1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
|
/*******************************************************************************
Copyright (c) 2015 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_common.h"
#include "uvm_range_tree.h"
#include "uvm_kvmalloc.h"
#include "uvm_test.h"
#include "uvm_test_ioctl.h"
#include "uvm_test_rng.h"
// ------------------- Range Tree Test (RTT) ------------------- //
// Arbitrary value, must be >= 1
#define MAX_NODES_INIT 32
typedef enum
{
RTT_OP_ADD,
RTT_OP_REMOVE,
RTT_OP_SPLIT,
RTT_OP_MERGE,
RTT_OP_SHRINK,
RTT_OP_MAX
} rtt_op_t;
// Range Tree Test state
typedef struct rtt_state_struct
{
uvm_range_tree_t tree;
uvm_test_rng_t rng;
// Array of allocated nodes, unsorted
uvm_range_tree_node_t **nodes;
// Number of nodes in the array
size_t count;
// Number of nodes which can fit in the nodes array
size_t max;
// The probability of shrinking a node instead of doing an add or remove
NvU32 shrink_probability;
// The current probability of selecting an add operation over a remove
NvU32 add_chance;
// The current probability of selecting a split operation over a merge
NvU32 split_chance;
// For debug
struct
{
// The sum of all ranges currently in the tree
NvU64 size_sum;
NvU64 total_adds;
NvU64 failed_adds;
NvU64 max_attempts_add;
NvU64 total_removes;
NvU64 total_shrinks;
NvU64 failed_shrinks;
NvU64 total_splits;
NvU64 failed_splits;
NvU64 max_attempts_split;
NvU64 total_merges;
NvU64 failed_merges;
NvU64 max_attempts_merge;
} stats;
} rtt_state_t;
typedef struct
{
// end is inclusive
NvU64 start;
NvU64 end;
} rtt_range_t;
static rtt_range_t rtt_node_get_range(uvm_range_tree_node_t *node)
{
rtt_range_t range = {node->start, node->end};
return range;
}
// Since end is inclusive a range can't have a size of 0. A return value of 0
// means that the range is 2^64.
static NvU64 rtt_get_range_size(rtt_range_t *range)
{
return range->end - range->start + 1;
}
static bool rtt_ranges_overlap(rtt_range_t *a, rtt_range_t *b)
{
return uvm_ranges_overlap(a->start, a->end, b->start, b->end);
}
static bool rtt_range_overlaps_node(uvm_range_tree_node_t *node, rtt_range_t *range)
{
rtt_range_t temp = rtt_node_get_range(node);
return rtt_ranges_overlap(&temp, range);
}
static void rtt_state_destroy(rtt_state_t *state)
{
size_t i;
if (!state)
return;
for (i = 0; i < state->count; i++)
uvm_kvfree(state->nodes[i]);
uvm_kvfree(state->nodes);
uvm_kvfree(state);
}
static rtt_state_t *rtt_state_create(void)
{
rtt_state_t *state = uvm_kvmalloc_zero(sizeof(*state));
if (!state)
return NULL;
state->max = MAX_NODES_INIT;
state->nodes = uvm_kvmalloc(state->max * sizeof(state->nodes[0]));
if (!state->nodes) {
uvm_kvfree(state);
return NULL;
}
uvm_range_tree_init(&state->tree);
return state;
}
static uvm_range_tree_node_t *rtt_alloc_node(rtt_state_t *state)
{
uvm_range_tree_node_t *node;
uvm_range_tree_node_t **new_nodes;
size_t new_max;
node = uvm_kvmalloc_zero(sizeof(*node));
if (!node)
goto error;
// Grow the nodes array if we're full. Do this here rather than when adding
// to the nodes array because this happens before the tree is modified.
// Recovering from a failure on adding the node to the array requires the
// caller to undo tree operations, possibly before we've tested that they
// work.
//
// Doing this frequently won't get into a thrashing state since max never
// shrinks.
if (state->count == state->max) {
new_max = max((size_t)1, 2*state->max);
new_nodes = uvm_kvrealloc(state->nodes, new_max * sizeof(state->nodes[0]));
if (!new_nodes)
goto error;
state->nodes = new_nodes;
state->max = new_max;
}
return node;
error:
uvm_kvfree(node);
return NULL;
}
static NV_STATUS rtt_range_add(rtt_state_t *state, rtt_range_t *range, uvm_range_tree_node_t **new_node)
{
NV_STATUS status;
uvm_range_tree_node_t *node;
node = rtt_alloc_node(state);
if (!node) {
status = NV_ERR_NO_MEMORY;
goto error;
}
// Attempt insertion into the tree itself
node->start = range->start;
node->end = range->end;
status = uvm_range_tree_add(&state->tree, node);
if (status != NV_OK)
goto error;
if (uvm_range_tree_node_size(node) != rtt_get_range_size(range)) {
uvm_range_tree_remove(&state->tree, node);
status = NV_ERR_INVALID_STATE;
goto error;
}
UVM_ASSERT(state->count < state->max); // Forced by rtt_alloc_node
state->nodes[state->count] = node;
++state->count;
state->stats.size_sum += rtt_get_range_size(range);
++state->stats.total_adds;
if (new_node)
*new_node = node;
return NV_OK;
error:
uvm_kvfree(node);
return status;
}
static NV_STATUS rtt_index_remove(rtt_state_t *state, size_t index)
{
uvm_range_tree_node_t *node;
NvU64 size;
TEST_CHECK_RET(state->count > 0);
node = state->nodes[index];
size = uvm_range_tree_node_size(node);
uvm_range_tree_remove(&state->tree, node);
uvm_kvfree(node);
// We don't care about ordering so move the last node into the free slot
--state->count;
state->nodes[index] = state->nodes[state->count];
state->stats.size_sum -= size;
++state->stats.total_removes;
return NV_OK;
}
static NV_STATUS rtt_node_shrink(rtt_state_t *state, uvm_range_tree_node_t *node, NvU64 new_start, NvU64 new_end)
{
NvU64 old_size;
NvU64 new_size;
TEST_CHECK_RET(new_start >= node->start);
TEST_CHECK_RET(new_end <= node->end);
old_size = uvm_range_tree_node_size(node);
new_size = new_end - new_start + 1;
uvm_range_tree_shrink_node(&state->tree, node, new_start, new_end);
++state->stats.total_shrinks;
state->stats.size_sum -= (old_size - new_size);
return NV_OK;
}
static NV_STATUS rtt_node_split(rtt_state_t *state,
uvm_range_tree_node_t *node,
NvU64 new_end,
uvm_range_tree_node_t **new_node)
{
NV_STATUS status;
uvm_range_tree_node_t *new;
TEST_CHECK_RET(new_end >= node->start);
TEST_CHECK_RET(new_end < node->end);
new = rtt_alloc_node(state);
if (!new ) {
status = NV_ERR_NO_MEMORY;
goto error;
}
new->start = new_end + 1;
uvm_range_tree_split(&state->tree, node, new);
UVM_ASSERT(state->count < state->max); // Forced by rtt_alloc_node
state->nodes[state->count] = new;
