1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
/*
* SPDX-FileCopyrightText: Copyright (c) 1999-2020 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "os-interface.h"
#include "nv.h"
#include "nv-linux.h"
static inline void nv_set_contig_memory_uc(nvidia_pte_t *page_ptr, NvU32 num_pages)
{
#if defined(NV_SET_MEMORY_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
unsigned long addr = (unsigned long)page_address(page);
set_memory_uc(addr, num_pages);
#elif defined(NV_SET_PAGES_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
set_pages_uc(page, num_pages);
#endif
}
static inline void nv_set_contig_memory_wb(nvidia_pte_t *page_ptr, NvU32 num_pages)
{
#if defined(NV_SET_MEMORY_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
unsigned long addr = (unsigned long)page_address(page);
set_memory_wb(addr, num_pages);
#elif defined(NV_SET_PAGES_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
set_pages_wb(page, num_pages);
#endif
}
static inline int nv_set_memory_array_type_present(NvU32 type)
{
switch (type)
{
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
return 1;
case NV_MEMORY_WRITEBACK:
return 1;
#endif
default:
return 0;
}
}
static inline int nv_set_pages_array_type_present(NvU32 type)
{
switch (type)
{
#if defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
return 1;
case NV_MEMORY_WRITEBACK:
return 1;
#endif
default:
return 0;
}
}
static inline void nv_set_memory_array_type(
unsigned long *pages,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
set_memory_array_uc(pages, num_pages);
break;
case NV_MEMORY_WRITEBACK:
set_memory_array_wb(pages, num_pages);
break;
#endif
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
break;
}
}
static inline void nv_set_pages_array_type(
struct page **pages,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
#if defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
set_pages_array_uc(pages, num_pages);
break;
case NV_MEMORY_WRITEBACK:
set_pages_array_wb(pages, num_pages);
break;
#endif
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
break;
}
}
static inline void nv_set_contig_memory_type(
nvidia_pte_t *page_ptr,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
case NV_MEMORY_UNCACHED:
nv_set_contig_memory_uc(page_ptr, num_pages);
break;
case NV_MEMORY_WRITEBACK:
nv_set_contig_memory_wb(page_ptr, num_pages);
break;
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
}
}
static inline void nv_set_memory_type(nv_alloc_t *at, NvU32 type)
{
NvU32 i;
NV_STATUS status = NV_OK;
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
unsigned long *pages = NULL;
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
struct page **pages = NULL;
#else
unsigned long *pages = NULL;
#endif
nvidia_pte_t *page_ptr;
struct page *page;
if (nv_set_memory_array_type_present(type))
{
status = os_alloc_mem((void **)&pages,
at->num_pages * sizeof(unsigned long));
}
else if (nv_set_pages_array_type_present(type))
{
status = os_alloc_mem((void **)&pages,
at->num_pages * sizeof(struct page*));
}
if (status != NV_OK)
pages = NULL;
//
// If the set_{memory,page}_array_* functions are in the kernel interface,
// it's faster to use them since they work on non-contiguous memory,
// whereas the set_{memory,page}_* functions do not.
//
if (pages)
{
for (i = 0; i < at->num_pages; i++)
{
page_ptr = at->page_table[i];
page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
pages[i] = (unsigned long)page_address(page);
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
pages[i] = page;
#endif
}
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
nv_set_memory_array_type(pages, at->num_pages, type);
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
nv_set_pages_array_type(pages, at->num_pages, type);
#endif
os_free_mem(pages);
}
//
// If the set_{memory,page}_array_* functions aren't present in the kernel
// interface, each page has to be set individually, which has been measured
// to be ~10x slower than using the set_{memory,page}_array_* functions.
//
else
{
for (i = 0; i < at->num_pages; i++)
nv_set_contig_memory_type(at->page_table[i], 1, type);
}
}
static NvU64 nv_get_max_sysmem_address(void)
{
NvU64 global_max_pfn = 0ULL;
int node_id;
for_each_online_node(node_id)
{
global_max_pfn = max(global_max_pfn, (NvU64)node_end_pfn(node_id));
}
return ((global_max_pfn + 1) << PAGE_SHIFT) - 1;
}
static unsigned int nv_compute_gfp_mask(
nv_state_t *nv,
nv_alloc_t *at
)
{
unsigned int gfp_mask = NV_GFP_KERNEL;
struct device *dev = at->dev;
/*
* If we know that SWIOTLB is enabled (and therefore we avoid calling the
* kernel to DMA-remap the pages), or if we are using dma_direct (which may
* transparently use the SWIOTLB for pages that are unaddressable by the
* device, in kernel versions 5.0 and later), limit our allocation pool
* to the first 4GB to avoid allocating pages outside of our device's
* addressable limit.
