &mem->sysmem.mapped_on_phys)
uvm_mem_unmap_gpu_phys(mem, gpu);
}
mem_free_chunks(mem);
uvm_kvfree(mem);
}
void *uvm_mem_get_cpu_addr_kernel(uvm_mem_t *mem)
{
UVM_ASSERT(uvm_mem_mapped_on_cpu_kernel(mem));
return mem->kernel.cpu_addr;
}
NvU64 uvm_mem_get_gpu_va_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
UVM_ASSERT(uvm_mem_mapped_on_gpu_kernel(mem, gpu));
return reserved_gpu_va(mem, gpu);
}
uvm_gpu_address_t uvm_mem_gpu_address_virtual_kernel(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
uvm_gpu_address_t addr = uvm_gpu_address_virtual(uvm_mem_get_gpu_va_kernel(mem, gpu));
if (uvm_conf_computing_mode_enabled(gpu) && mem->dma_owner)
addr.is_unprotected = true;
return addr;
}
uvm_gpu_address_t uvm_mem_gpu_address_physical(uvm_mem_t *mem, uvm_gpu_t *gpu, NvU64 offset, NvU64 size)
{
uvm_gpu_address_t addr = uvm_gpu_address_from_phys(uvm_mem_gpu_physical(mem, gpu, offset, size));
if (uvm_conf_computing_mode_enabled(gpu) && mem->dma_owner)
addr.is_unprotected = true;
return addr;
}
|