1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
/*******************************************************************************
Copyright (c) 2021-2023 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_common.h"
#include "uvm_global.h"
#include "uvm_conf_computing.h"
#include "uvm_kvmalloc.h"
#include "uvm_gpu.h"
#include "uvm_hal.h"
#include "uvm_mem.h"
#include "uvm_processors.h"
#include "uvm_tracker.h"
#include "nv_uvm_interface.h"
#include "uvm_va_block.h"
// Amount of encrypted data on a given engine that triggers key rotation. This
// is a UVM internal threshold, different from that of RM, and used only during
// testing.
//
// Key rotation is triggered when the total encryption size, or the total
// decryption size (whatever comes first) reaches this lower threshold on the
// engine.
#define UVM_CONF_COMPUTING_KEY_ROTATION_LOWER_THRESHOLD (UVM_SIZE_1MB * 8)
// The maximum number of secure operations per push is:
// UVM_MAX_PUSH_SIZE / min(CE encryption size, CE decryption size)
// + 1 (tracking semaphore) = 128 * 1024 / 56 + 1 = 2342
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN 2342lu
// Channels use 32-bit counters so the value after rotation is 0xffffffff.
// setting the limit to this value (or higher) will result in rotation
// on every check. However, pre-emptive rotation when submitting control
// GPFIFO entries relies on the fact that multiple successive checks after
// rotation do not trigger more rotations if there was no IV used in between.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX 0xfffffffelu
// Attempt rotation when two billion IVs are left. IV rotation call can fail if
// the necessary locks are not available, so multiple attempts may be need for
// IV rotation to succeed.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT (1lu << 31)
// Start rotating after 500 encryption/decryptions when running tests.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_TESTS ((1lu << 32) - 500lu)
static ulong uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT;
module_param(uvm_conf_computing_channel_iv_rotation_limit, ulong, S_IRUGO);
static UvmGpuConfComputeMode uvm_conf_computing_get_mode(const uvm_parent_gpu_t *parent)
{
return parent->rm_info.gpuConfComputeCaps.mode;
}
bool uvm_conf_computing_mode_is_hcc(const uvm_gpu_t *gpu)
{
return uvm_conf_computing_get_mode(gpu->parent) == UVM_GPU_CONF_COMPUTE_MODE_HCC;
}
void uvm_conf_computing_check_parent_gpu(const uvm_parent_gpu_t *parent)
{
uvm_parent_gpu_t *other_parent;
UvmGpuConfComputeMode parent_mode = uvm_conf_computing_get_mode(parent);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
// The Confidential Computing state of the GPU should match that of the
// system.
UVM_ASSERT((parent_mode != UVM_GPU_CONF_COMPUTE_MODE_NONE) == g_uvm_global.conf_computing_enabled);
// All GPUs derive Confidential Computing status from their parent. By
// current policy all parent GPUs have identical Confidential Computing
// status.
for_each_parent_gpu(other_parent)
UVM_ASSERT(parent_mode == uvm_conf_computing_get_mode(other_parent));
}
static void dma_buffer_destroy_locked(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
uvm_conf_computing_dma_buffer_t *dma_buffer)
{
uvm_assert_mutex_locked(&dma_buffer_pool->lock);
list_del(&dma_buffer->node);
uvm_tracker_wait_deinit(&dma_buffer->tracker);
uvm_mem_free(dma_buffer->alloc);
uvm_mem_free(dma_buffer->auth_tag);
uvm_kvfree(dma_buffer);
}
static uvm_gpu_t *dma_buffer_pool_to_gpu(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