* Also, limit the allocation to the first 4GB if explicitly requested by
* setting the "nv->force_dma32_alloc" variable.
*/
if (!nv || !nv_requires_dma_remap(nv) || nv_is_dma_direct(dev) || nv->force_dma32_alloc)
{
NvU64 max_sysmem_address = nv_get_max_sysmem_address();
if ((dev && dev->dma_mask && (*(dev->dma_mask) < max_sysmem_address)) ||
(nv && nv->force_dma32_alloc))
{
gfp_mask = NV_GFP_DMA32;
}
}
#if defined(__GFP_RETRY_MAYFAIL)
gfp_mask |= __GFP_RETRY_MAYFAIL;
#elif defined(__GFP_NORETRY)
gfp_mask |= __GFP_NORETRY;
#endif
#if defined(__GFP_ZERO)
if (at->flags.zeroed)
gfp_mask |= __GFP_ZERO;
#endif
#if defined(__GFP_THISNODE)
if (at->flags.node)
gfp_mask |= __GFP_THISNODE;
#endif
// Compound pages are required by vm_insert_page for high-order page
// allocations
if (at->order > 0)
gfp_mask |= __GFP_COMP;
return gfp_mask;
}
/*
* This function is needed for allocating contiguous physical memory in xen
* dom0. Because of the use of xen sw iotlb in xen dom0, memory allocated by
* NV_GET_FREE_PAGES may not be machine contiguous when size is more than
* 1 page. nv_alloc_coherent_pages() will give us machine contiguous memory.
* Even though we get dma_address directly in this function, we will
* still call pci_map_page() later to get dma address. This is fine as it
* will return the same machine address.
*/
static NV_STATUS nv_alloc_coherent_pages(
nv_state_t *nv,
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
NvU32 i;
unsigned int gfp_mask;
unsigned long virt_addr = 0;
dma_addr_t bus_addr;
nv_linux_state_t *nvl;
struct device *dev;
if (!nv)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: coherent page alloc on nvidiactl not supported\n", __FUNCTION__);
return NV_ERR_NOT_SUPPORTED;
}
nvl = NV_GET_NVL_FROM_NV_STATE(nv);
dev = nvl->dev;
gfp_mask = nv_compute_gfp_mask(nv, at);
virt_addr = (unsigned long)dma_alloc_coherent(dev,
at->num_pages * PAGE_SIZE,
&bus_addr,
gfp_mask);
if (!virt_addr)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
return NV_ERR_NO_MEMORY;
}
for (i = 0; i < at->num_pages; i++)
{
page_ptr = at->page_table[i];
page_ptr->virt_addr = virt_addr + i * PAGE_SIZE;
page_ptr->phys_addr = virt_to_phys((void *)page_ptr->virt_addr);
page_ptr->dma_addr = bus_addr + i * PAGE_SIZE;
}
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_contig_memory_type(at->page_table[0],
at->num_pages,
NV_MEMORY_UNCACHED);
}
at->flags.coherent = NV_TRUE;
return NV_OK;
}
static void nv_free_coherent_pages(
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
struct device *dev = at->dev;
page_ptr = at->page_table[0];
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_contig_memory_type(at->page_table[0],
at->num_pages,
NV_MEMORY_WRITEBACK);
}
dma_free_coherent(dev, at->num_pages * PAGE_SIZE,
(void *)page_ptr->virt_addr, page_ptr->dma_addr);
}
NV_STATUS nv_alloc_contig_pages(
nv_state_t *nv,
nv_alloc_t *at
)
{
NV_STATUS status;
nvidia_pte_t *page_ptr;
NvU32 i, j;
unsigned int gfp_mask;
unsigned long virt_addr = 0;
NvU64 phys_addr;
struct device *dev = at->dev;
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u pages\n", __FUNCTION__, at->num_pages);
// TODO: This is a temporary WAR, and will be removed after fixing bug 200732409.