++state->count;
// No changes needed to size_sum
++state->stats.total_splits;
if (new_node)
*new_node = new;
return NV_OK;
error:
uvm_kvfree(new);
return status;
}
static NV_STATUS rtt_check_between(rtt_state_t *state, uvm_range_tree_node_t *lower, uvm_range_tree_node_t *upper)
{
bool hole_exists = true;
NvU64 hole_start = 0, hole_end = ULLONG_MAX;
NvU64 test_start, test_end;
if (lower) {
if (lower->end == ULLONG_MAX) {
UVM_ASSERT(!upper);
hole_exists = false;
}
else {
hole_start = lower->end + 1;
}
}
if (upper) {
if (upper->start == 0) {
UVM_ASSERT(!lower);
hole_exists = false;
}
else {
hole_end = upper->start - 1;
}
}
if (hole_start > hole_end)
hole_exists = false;
if (hole_exists) {
size_t i;
NvU64 hole_mid = hole_start + ((hole_end - hole_start) / 2);
NvU64 inputs[] = {hole_start, hole_mid, hole_end};
for (i = 0; i < ARRAY_SIZE(inputs); i++) {
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, inputs[i]) == NULL);
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, inputs[i], &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == hole_end);
test_start = 0;
test_end = ULLONG_MAX;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, inputs[i], &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == hole_end);
test_start = hole_start;
test_end = inputs[i];
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, inputs[i], &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == inputs[i]);
test_start = inputs[i];
test_end = hole_end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, inputs[i], &test_start, &test_end));
TEST_CHECK_RET(test_start == inputs[i]);
TEST_CHECK_RET(test_end == hole_end);
}
}
else {
test_start = 0;
test_end = ULLONG_MAX;
if (lower) {
MEM_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, lower->end, NULL, NULL),
NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, lower->end, &test_start, &test_end),
NV_ERR_UVM_ADDRESS_IN_USE);
}
if (upper) {
MEM_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, upper->start, NULL, NULL),
NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, upper->start, &test_start, &test_end),
NV_ERR_UVM_ADDRESS_IN_USE);
}
}
return NV_OK;
}
static NV_STATUS rtt_check_node(rtt_state_t *state, uvm_range_tree_node_t *node)
{
uvm_range_tree_node_t *temp, *prev, *next;
NvU64 start, mid, end;
NvU64 hole_start = 0, hole_end = ULLONG_MAX;
start = node->start;
end = node->end;
mid = start + ((end - start) / 2);
TEST_CHECK_RET(!uvm_range_tree_empty(&state->tree));
if (start > 0)
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, start - 1) != node);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, start) == node);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, mid) == node);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, end) == node);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, start, NULL, NULL), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, mid, NULL, NULL), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, end, NULL, NULL), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, start, &hole_start, &hole_end),
NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, mid, &hole_start, &hole_end),
NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, end, &hole_start, &hole_end),
NV_ERR_UVM_ADDRESS_IN_USE);
TEST_CHECK_RET(uvm_range_tree_node_size(node) == end - start + 1);
if (end < ULLONG_MAX)
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, end + 1) != node);
uvm_range_tree_for_each_in(temp, &state->tree, start, end)
TEST_CHECK_RET(temp == node);
uvm_range_tree_for_each_in_safe(temp, next, &state->tree, start, end)
TEST_CHECK_RET(temp == node);
prev = uvm_range_tree_prev(&state->tree, node);
if (prev) {
TEST_CHECK_RET(prev->end < node->start);
TEST_CHECK_RET(uvm_range_tree_next(&state->tree, prev) == node);
}
else {
TEST_CHECK_RET(uvm_range_tree_iter_first(&state->tree, 0, ULLONG_MAX) == node);
}
next = uvm_range_tree_next(&state->tree, node);
if (next) {
TEST_CHECK_RET(node->end < next->start);
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, next) == node);
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) != node);
}
else {
TEST_CHECK_RET(uvm_range_tree_iter_next(&state->tree, node, ULLONG_MAX) == NULL);
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == node);
}
TEST_NV_CHECK_RET(rtt_check_between(state, prev, node));
TEST_NV_CHECK_RET(rtt_check_between(state, node, next));
return NV_OK;
}
static NV_STATUS rtt_check_iterator_all(rtt_state_t *state)
{
uvm_range_tree_node_t *node, *next, *prev = NULL, *expected = NULL;
size_t iter_count = 0;
uvm_range_tree_for_each(node, &state->tree) {
if (expected)
TEST_CHECK_RET(node == expected);
if (prev)
TEST_CHECK_RET(prev->end < node->start);
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, node) == prev);
TEST_NV_CHECK_RET(rtt_check_between(state, prev, node));
++iter_count;
prev = node;
expected = uvm_range_tree_next(&state->tree, node);
}
TEST_CHECK_RET(expected == NULL);
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == prev);
TEST_CHECK_RET(iter_count == state->count);
TEST_NV_CHECK_RET(rtt_check_between(state, prev, NULL));
iter_count = 0;
expected = NULL;
prev = NULL;
uvm_range_tree_for_each_safe(node, next, &state->tree) {
if (expected)
TEST_CHECK_RET(node == expected);
if (prev)
TEST_CHECK_RET(prev->end < node->start);
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, node) == prev);
// Skip rtt_check_between since it was done in the loop above
++iter_count;
prev = node;
expected = uvm_range_tree_next(&state->tree, node);
}
TEST_CHECK_RET(expected == NULL);
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == prev);
TEST_CHECK_RET(iter_count == state->count);
return NV_OK;
}
// Attempts to add the given range to the tree and performs some sanity checks
// on the outcome. This is O(N) in the number of nodes currently in the tree.
// Return value meanings:
//
// NV_OK The range was added successfully and the sanity
// checks passed.