return container_of(dma_buffer_pool, uvm_gpu_t, conf_computing.dma_buffer_pool);
}
// Allocate and map a new DMA stage buffer to CPU and GPU (VA)
static NV_STATUS dma_buffer_create(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
uvm_conf_computing_dma_buffer_t **dma_buffer_out)
{
uvm_gpu_t *dma_owner;
uvm_conf_computing_dma_buffer_t *dma_buffer;
uvm_mem_t *alloc = NULL;
NV_STATUS status = NV_OK;
size_t auth_tags_size = (UVM_CONF_COMPUTING_DMA_BUFFER_SIZE / PAGE_SIZE) * UVM_CONF_COMPUTING_AUTH_TAG_SIZE;
dma_buffer = uvm_kvmalloc_zero(sizeof(*dma_buffer));
if (!dma_buffer)
return NV_ERR_NO_MEMORY;
dma_owner = dma_buffer_pool_to_gpu(dma_buffer_pool);
uvm_tracker_init(&dma_buffer->tracker);
INIT_LIST_HEAD(&dma_buffer->node);
status = uvm_mem_alloc_sysmem_dma_and_map_cpu_kernel(UVM_CONF_COMPUTING_DMA_BUFFER_SIZE, dma_owner, NULL, &alloc);
if (status != NV_OK)
goto err;
dma_buffer->alloc = alloc;
status = uvm_mem_map_gpu_kernel(alloc, dma_owner);
if (status != NV_OK)
goto err;
status = uvm_mem_alloc_sysmem_dma_and_map_cpu_kernel(auth_tags_size, dma_owner, NULL, &alloc);
if (status != NV_OK)
goto err;
dma_buffer->auth_tag = alloc;
status = uvm_mem_map_gpu_kernel(alloc, dma_owner);
if (status != NV_OK)
goto err;
*dma_buffer_out = dma_buffer;
return status;
err:
dma_buffer_destroy_locked(dma_buffer_pool, dma_buffer);
return status;
}
void uvm_conf_computing_dma_buffer_pool_sync(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
uvm_conf_computing_dma_buffer_t *dma_buffer;
if (dma_buffer_pool->num_dma_buffers == 0)
return;
uvm_mutex_lock(&dma_buffer_pool->lock);
list_for_each_entry(dma_buffer, &dma_buffer_pool->free_dma_buffers, node)
uvm_tracker_wait(&dma_buffer->tracker);
uvm_mutex_unlock(&dma_buffer_pool->lock);
}
static void conf_computing_dma_buffer_pool_deinit(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
uvm_conf_computing_dma_buffer_t *dma_buffer;
uvm_conf_computing_dma_buffer_t *next_buff;
if (dma_buffer_pool->num_dma_buffers == 0)
return;
// Because the pool is teared down at the same time the GPU is unregistered
// the lock is required only to quiet assertions not for functional reasons
// see dma_buffer_destroy_locked()).
uvm_mutex_lock(&dma_buffer_pool->lock);
list_for_each_entry_safe(dma_buffer, next_buff, &dma_buffer_pool->free_dma_buffers, node) {
dma_buffer_destroy_locked(dma_buffer_pool, dma_buffer);
dma_buffer_pool->num_dma_buffers--;
}
UVM_ASSERT(dma_buffer_pool->num_dma_buffers == 0);
UVM_ASSERT(list_empty(&dma_buffer_pool->free_dma_buffers));
uvm_mutex_unlock(&dma_buffer_pool->lock);
}
static void dma_buffer_pool_add(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
uvm_conf_computing_dma_buffer_t *dma_buffer)
{
uvm_assert_mutex_locked(&dma_buffer_pool->lock);
list_add_tail(&dma_buffer->node, &dma_buffer_pool->free_dma_buffers);
}
static NV_STATUS conf_computing_dma_buffer_pool_init(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
size_t i;
size_t num_dma_buffers = 32;
NV_STATUS status = NV_OK;
UVM_ASSERT(dma_buffer_pool->num_dma_buffers == 0);
UVM_ASSERT(g_uvm_global.conf_computing_enabled);
INIT_LIST_HEAD(&dma_buffer_pool->free_dma_buffers);
uvm_mutex_init(&dma_buffer_pool->lock, UVM_LOCK_ORDER_CONF_COMPUTING_DMA_BUFFER_POOL);
dma_buffer_pool->num_dma_buffers = num_dma_buffers;
uvm_mutex_lock(&dma_buffer_pool->lock);
for (i = 0; i < num_dma_buffers; i++) {
uvm_conf_computing_dma_buffer_t *dma_buffer;
status = dma_buffer_create(dma_buffer_pool, &dma_buffer);
if (status != NV_OK)
break;
dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
}
uvm_mutex_unlock(&dma_buffer_pool->lock);
if (i < num_dma_buffers)