if (os_is_xen_dom0() || at->flags.unencrypted)
return nv_alloc_coherent_pages(nv, at);
at->order = get_order(at->num_pages * PAGE_SIZE);
gfp_mask = nv_compute_gfp_mask(nv, at);
if (at->flags.node)
{
NV_ALLOC_PAGES_NODE(virt_addr, at->node_id, at->order, gfp_mask);
}
else
{
NV_GET_FREE_PAGES(virt_addr, at->order, gfp_mask);
}
if (virt_addr == 0)
{
if (os_is_vgx_hyper())
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory, trying coherent memory \n", __FUNCTION__);
status = nv_alloc_coherent_pages(nv, at);
return status;
}
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
return NV_ERR_NO_MEMORY;
}
#if !defined(__GFP_ZERO)
if (at->flags.zeroed)
memset((void *)virt_addr, 0, (at->num_pages * PAGE_SIZE));
#endif
for (i = 0; i < at->num_pages; i++, virt_addr += PAGE_SIZE)
{
phys_addr = nv_get_kern_phys_address(virt_addr);
if (phys_addr == 0)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: VM: %s: failed to look up physical address\n",
__FUNCTION__);
status = NV_ERR_OPERATING_SYSTEM;
goto failed;
}
page_ptr = at->page_table[i];
page_ptr->phys_addr = phys_addr;
page_ptr->page_count = NV_GET_PAGE_COUNT(page_ptr);
page_ptr->virt_addr = virt_addr;
page_ptr->dma_addr = nv_phys_to_dma(dev, page_ptr->phys_addr);
NV_MAYBE_RESERVE_PAGE(page_ptr);
}
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_contig_memory_type(at->page_table[0],
at->num_pages,
NV_MEMORY_UNCACHED);
}
at->flags.coherent = NV_FALSE;
return NV_OK;
failed:
if (i > 0)
{
for (j = 0; j < i; j++)
NV_MAYBE_UNRESERVE_PAGE(at->page_table[j]);
}
page_ptr = at->page_table[0];
NV_FREE_PAGES(page_ptr->virt_addr, at->order);
return status;
}
void nv_free_contig_pages(
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
unsigned int i;
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u pages\n", __FUNCTION__, at->num_pages);
if (at->flags.coherent)
return nv_free_coherent_pages(at);
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_contig_memory_type(at->page_table[0],
at->num_pages,
NV_MEMORY_WRITEBACK);
}
for (i = 0; i < at->num_pages; i++)
{
page_ptr = at->page_table[i];
if (NV_GET_PAGE_COUNT(page_ptr) != page_ptr->page_count)
{
static int count = 0;
if (count++ < NV_MAX_RECURRING_WARNING_MESSAGES)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: VM: %s: page count != initial page count (%u,%u)\n",
__FUNCTION__, NV_GET_PAGE_COUNT(page_ptr),
page_ptr->page_count);
}
}
NV_MAYBE_UNRESERVE_PAGE(page_ptr);
}
page_ptr = at->page_table[0];
NV_FREE_PAGES(page_ptr->virt_addr, at->order);
}
NV_STATUS nv_alloc_system_pages(
nv_state_t *nv,
nv_alloc_t *at
)
{
NV_STATUS status;
nvidia_pte_t *page_ptr;
NvU32 i, j;
unsigned int gfp_mask;
unsigned long virt_addr = 0;
NvU64 phys_addr;
struct device *dev = at->dev;
dma_addr_t bus_addr;
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %u: %u pages\n", __FUNCTION__, at->num_pages);
gfp_mask = nv_compute_gfp_mask(nv, at);
for (i = 0; i < at->num_pages; i++)
{
if (at->flags.unencrypted && (dev != NULL))
{
virt_addr = (unsigned long)dma_alloc_coherent(dev,
PAGE_SIZE,
&bus_addr,
gfp_mask);
at->flags.coherent = NV_TRUE;
}
else if (at->flags.node)
{
NV_ALLOC_PAGES_NODE(virt_addr, at->node_id, 0, gfp_mask);
}
else
{
NV_GET_FREE_PAGES(virt_addr, 0, gfp_mask);
}
if (virt_addr == 0)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
status = NV_ERR_NO_MEMORY;
goto failed;
}
#if !defined(__GFP_ZERO)
if (at->flags.zeroed)
memset((void *)virt_addr, 0, PAGE_SIZE);
#endif
phys_addr = nv_get_kern_phys_address(virt_addr);
if (phys_addr == 0)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: VM: %s: failed to look up physical address\n",
__FUNCTION__);
NV_FREE_PAGES(virt_addr, 0);
status = NV_ERR_OPERATING_SYSTEM;
goto failed;
}
#if defined(_PAGE_NX)
if (((_PAGE_NX & pgprot_val(PAGE_KERNEL)) != 0) &&
(phys_addr < 0x400000))
{
nv_printf(NV_DBG_SETUP,
"NVRM: VM: %s: discarding page @ 0x%llx\n",
__FUNCTION__, phys_addr);
--i;
continue;
}
#endif
page_ptr = at->page_table[i];
page_ptr->phys_addr = phys_addr;
page_ptr->page_count = NV_GET_PAGE_COUNT(page_ptr);
page_ptr->virt_addr = virt_addr;
//
// Use unencrypted dma_addr returned by dma_alloc_coherent() as
// nv_phys_to_dma() returns encrypted dma_addr when AMD SEV is enabled.