//
// NV_ERR_UVM_ADDRESS_IN_USE The range addition failed because the tree
// detected a collision in [range->start,
// range->end]. The collision sanity checks passed.
//
// NV_ERR_INVALID_STATE The sanity checks failed for any reason.
//
// NV_ERR_NO_MEMORY The obvious.
//
static NV_STATUS rtt_range_add_check(rtt_state_t *state, rtt_range_t *range)
{
NV_STATUS status;
uvm_range_tree_node_t *node = NULL;
size_t i;
int overlap = 0;
UVM_ASSERT(range->start <= range->end);
// Determine whether this should succeed or fail
for (i = 0; i < state->count; i++) {
if (rtt_range_overlaps_node(state->nodes[i], range)) {
overlap = 1;
break;
}
}
// Verify tree state
if (overlap) {
node = uvm_range_tree_iter_first(&state->tree, range->start, range->end);
TEST_CHECK_RET(node);
TEST_CHECK_RET(rtt_range_overlaps_node(node, range));
}
else {
NvU64 hole_start, hole_end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, range->start, &hole_start, &hole_end));
TEST_CHECK_RET(hole_start <= range->start);
TEST_CHECK_RET(hole_end >= range->end);
hole_start = range->start;
hole_end = range->end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, range->start, &hole_start, &hole_end));
TEST_CHECK_RET(hole_start == range->start);
TEST_CHECK_RET(hole_end == range->end);
}
status = rtt_range_add(state, range, &node);
if (overlap) {
MEM_NV_CHECK_RET(status, NV_ERR_UVM_ADDRESS_IN_USE);
}
else {
MEM_NV_CHECK_RET(status, NV_OK);
status = rtt_check_node(state, node);
}
return status;
}
// Returns NV_ERR_INVALID_STATE on sanity check failure, NV_OK otherwise.
static NV_STATUS rtt_index_remove_check(rtt_state_t *state, size_t index)
{
uvm_range_tree_node_t *node, *prev, *next;
NvU64 start, end;
NvU64 hole_start, hole_end;
NV_STATUS status;
TEST_CHECK_RET(index < state->count);
node = state->nodes[index];
start = node->start;
end = node->end;
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
prev = uvm_range_tree_prev(&state->tree, node);
next = uvm_range_tree_next(&state->tree, node);
status = rtt_index_remove(state, index);
if (status != NV_OK)
return status;
// Verify removal
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, start) == NULL);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, end) == NULL);
TEST_CHECK_RET(uvm_range_tree_iter_first(&state->tree, start, end) == NULL);
hole_start = start;
hole_end = end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, start, &hole_start, &hole_end));
TEST_CHECK_RET(hole_start == start);
TEST_CHECK_RET(hole_end == end);
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, start, &hole_start, &hole_end));
TEST_CHECK_RET(hole_start <= start);
TEST_CHECK_RET(hole_end >= end);
if (prev) {
TEST_CHECK_RET(uvm_range_tree_next(&state->tree, prev) == next);
TEST_CHECK_RET(hole_start == prev->end + 1);
}
if (next) {
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, next) == prev);
TEST_CHECK_RET(hole_end == next->start - 1);
}
else {
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == prev);
}
if (!prev && !next) {
TEST_CHECK_RET(uvm_range_tree_empty(&state->tree));
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == NULL);
TEST_CHECK_RET(hole_start == 0);
TEST_CHECK_RET(hole_end == ULLONG_MAX);
TEST_CHECK_RET(state->count == 0);
}
else {
TEST_CHECK_RET(!uvm_range_tree_empty(&state->tree));
}
return NV_OK;
}
// Returns NV_ERR_INVALID_STATE on sanity check failure, NV_OK otherwise.
static NV_STATUS rtt_node_shrink_check(rtt_state_t *state, uvm_range_tree_node_t *node, NvU64 new_start, NvU64 new_end)
{
uvm_range_tree_node_t *prev, *next;
NV_STATUS status;
NvU64 old_start = node->start;
NvU64 old_end = node->end;
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
prev = uvm_range_tree_prev(&state->tree, node);
next = uvm_range_tree_next(&state->tree, node);
status = rtt_node_shrink(state, node, new_start, new_end);
if (status != NV_OK)
return status;
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, node) == prev);
TEST_CHECK_RET(uvm_range_tree_next(&state->tree, node) == next);
if (old_start != new_start)
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, old_start) == NULL);
if (old_end != new_end)
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, old_end) == NULL);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, new_start) == node);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, new_end) == node);
return NV_OK;
}
static NV_STATUS rtt_remove_all_check(rtt_state_t *state)
{
NV_STATUS status;
status = rtt_check_iterator_all(state);
if (status != NV_OK)
return status;
while (state->count) {
status = rtt_index_remove_check(state, 0);
if (status != NV_OK)
return status;
}
return NV_OK;
}
static NV_STATUS rtt_node_split_check(rtt_state_t *state, uvm_range_tree_node_t *node, NvU64 new_end)
{
uvm_range_tree_node_t *prev, *next, *new = NULL;
NV_STATUS status;
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
prev = uvm_range_tree_prev(&state->tree, node);
next = uvm_range_tree_next(&state->tree, node);
status = rtt_node_split(state, node, new_end, &new);
if (status != NV_OK)
return status;
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
status = rtt_check_node(state, new);
if (status != NV_OK)
return status;
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, node) == prev);
TEST_CHECK_RET(uvm_range_tree_next(&state->tree, node) == new);
TEST_CHECK_RET(uvm_range_tree_prev(&state->tree, new) == node);
TEST_CHECK_RET(uvm_range_tree_next(&state->tree, new) == next);
return NV_OK;
}
// The rtt_index_merge_check_* functions don't have a non-check helper because
// both the helper and the caller need to walk the whole array to properly free
// the removed node. It's simpler to just handle all that in the same function.