conf_computing_dma_buffer_pool_deinit(dma_buffer_pool);
return status;
}
static NV_STATUS dma_buffer_pool_expand_locked(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
size_t i;
uvm_gpu_t *gpu;
size_t nb_to_alloc;
NV_STATUS status = NV_OK;
UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);
gpu = dma_buffer_pool_to_gpu(dma_buffer_pool);
nb_to_alloc = dma_buffer_pool->num_dma_buffers;
for (i = 0; i < nb_to_alloc; ++i) {
uvm_conf_computing_dma_buffer_t *dma_buffer;
status = dma_buffer_create(dma_buffer_pool, &dma_buffer);
if (status != NV_OK)
break;
dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
}
dma_buffer_pool->num_dma_buffers += i;
if (i == 0)
return status;
return NV_OK;
}
NV_STATUS uvm_conf_computing_dma_buffer_alloc(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
uvm_conf_computing_dma_buffer_t **dma_buffer_out,
uvm_tracker_t *out_tracker)
{
uvm_conf_computing_dma_buffer_t *dma_buffer = NULL;
NV_STATUS status;
UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);
// TODO: Bug 3385623: Heuristically expand DMA memory pool
uvm_mutex_lock(&dma_buffer_pool->lock);
if (list_empty(&dma_buffer_pool->free_dma_buffers)) {
status = dma_buffer_pool_expand_locked(dma_buffer_pool);
if (status != NV_OK) {
uvm_mutex_unlock(&dma_buffer_pool->lock);
return status;
}
}
// We're guaranteed that at least one DMA stage buffer is available at this
// point.
dma_buffer = list_first_entry(&dma_buffer_pool->free_dma_buffers, uvm_conf_computing_dma_buffer_t, node);
list_del_init(&dma_buffer->node);
uvm_mutex_unlock(&dma_buffer_pool->lock);
status = uvm_tracker_wait_for_other_gpus(&dma_buffer->tracker, dma_buffer->alloc->dma_owner);
if (status != NV_OK)
goto error;
if (out_tracker)
status = uvm_tracker_add_tracker_safe(out_tracker, &dma_buffer->tracker);
else
status = uvm_tracker_wait(&dma_buffer->tracker);
if (status != NV_OK)
goto error;
uvm_page_mask_zero(&dma_buffer->encrypted_page_mask);
*dma_buffer_out = dma_buffer;
return status;
error:
uvm_tracker_deinit(&dma_buffer->tracker);
uvm_conf_computing_dma_buffer_free(dma_buffer_pool, dma_buffer, NULL);
return status;
}
void uvm_conf_computing_dma_buffer_free(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
uvm_conf_computing_dma_buffer_t *dma_buffer,
uvm_tracker_t *tracker)
{
NV_STATUS status;
if (!dma_buffer)
return;
UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);
uvm_tracker_remove_completed(&dma_buffer->tracker);
if (tracker) {
uvm_tracker_remove_completed(tracker);
status = uvm_tracker_add_tracker_safe(&dma_buffer->tracker, tracker);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
}
uvm_mutex_lock(&dma_buffer_pool->lock);
dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
uvm_mutex_unlock(&dma_buffer_pool->lock);
}
static void dummy_iv_mem_deinit(uvm_gpu_t *gpu)
{
uvm_mem_free(gpu->conf_computing.iv_mem);
}
static NV_STATUS dummy_iv_mem_init(uvm_gpu_t *gpu)
{
NV_STATUS status;
if (!uvm_conf_computing_mode_is_hcc(gpu))
return NV_OK;
status = uvm_mem_alloc_sysmem_dma(sizeof(UvmCslIv), gpu, NULL, &gpu->conf_computing.iv_mem);
if (status != NV_OK)
return status;
status = uvm_mem_map_gpu_kernel(gpu->conf_computing.iv_mem, gpu);
if (status != NV_OK)
goto error;
return NV_OK;
error:
dummy_iv_mem_deinit(gpu);
return status;
}
// The production key rotation defaults are such that key rotations rarely
// happen. During UVM testing more frequent rotations are triggering by relying
// on internal encryption usage accounting. When key rotations are triggered by
// UVM, the driver does not rely on channel key rotation notifiers.