//
if (at->flags.coherent)
page_ptr->dma_addr = bus_addr;
else if (dev)
page_ptr->dma_addr = nv_phys_to_dma(dev, page_ptr->phys_addr);
else
page_ptr->dma_addr = page_ptr->phys_addr;
NV_MAYBE_RESERVE_PAGE(page_ptr);
}
if (at->cache_type != NV_MEMORY_CACHED)
nv_set_memory_type(at, NV_MEMORY_UNCACHED);
return NV_OK;
failed:
if (i > 0)
{
for (j = 0; j < i; j++)
{
page_ptr = at->page_table[j];
NV_MAYBE_UNRESERVE_PAGE(page_ptr);
if (at->flags.coherent)
{
dma_free_coherent(dev, PAGE_SIZE, (void *)page_ptr->virt_addr,
page_ptr->dma_addr);
}
else
{
NV_FREE_PAGES(page_ptr->virt_addr, 0);
}
}
}
return status;
}
void nv_free_system_pages(
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
unsigned int i;
struct device *dev = at->dev;
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u pages\n", __FUNCTION__, at->num_pages);
if (at->cache_type != NV_MEMORY_CACHED)
nv_set_memory_type(at, NV_MEMORY_WRITEBACK);
for (i = 0; i < at->num_pages; i++)
{
page_ptr = at->page_table[i];
if (NV_GET_PAGE_COUNT(page_ptr) != page_ptr->page_count)
{
static int count = 0;
if (count++ < NV_MAX_RECURRING_WARNING_MESSAGES)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: VM: %s: page count != initial page count (%u,%u)\n",
__FUNCTION__, NV_GET_PAGE_COUNT(page_ptr),
page_ptr->page_count);
}
}
NV_MAYBE_UNRESERVE_PAGE(page_ptr);
if (at->flags.coherent)
{
dma_free_coherent(dev, PAGE_SIZE, (void *)page_ptr->virt_addr,
page_ptr->dma_addr);
}
else
{
NV_FREE_PAGES(page_ptr->virt_addr, 0);
}
}
}
NvUPtr nv_vm_map_pages(
struct page **pages,
NvU32 count,
NvBool cached,
NvBool unencrypted
)
{
NvUPtr virt_addr = 0;
if (!NV_MAY_SLEEP())
{
nv_printf(NV_DBG_ERRORS,
"NVRM: %s: can't map %d pages, invalid context!\n",
__FUNCTION__, count);
os_dbg_breakpoint();
return virt_addr;
}
virt_addr = nv_vmap(pages, count, cached, unencrypted);
return virt_addr;
}
void nv_vm_unmap_pages(
NvUPtr virt_addr,
NvU32 count
)
{
if (!NV_MAY_SLEEP())
{
nv_printf(NV_DBG_ERRORS,
"NVRM: %s: can't unmap %d pages at 0x%0llx, "
"invalid context!\n", __FUNCTION__, count, virt_addr);
os_dbg_breakpoint();
return;
}
nv_vunmap(virt_addr, count);
}
|