static NV_STATUS rtt_index_merge_check_prev(rtt_state_t *state, size_t index)
{
uvm_range_tree_node_t *node, *prev, *returned, *expected = NULL;
size_t i = 0; // Shut up compiler
NV_STATUS status;
TEST_CHECK_RET(index < state->count);
node = state->nodes[index];
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
// Figure out if this should succeed or fail
if (node->start != 0) {
for (i = 0; i < state->count; i++) {
if (state->nodes[i]->end == node->start - 1) {
expected = state->nodes[i];
break;
}
}
}
prev = uvm_range_tree_prev(&state->tree, node);
if (expected) {
TEST_CHECK_RET(prev == expected);
status = rtt_check_node(state, expected);
if (status != NV_OK)
return status;
}
else if (prev) {
TEST_CHECK_RET(prev->end < node->start - 1);
}
returned = uvm_range_tree_merge_prev(&state->tree, node);
TEST_CHECK_RET(returned == expected);
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
if (expected) {
TEST_CHECK_RET(node->start == expected->start);
// We don't care about ordering so move the last node into the free slot
uvm_kvfree(expected);
--state->count;
state->nodes[i] = state->nodes[state->count];
// No change to size
++state->stats.total_merges;
return NV_OK;
}
// Failed merge
return NV_ERR_INVALID_ADDRESS;
}
static NV_STATUS rtt_index_merge_check_next(rtt_state_t *state, size_t index)
{
uvm_range_tree_node_t *node, *next, *returned, *expected = NULL;
size_t i = 0; // Shut up compiler
NV_STATUS status;
TEST_CHECK_RET(index < state->count);
node = state->nodes[index];
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
// Figure out if this should succeed or fail
if (node->end != ULLONG_MAX) {
for (i = 0; i < state->count; i++) {
if (state->nodes[i]->start == node->end + 1) {
expected = state->nodes[i];
break;
}
}
}
next = uvm_range_tree_next(&state->tree, node);
if (expected) {
TEST_CHECK_RET(next == expected);
status = rtt_check_node(state, expected);
if (status != NV_OK)
return status;
}
else if (next) {
TEST_CHECK_RET(next->start > node->end + 1);
}
returned = uvm_range_tree_merge_next(&state->tree, node);
TEST_CHECK_RET(returned == expected);
status = rtt_check_node(state, node);
if (status != NV_OK)
return status;
if (expected) {
TEST_CHECK_RET(node->end == expected->end);
// We don't care about ordering so move the last node into the free slot
uvm_kvfree(expected);
--state->count;
state->nodes[i] = state->nodes[state->count];
// No change to size
++state->stats.total_merges;
return NV_OK;
}
// Failed merge
return NV_ERR_INVALID_ADDRESS;
}
// Directed test helpers for using hard-coded values
// Returns the index of the node containing addr, or state->count if none.
static size_t rtt_node_find(rtt_state_t *state, NvU64 addr)
{
size_t i;
for (i = 0; i < state->count; i++) {
if (state->nodes[i]->start <= addr && addr <= state->nodes[i]->end)
break;
}
return i;
}
static NV_STATUS rtt_range_add_check_val(rtt_state_t *state, NvU64 start, NvU64 end)
{
rtt_range_t range = {start, end};
return rtt_range_add_check(state, &range);
}
static NV_STATUS rtt_index_remove_check_val(rtt_state_t *state, NvU64 addr)
{
size_t index = rtt_node_find(state, addr);
if (index == state->count)
return NV_ERR_INVALID_STATE;
return rtt_index_remove_check(state, index);
}
static NV_STATUS rtt_node_shrink_check_val(rtt_state_t *state, NvU64 new_start, NvU64 new_end)
{
size_t index = rtt_node_find(state, new_start);
if (index == state->count)
return NV_ERR_INVALID_STATE;
return rtt_node_shrink_check(state, state->nodes[index], new_start, new_end);
}
static NV_STATUS rtt_node_split_check_val(rtt_state_t *state, NvU64 new_end)
{
size_t index = rtt_node_find(state, new_end);
if (index == state->count || new_end == state->nodes[index]->end)
return NV_ERR_INVALID_STATE;
return rtt_node_split_check(state, state->nodes[index], new_end);
}
static NV_STATUS rtt_index_merge_check_prev_val(rtt_state_t *state, NvU64 addr)
{
size_t index = rtt_node_find(state, addr);
if (index == state->count)
return NV_ERR_INVALID_STATE;
return rtt_index_merge_check_prev(state, index);
}
static NV_STATUS rtt_index_merge_check_next_val(rtt_state_t *state, NvU64 addr)
{
size_t index = rtt_node_find(state, addr);
if (index == state->count)
return NV_ERR_INVALID_STATE;
return rtt_index_merge_check_next(state, index);
}
static NV_STATUS rtt_directed(rtt_state_t *state)
{
uvm_range_tree_node_t *node, *next;
// Empty tree
TEST_CHECK_RET(uvm_range_tree_empty(&state->tree));
TEST_CHECK_RET(uvm_range_tree_last(&state->tree) == NULL);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, 0) == NULL);
TEST_CHECK_RET(uvm_range_tree_find(&state->tree, ULLONG_MAX) == NULL);
uvm_range_tree_for_each(node, &state->tree)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in(node, &state->tree, 0, 0)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in(node, &state->tree, 0, ULLONG_MAX)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in(node, &state->tree, ULLONG_MAX, ULLONG_MAX)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in_safe(node, next, &state->tree, 0, 0)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in_safe(node, next, &state->tree, 0, ULLONG_MAX)
TEST_CHECK_RET(0);
uvm_range_tree_for_each_in_safe(node, next, &state->tree, ULLONG_MAX, ULLONG_MAX)
TEST_CHECK_RET(0);
TEST_NV_CHECK_RET(rtt_check_between(state, NULL, NULL));
// Consume entire range
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, ULLONG_MAX), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 0), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, ULLONG_MAX), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, ULLONG_MAX, ULLONG_MAX), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 1), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 5, 7), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 7, ULLONG_MAX), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Two non-overlapping ranges
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 10, 20), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 5), NV_OK); // Non-adjacent left
MEM_NV_CHECK_RET(rtt_index_remove_check_val(state, 0), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 9), NV_OK); // Adjacent left
MEM_NV_CHECK_RET(rtt_index_remove_check_val(state, 0), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 21, 30), NV_OK); // Adjacent right