//
// TODO: Bug 4612912: UVM should be able to programmatically set the rotation
// lower threshold. This function, and all the metadata associated with it
// (per-pool encryption accounting, for example) can be removed at that point.
static bool key_rotation_is_notifier_driven(void)
{
return !uvm_enable_builtin_tests;
}
NV_STATUS uvm_conf_computing_gpu_init(uvm_gpu_t *gpu)
{
NV_STATUS status;
if (!g_uvm_global.conf_computing_enabled)
return NV_OK;
status = conf_computing_dma_buffer_pool_init(&gpu->conf_computing.dma_buffer_pool);
if (status != NV_OK)
return status;
status = dummy_iv_mem_init(gpu);
if (status != NV_OK)
goto error;
if (uvm_enable_builtin_tests && uvm_conf_computing_channel_iv_rotation_limit == UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT)
uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_TESTS;
if (uvm_conf_computing_channel_iv_rotation_limit < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN ||
uvm_conf_computing_channel_iv_rotation_limit > UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX) {
UVM_ERR_PRINT("Value of uvm_conf_computing_channel_iv_rotation_limit: %lu is outside of the safe "
"range: <%lu, %lu>. Using the default value instead (%lu)\n",
uvm_conf_computing_channel_iv_rotation_limit,
UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN,
UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX,
UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT);
uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT;
}
return NV_OK;
error:
uvm_conf_computing_gpu_deinit(gpu);
return status;
}
void uvm_conf_computing_gpu_deinit(uvm_gpu_t *gpu)
{
dummy_iv_mem_deinit(gpu);
conf_computing_dma_buffer_pool_deinit(&gpu->conf_computing.dma_buffer_pool);
}
void uvm_conf_computing_log_gpu_encryption(uvm_channel_t *channel, size_t size, UvmCslIv *iv)
{
NV_STATUS status;
uvm_channel_pool_t *pool;
if (uvm_channel_is_lcic(channel))
pool = uvm_channel_lcic_get_paired_wlc(channel)->pool;
else
pool = channel->pool;
uvm_mutex_lock(&channel->csl.ctx_lock);
if (uvm_conf_computing_is_key_rotation_enabled_in_pool(pool)) {
status = nvUvmInterfaceCslLogEncryption(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT, size);
// Informing RM of an encryption/decryption should not fail
UVM_ASSERT(status == NV_OK);
if (!key_rotation_is_notifier_driven())
atomic64_add(size, &pool->conf_computing.key_rotation.encrypted);
}
status = nvUvmInterfaceCslIncrementIv(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT, 1, iv);
// IV rotation is done preemptively as needed, so the above
// call cannot return failure.
UVM_ASSERT(status == NV_OK);
uvm_mutex_unlock(&channel->csl.ctx_lock);
}
void uvm_conf_computing_acquire_encryption_iv(uvm_channel_t *channel, UvmCslIv *iv)
{
NV_STATUS status;
uvm_mutex_lock(&channel->csl.ctx_lock);
status = nvUvmInterfaceCslIncrementIv(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT, 1, iv);
uvm_mutex_unlock(&channel->csl.ctx_lock);
// IV rotation is done preemptively as needed, so the above
// call cannot return failure.
UVM_ASSERT(status == NV_OK);
}
void uvm_conf_computing_cpu_encrypt(uvm_channel_t *channel,
void *dst_cipher,
const void *src_plain,
UvmCslIv *encrypt_iv,
size_t size,
void *auth_tag_buffer)
{
NV_STATUS status;
uvm_channel_pool_t *pool;
UVM_ASSERT(size);
if (uvm_channel_is_lcic(channel))
pool = uvm_channel_lcic_get_paired_wlc(channel)->pool;
else
pool = channel->pool;
uvm_mutex_lock(&channel->csl.ctx_lock);
status = nvUvmInterfaceCslEncrypt(&channel->csl.ctx,
size,
(NvU8 const *) src_plain,
encrypt_iv,
(NvU8 *) dst_cipher,
(NvU8 *) auth_tag_buffer);
// IV rotation is done preemptively as needed, so the above
// call cannot return failure.