MEM_NV_CHECK_RET(rtt_index_remove_check_val(state, 21), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 25, 30), NV_OK); // Non-adjacent right
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Two overlapping ranges
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 10, 20), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 10), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 9, 11), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 10, 20), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 11, 19), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 19, 21), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 20, 30), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 30), NV_ERR_UVM_ADDRESS_IN_USE);
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Fill gaps
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 10), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 20, 30), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 12, 18), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 11, 11), NV_OK);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 19, 19), NV_OK);
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Split ranges (new ranges of size 1)
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 2), NV_OK); // [0-----2]
MEM_NV_CHECK_RET(rtt_node_split_check_val(state, 0), NV_OK); // [0][1--2]
MEM_NV_CHECK_RET(rtt_node_split_check_val(state, 1), NV_OK); // [0][1][2]
MEM_NV_CHECK_RET(rtt_index_remove_check_val(state, 1), NV_OK); // [0] [2]
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Split ranges (new ranges of size >1)
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 11), NV_OK); // [0-----------11]
MEM_NV_CHECK_RET(rtt_node_split_check_val(state, 3), NV_OK); // [0-3][4------11]
MEM_NV_CHECK_RET(rtt_node_split_check_val(state, 7), NV_OK); // [0-3][4-7][8-11]
MEM_NV_CHECK_RET(rtt_index_remove_check_val(state, 4), NV_OK); // [0-3] [8-11]
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Merges
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 0), NV_OK); // [0]
MEM_NV_CHECK_RET(rtt_index_merge_check_prev_val(state, 0), NV_ERR_INVALID_ADDRESS);
MEM_NV_CHECK_RET(rtt_index_merge_check_next_val(state, 0), NV_ERR_INVALID_ADDRESS);
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 1, 1), NV_OK); // [0][1]
MEM_NV_CHECK_RET(rtt_index_merge_check_next_val(state, 0), NV_OK); // [0--1]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 2, 2), NV_OK); // [0--1][2]
MEM_NV_CHECK_RET(rtt_index_merge_check_prev_val(state, 2), NV_OK); // [0-----2]
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
// Shrinks
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 0, 20), NV_OK); // [0---------------------20]
MEM_NV_CHECK_RET(rtt_node_shrink_check_val(state, 5, 15), NV_OK); // [5------------15]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 5, 5), NV_ERR_UVM_ADDRESS_IN_USE); // [5------------15]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 15, 15), NV_ERR_UVM_ADDRESS_IN_USE); // [5------------15]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 16, 16), NV_OK); // [5------------15][16]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 4, 4), NV_OK); // [4][5------------15][16]
MEM_NV_CHECK_RET(rtt_node_shrink_check_val(state, 10, 10), NV_OK); // [4] [10] [16]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 5, 9), NV_OK); // [4][5--9][10] [16]
MEM_NV_CHECK_RET(rtt_range_add_check_val(state, 11, 15), NV_OK); // [4][5--9][10][11-15][16]
MEM_NV_CHECK_RET(rtt_remove_all_check(state), NV_OK);
return NV_OK;
}
NV_STATUS uvm_test_range_tree_directed(UVM_TEST_RANGE_TREE_DIRECTED_PARAMS *params, struct file *filp)
{
rtt_state_t *state;
NV_STATUS status;
state = rtt_state_create();
if (!state)
return NV_ERR_NO_MEMORY;
status = rtt_directed(state);
rtt_state_destroy(state);
return status;
}
// ------------------------------ Random Test ------------------------------ //
// Randomly place a block of the given size in the range described by bounds.
// size == 0 means size == 2^64.
static void rtt_rand_place(uvm_test_rng_t *rng, NvU64 size, rtt_range_t *bounds, rtt_range_t *out)
{
UVM_ASSERT(bounds->start <= bounds->end);
if (size == 0) {
// No placement choice
UVM_ASSERT(bounds->start == 0 && bounds->end == ULLONG_MAX);
out->start = 0;
out->end = ULLONG_MAX;
}
else {
UVM_ASSERT(rtt_get_range_size(bounds) == 0 || size <= rtt_get_range_size(bounds));
// Select a placement with uniform distribution. Note that bounds->end +
// 1 might overflow, but we know that size >= 1 so the range will be
// sane.
out->start = uvm_test_rng_range_64(rng, bounds->start, bounds->end + 1 - size);
out->end = out->start + size - 1;
}
}
// Compute a range in [0, max_end] of random size. The size is selected with
// logarithmic distribution for a good mix of large and small ranges.
static void rtt_get_rand_range(uvm_test_rng_t *rng, NvU64 max_end, rtt_range_t *out)
{
rtt_range_t bounds = {0, max_end};
NvU64 size;
// Offset size by 1 to handle overflow when max_end is ULLONG_MAX.
size = uvm_test_rng_range_log64(rng, 0, max_end) + 1;
rtt_rand_place(rng, size, &bounds, out);
}
// Like rtt_get_rand_range but guarantees that the generated range will overlap
// with the input cover range. This is used to generate overlapping ranges to
// verify collision detection.
static void rtt_get_rand_range_covering(uvm_test_rng_t *rng,
NvU64 max_end,
rtt_range_t *cover,
rtt_range_t *out)
{
NvU64 size;
rtt_range_t bounds;
UVM_ASSERT(cover->end <= max_end);
// Pick a logarithmic size. Offset by 1 to handle overflow when max_end is
// ULLONG_MAX.
size = uvm_test_rng_range_log64(rng, 0, max_end) + 1;
if (size == ULLONG_MAX) {
// No choice
UVM_ASSERT(max_end == ULLONG_MAX);
out->start = 0;
out->end = ULLONG_MAX;
return;
}
// Compute the range where a block of size can be placed to still overlap
// with the input range.
if (cover->start < size)
bounds.start = 0;
else
bounds.start = cover->start - size + 1;
// Make sure we don't exceed max_end while still covering the range. Also
// watch out for overflowing max_end in these calculations.
if (size > max_end - cover->end)
bounds.end = max_end;
else
bounds.end = cover->end + size - 1;
rtt_rand_place(rng, size, &bounds, out);
UVM_ASSERT(rtt_ranges_overlap(cover, out));
}
// Attempt to add N ranges to the tree, where N is randomly selected from the
// range [1, params->max_batch_count]. Each range is randomly chosen.
//
// Repeats eachs individual addition on collision up to params->max_attempts
// times. If the attempt threshold is reached this stops trying to add more
// ranges, adjusts the RNG probabilities to prefer remove operations, and
// returns NV_ERR_BUSY_RETRY.
static NV_STATUS rtt_batch_add(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
size_t size = 0, ranges_to_add, max_ranges;
NvU32 collisions = 0;
NV_STATUS status = NV_OK;
rtt_range_t range, bounds = {0, params->max_end};
max_ranges = params->max_ranges - state->count;
if (max_ranges == 0)
return NV_OK;
max_ranges = min(max_ranges, (size_t)params->max_batch_count);
ranges_to_add = uvm_test_rng_range_ptr(&state->rng, 1, max_ranges);
if (params->verbose)
UVM_TEST_PRINT("Adding %zu ranges\n", ranges_to_add);
while (ranges_to_add) {
if (fatal_signal_pending(current))
return NV_ERR_SIGNAL_PENDING;
// If we succeeded the last range add, pick a new range
if (status != NV_ERR_UVM_ADDRESS_IN_USE) {
rtt_get_rand_range(&state->rng, params->max_end, &range);
size = rtt_get_range_size(&range);
}
else {
// We collided last time. Try again in a new spot with a reduced
// size.
if (size == 0) // means 2^64
size = ((size_t)-1) / 2;
else
size = max((size_t)1, size/2);
rtt_rand_place(&state->rng, size, &bounds, &range);
}
// Try to add the new range
status = rtt_range_add_check(state, &range);
if (status == NV_ERR_UVM_ADDRESS_IN_USE) {
++collisions;
++state->stats.failed_adds;
if (collisions >= params->max_attempts) {
++state->stats.max_attempts_add;
if (params->verbose) {
UVM_TEST_PRINT("Collision threshold reached with %zu ranges covering %llu (max_end %llu)\n",
state->count, state->stats.size_sum, params->max_end);
}
// Tell RNG to prefer removes
state->add_chance = 100 - params->high_probability;
return NV_ERR_BUSY_RETRY;
}
if (params->verbose)
UVM_TEST_PRINT("Failed to add [%llu, %llu], trying again\n", range.start, range.end);
}
else {
MEM_NV_CHECK_RET(status, NV_OK);
if (params->verbose)
UVM_TEST_PRINT("Added [%llu, %llu]\n", range.start, range.end);
--ranges_to_add;
collisions = 0;
}
}
return NV_OK;
}
// Removes N ranges from the tree, where N is randomly selected from the range
// [1, params->max_batch_count].
static NV_STATUS rtt_batch_remove(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
size_t index, max_ranges, ranges_to_remove;
NV_STATUS status;
if (state->count == 0)
return NV_OK;
max_ranges = min(state->count, (size_t)params->max_batch_count);
ranges_to_remove = uvm_test_rng_range_ptr(&state->rng, 1, max_ranges);
if (params->verbose)
UVM_TEST_PRINT("Removing %zu ranges\n", ranges_to_remove);
while (ranges_to_remove) {
index = uvm_test_rng_range_ptr(&state->rng, 0, state->count - 1);
if (params->verbose)
UVM_TEST_PRINT("Removing [%llu, %llu]\n", state->nodes[index]->start, state->nodes[index]->end);
status = rtt_index_remove_check(state, index);
if (status != NV_OK)
return status;
--ranges_to_remove;
}
return NV_OK;
}
// Attempts to shrink a randomly-selected range in the tree. On selecting a
// range of size 1, the attempt is repeated with another range up to the
// params->max_attempts threshold.
static NV_STATUS rtt_rand_shrink(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
uvm_range_tree_node_t *node = NULL;
NvU64 old_start;
NvU64 old_end;
NvU64 new_start;
NvU64 new_end;
NvU32 i;
NV_STATUS status;
if (state->count == 0)
return NV_OK;
// Randomly try to find a shrinkable range (size > 1)
for (i = 0; i < params->max_attempts; i++) {
size_t index;
if (fatal_signal_pending(current))
return NV_ERR_SIGNAL_PENDING;
index = uvm_test_rng_range_ptr(&state->rng, 0, state->count - 1);
if (state->nodes[index]->start != state->nodes[index]->end) {
node = state->nodes[index];
break;
}
++state->stats.failed_shrinks;
}
if (!node)
return NV_ERR_BUSY_RETRY;
// Pick a random new start and new end
old_start = node->start;
old_end = node->end;
new_start = uvm_test_rng_range_64(&state->rng, node->start, node->end);
new_end = uvm_test_rng_range_64(&state->rng, node->start, node->end);
if (new_end < new_start) {
// Swap start and end to get a valid range
swap(new_start, new_end);
}
status = rtt_node_shrink_check(state, node, new_start, new_end);
if (status != NV_OK)
return status;
if (params->verbose) {
UVM_TEST_PRINT("Shrink [%llu, %llu] to [%llu, %llu]\n",
old_start, old_end,
new_start, new_end);
}
return NV_OK;
}
// Attempts to split a randomly-selected range in the tree. On selecting a range
// of size 1, the attempt is repeated with another range up to the
// params->max_attempts threshold. On reaching the attempt threshold the RNG
// probabilities are adjusted to prefer merge operations and NV_ERR_BUSY_RETRY
// is returned.
static NV_STATUS rtt_rand_split(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
uvm_range_tree_node_t *node = NULL;
rtt_range_t old_range;
size_t index;
NvU64 new_end;
NvU32 i;
NV_STATUS status;
if (state->count == 0 || state->count == params->max_ranges)
return NV_OK;
// Randomly try to find a splittable range (size > 1)
for (i = 0; i < params->max_attempts; i++) {
if (fatal_signal_pending(current))
return NV_ERR_SIGNAL_PENDING;
index = uvm_test_rng_range_ptr(&state->rng, 0, state->count - 1);
if (state->nodes[index]->start != state->nodes[index]->end) {
node = state->nodes[index];
break;
}
++state->stats.failed_splits;
}
if (!node) {
++state->stats.max_attempts_split;
if (params->verbose) {
UVM_TEST_PRINT("Split attempt threshold reached with %zu ranges covering %llu (max_end %llu)\n",
state->count, state->stats.size_sum, params->max_end);
}
// Tell the RNG to prefer merges
state->split_chance = 100 - params->high_probability;
return NV_ERR_BUSY_RETRY;
}
// Pick a random split point and do the split
old_range = rtt_node_get_range(node);
new_end = uvm_test_rng_range_64(&state->rng, node->start, node->end - 1);
status = rtt_node_split_check(state, node, new_end);
if (status != NV_OK)
return status;
if (params->verbose) {
UVM_TEST_PRINT("Split [%llu, %llu] into [%llu, %llu][%llu, %llu]\n",
old_range.start, old_range.end,
old_range.start, new_end, new_end + 1, old_range.end);
}
return NV_OK;
}
// Attempts to merge a randomly-selected range in the tree in a randomly-
// selected direction (next or prev). On selecting a range with a non-adjacent
// neighbor, the attempt is repeated with another range up to the
// params->max_attempts threshold. On reaching the attempt threshold the RNG
// probabilities are adjusted to prefer split operations and NV_ERR_BUSY_RETRY
// is returned.
static NV_STATUS rtt_rand_merge(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
uvm_range_tree_node_t *node;
size_t index;
NvU32 i;
NV_STATUS status;
rtt_range_t old_range;
int try_prev;
if (state->count < 2)
return NV_OK;
// Randomly try to find a mergeable range
for (i = 0; i < params->max_attempts; i++) {
if (fatal_signal_pending(current))
return NV_ERR_SIGNAL_PENDING;
// Pick a new direction each time
try_prev = uvm_test_rng_range_32(&state->rng, 0, 1);
index = uvm_test_rng_range_ptr(&state->rng, 0, state->count - 1);
node = state->nodes[index];
old_range = rtt_node_get_range(node);
if (try_prev)
status = rtt_index_merge_check_prev(state, index);
else
status = rtt_index_merge_check_next(state, index);
if (status == NV_OK) {
if (params->verbose) {
UVM_TEST_PRINT("Merged [%llu, %llu] to [%llu, %llu]\n",
old_range.start, old_range.end,
node->start, node->end);
}
return NV_OK;
}
else if (status != NV_ERR_INVALID_ADDRESS) {
return status;
}
++state->stats.failed_merges;
}
// We exceeded max_attempts. Tell the RNG to prefer splits.
if (params->verbose) {
UVM_TEST_PRINT("Merge attempt threshold reached with %zu ranges covering %llu (max_end %llu)\n",
state->count, state->stats.size_sum, params->max_end);
}
++state->stats.max_attempts_merge;
state->split_chance = params->high_probability;
return NV_ERR_BUSY_RETRY;
}
// Randomly generate a range that collides with an allocated range and verify
// that adding the range fails.
static NV_STATUS rtt_rand_collision_check(rtt_state_t *state, NvU64 max_end)
{
size_t index;
rtt_range_t cover, check;
if (state->count == 0)
return NV_OK;
// Pick an existing node at random and generate a range which overlaps that
// node.
index = uvm_test_rng_range_ptr(&state->rng, 0, state->count - 1);
cover = rtt_node_get_range(state->nodes[index]);
rtt_get_rand_range_covering(&state->rng, max_end, &cover, &check);
MEM_NV_CHECK_RET(rtt_range_add(state, &check, NULL), NV_ERR_UVM_ADDRESS_IN_USE);
return NV_OK;
}
// Generate a random range and verify that the tree iterator walks all nodes
// in that range in order.
static NV_STATUS rtt_rand_iterator_check(rtt_state_t *state, NvU64 max_end)
{
uvm_range_tree_node_t *node;
uvm_range_tree_node_t *prev = NULL, *first = NULL, *last = NULL, *next = NULL;
size_t i, target_count = 0, iter_count = 0;
NvU64 hole_start, hole_end, test_start, test_end;
rtt_range_t range;
// Generate the range to check
rtt_get_rand_range(&state->rng, max_end, &range);
// Phase 1: Iterate through the unordered list, counting how many nodes we
// ought to see from the tree iterator and finding the boundary nodes.
for (i = 0; i < state->count; i++) {
node = state->nodes[i];
if (rtt_range_overlaps_node(node, &range)) {
++target_count;
// first is the lowest node with any overlap
if (!first || first->start > node->start)
first = node;
// last is the highest node with any overlap
if (!last || last->end < node->end)
last = node;
}
else {
// prev is the highest node with end < range.start
if (node->end < range.start && (!prev || node->end > prev->end))
prev = node;
// next is the lowest node with start > range.end
if (node->start > range.end && (!next || node->start < next->start))
next = node;
}
}
// Phase 2: Use the tree iterators
// The holes between the nodes will be checked within the iterator loop.
// Here we check the holes at the start and end of the range, if any.
if (first) {
if (range.start < first->start) {
// Check hole at range.start
hole_start = prev ? prev->end + 1 : 0;
hole_end = first->start - 1;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, range.start, &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == hole_end);
test_start = range.start;
test_end = ULLONG_MAX;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, range.start, &test_start, &test_end));
TEST_CHECK_RET(test_start == range.start);
TEST_CHECK_RET(test_end == hole_end);
}
// Else, no hole at start
}
else {
// No nodes intersect the range
UVM_ASSERT(target_count == 0);
UVM_ASSERT(!last);
hole_start = prev ? prev->end + 1 : 0;
hole_end = next ? next->start - 1 : ULLONG_MAX;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, range.start, &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == hole_end);
test_start = range.start;
test_end = range.end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, range.start, &test_start, &test_end));
TEST_CHECK_RET(test_start == range.start);
TEST_CHECK_RET(test_end == range.end);
}
if (last && range.end > last->end) {
// Check hole at range.end
hole_start = last->end + 1;
hole_end = next ? next->start - 1 : ULLONG_MAX;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole(&state->tree, range.end, &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == hole_end);
test_start = 0;
test_end = range.end;
TEST_NV_CHECK_RET(uvm_range_tree_find_hole_in(&state->tree, range.end, &test_start, &test_end));
TEST_CHECK_RET(test_start == hole_start);
TEST_CHECK_RET(test_end == range.end);
}
uvm_range_tree_for_each_in(node, &state->tree, range.start, range.end) {
TEST_CHECK_RET(rtt_range_overlaps_node(node, &range));
if (prev) {
TEST_CHECK_RET(prev->end < node->start);
TEST_NV_CHECK_RET(rtt_check_between(state, prev, node));
}
++iter_count;
prev = node;
}
TEST_CHECK_RET(iter_count == target_count);
prev = NULL;
iter_count = 0;
uvm_range_tree_for_each_in_safe(node, next, &state->tree, range.start, range.end) {
TEST_CHECK_RET(rtt_range_overlaps_node(node, &range));
if (prev)
TEST_CHECK_RET(prev->end < node->start);
++iter_count;
prev = node;
}
TEST_CHECK_RET(iter_count == target_count);
return NV_OK;
}
static rtt_op_t rtt_get_rand_op(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
NvU32 r_group, r_sub;
// The possible options depend on the current number of nodes in the tree:
// 0 add
// 1 (max == 1) remove
// 1 (max != 1) add, remove, shrink, split
// >1, <max add, remove, shrink, split, merge
// max remove, merge
if (state->count == 0)
return RTT_OP_ADD;
if (state->count == 1 && state->count == params->max_ranges)
return RTT_OP_REMOVE;
// r_group selects between the two groups of operations, either {add/remove/
// shrink} or {merge/split}. r_sub selects the sub operation within that
// group based on the current probability settings.
r_group = uvm_test_rng_range_32(&state->rng, 1, 100);
r_sub = uvm_test_rng_range_32(&state->rng, 1, 100);
if (state->count < params->max_ranges) {
if (r_group <= params->add_remove_shrink_group_probability) {
if (r_sub <= state->shrink_probability)
return RTT_OP_SHRINK;
// After giving shrink a chance, redo the randomization for add/
// remove.
r_sub = uvm_test_rng_range_32(&state->rng, 1, 100);
if (r_sub <= state->add_chance)
return RTT_OP_ADD;
return RTT_OP_REMOVE;
}
else {
if (state->count == 1 || r_sub <= state->split_chance)
return RTT_OP_SPLIT;
return RTT_OP_MERGE;
}
}
// We're at max
if (r_group <= params->add_remove_shrink_group_probability)
return RTT_OP_REMOVE;
return RTT_OP_MERGE;
}
// This random stress test performs the following every iteration of the main
// loop:
// - Perform a random operation on the tree, one of:
// - Add a randomized number of elements from the tree
// - Remove a randomized number of elements from the tree
// - Shrink a random element in the tree
// - Split a random element in the tree
// - Merge a random element in the tree with its neighbor
// - Randomly generate ranges that overlap with at least one node, attempt to
// add those ranges to the tree, and verify that they fail.
// - Randomly generate ranges and verify that tree iterator reports all nodes
// in the range in the proper order.
//
// Operations are split into two groups:
//
// Group 1: add/remove/shrink
// Group 2: split/merge
//
// params->add_remove_shrink_group_probability is used to select which operation
// group to use each iteration. The selection of operation within that group
// depends on the current "mode." Initially, add and split operations are
// weighted heavily (with params->high_probability). If we reach the
// params->max_attempts threshold while trying to perform one of those
// operations, the probability of that operation is reversed to prefer removes
// or merges respectively.
//
// In the case of add/remove, the probability will also change if the tree is
// empty or full.
//
// A better (less random) test would be to track the available free ranges and
// randomly perform an allocation somewhere there. Then the collisions would be
// completely deterministic, and we could be guaranteed to eventually fill all
// space. The trouble is that tracking free ranges essentially requires building
// a simple allocator, with merge/split logic. That would increase the
// complexity of this test immensely, so instead we're doing best-effort.
static NV_STATUS rtt_random(rtt_state_t *state, UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params)
{
rtt_op_t op;
NvU64 i;
NvU32 j;
NV_STATUS status;
state->shrink_probability = params->shrink_probability;
// Prefer adds and splits initially to build the tree
state->add_chance = params->high_probability;
state->split_chance = params->high_probability;
for (i = 0; i < params->main_iterations; i++) {
// Since we could spend a long time here, catch ctrl-c
if (fatal_signal_pending(current))
return NV_ERR_SIGNAL_PENDING;
if (params->verbose)
UVM_TEST_PRINT("Iteration %llu: count %zu\n", i, state->count);
// Modify the tree randomly. First adjust the add/remove probability if
// we're at the limits
if (state->count == 0)
state->add_chance = params->high_probability;
else if (state->count == params->max_ranges)
state->add_chance = 100 - params->high_probability;
status = NV_OK;
op = rtt_get_rand_op(state, params);
switch (op) {
case RTT_OP_ADD:
status = rtt_batch_add(state, params);
break;
case RTT_OP_REMOVE:
status = rtt_batch_remove(state, params);
break;
case RTT_OP_SHRINK:
status = rtt_rand_shrink(state, params);
break;
case RTT_OP_SPLIT:
status = rtt_rand_split(state, params);
break;
case RTT_OP_MERGE:
status = rtt_rand_merge(state, params);
break;
default:
UVM_ASSERT(0);
}
if (status != NV_OK && status != NV_ERR_BUSY_RETRY) {
// Don't print on ctrl-c
if (status != NV_ERR_SIGNAL_PENDING)
UVM_ERR_PRINT("rtt_op %d failed with status 0x%08x on iteration %llu\n", op, status, i);
return status;
}
// Do collision detection
if (state->count) {
rtt_range_t whole = {0, ULLONG_MAX};
MEM_NV_CHECK_RET(rtt_range_add(state, &whole, NULL), NV_ERR_UVM_ADDRESS_IN_USE);
for (j = 0; j < params->collision_checks; j++) {
status = rtt_rand_collision_check(state, params->max_end);
if (status != NV_OK) {
UVM_ERR_PRINT("rtt_rand_collision_check failed with status 0x%08x on iteration %llu, %u\n",
status, i, j);
return status;
}
}
}
// Iterator checking
status = rtt_check_iterator_all(state);
if (status != NV_OK)
return status;
for (j = 0; j < params->iterator_checks; j++) {
status = rtt_rand_iterator_check(state, params->max_end);
if (status != NV_OK) {
UVM_ERR_PRINT("rtt_rand_iterator_check failed with status 0x%08x on iteration %llu, %u\n",
status, i, j);
return status;
}
}
}
params->stats.total_adds = state->stats.total_adds;
params->stats.failed_adds = state->stats.failed_adds;
params->stats.max_attempts_add = state->stats.max_attempts_add;
params->stats.total_removes = state->stats.total_removes;
params->stats.total_splits = state->stats.total_splits;
params->stats.failed_splits = state->stats.failed_splits;
params->stats.max_attempts_split = state->stats.max_attempts_split;
params->stats.total_merges = state->stats.total_merges;
params->stats.failed_merges = state->stats.failed_merges;
params->stats.max_attempts_merge = state->stats.max_attempts_merge;
params->stats.total_shrinks = state->stats.total_shrinks;
params->stats.failed_shrinks = state->stats.failed_shrinks;
return NV_OK;
}
NV_STATUS uvm_test_range_tree_random(UVM_TEST_RANGE_TREE_RANDOM_PARAMS *params, struct file *filp)
{
rtt_state_t *state;
NV_STATUS status;
if (params->high_probability > 100 ||
params->add_remove_shrink_group_probability > 100 ||
params->max_batch_count == 0)
return NV_ERR_INVALID_PARAMETER;
state = rtt_state_create();
if (!state)
return NV_ERR_NO_MEMORY;
uvm_test_rng_init(&state->rng, params->seed);
status = rtt_random(state, params);
rtt_state_destroy(state);
return status;
}
|