UVM_ASSERT(status == NV_OK);
if (uvm_conf_computing_is_key_rotation_enabled_in_pool(pool)) {
status = nvUvmInterfaceCslLogEncryption(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT, size);
// Informing RM of an encryption/decryption should not fail
UVM_ASSERT(status == NV_OK);
if (!key_rotation_is_notifier_driven())
atomic64_add(size, &pool->conf_computing.key_rotation.decrypted);
}
uvm_mutex_unlock(&channel->csl.ctx_lock);
}
NV_STATUS uvm_conf_computing_cpu_decrypt(uvm_channel_t *channel,
void *dst_plain,
const void *src_cipher,
const UvmCslIv *src_iv,
NvU32 key_version,
size_t size,
const void *auth_tag_buffer)
{
NV_STATUS status;
// The CSL context associated with a channel can be used by multiple
// threads. The IV sequence is thus guaranteed only while the channel is
// "locked for push". The channel/push lock is released in
// "uvm_channel_end_push", and at that time the GPU encryption operations
// have not executed, yet. Therefore the caller has to use
// "uvm_conf_computing_log_gpu_encryption" to explicitly store IVs needed
// to perform CPU decryption and pass those IVs to this function after the
// push that did the encryption completes.
UVM_ASSERT(src_iv);
uvm_mutex_lock(&channel->csl.ctx_lock);
status = nvUvmInterfaceCslDecrypt(&channel->csl.ctx,
size,
(const NvU8 *) src_cipher,
src_iv,
key_version,
(NvU8 *) dst_plain,
NULL,
0,
(const NvU8 *) auth_tag_buffer);
if (status != NV_OK) {
UVM_ERR_PRINT("nvUvmInterfaceCslDecrypt() failed: %s, channel %s, GPU %s\n",
nvstatusToString(status),
channel->name,
uvm_gpu_name(uvm_channel_get_gpu(channel)));
}
uvm_mutex_unlock(&channel->csl.ctx_lock);
return status;
}
NV_STATUS uvm_conf_computing_fault_decrypt(uvm_parent_gpu_t *parent_gpu,
void *dst_plain,
const void *src_cipher,
const void *auth_tag_buffer,
NvU8 valid)
{
NV_STATUS status;
NvU32 fault_entry_size = parent_gpu->fault_buffer_hal->entry_size(parent_gpu);
UvmCslContext *csl_context = &parent_gpu->fault_buffer_info.rm_info.replayable.cslCtx;
// There is no dedicated lock for the CSL context associated with replayable
// faults. The mutual exclusion required by the RM CSL API is enforced by
// relying on the GPU replayable service lock (ISR lock), since fault
// decryption is invoked as part of fault servicing.
UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.replayable_faults.service_lock));
UVM_ASSERT(g_uvm_global.conf_computing_enabled);
status = nvUvmInterfaceCslLogEncryption(csl_context, UVM_CSL_OPERATION_DECRYPT, fault_entry_size);
// Informing RM of an encryption/decryption should not fail
UVM_ASSERT(status == NV_OK);
status = nvUvmInterfaceCslDecrypt(csl_context,
fault_entry_size,
(const NvU8 *) src_cipher,
NULL,
NV_U32_MAX,
(NvU8 *) dst_plain,
&valid,
sizeof(valid),
(const NvU8 *) auth_tag_buffer);
if (status != NV_OK) {
UVM_ERR_PRINT("nvUvmInterfaceCslDecrypt() failed: %s, GPU %s\n",
nvstatusToString(status),
uvm_parent_gpu_name(parent_gpu));
}
return status;
}
void uvm_conf_computing_fault_increment_decrypt_iv(uvm_parent_gpu_t *parent_gpu)
{
NV_STATUS status;
NvU32 fault_entry_size = parent_gpu->fault_buffer_hal->entry_size(parent_gpu);
UvmCslContext *csl_context = &parent_gpu->fault_buffer_info.rm_info.replayable.cslCtx;
// See comment in uvm_conf_computing_fault_decrypt
UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.replayable_faults.service_lock));
UVM_ASSERT(g_uvm_global.conf_computing_enabled);
status = nvUvmInterfaceCslLogEncryption(csl_context, UVM_CSL_OPERATION_DECRYPT, fault_entry_size);
// Informing RM of an encryption/decryption should not fail
UVM_ASSERT(status == NV_OK);
status = nvUvmInterfaceCslIncrementIv(csl_context, UVM_CSL_OPERATION_DECRYPT, 1, NULL);
UVM_ASSERT(status == NV_OK);
}
void uvm_conf_computing_query_message_pools(uvm_channel_t *channel,
NvU64 *remaining_encryptions,
NvU64 *remaining_decryptions)
{
NV_STATUS status;
UVM_ASSERT(channel);
UVM_ASSERT(remaining_encryptions);
UVM_ASSERT(remaining_decryptions);
uvm_mutex_lock(&channel->csl.ctx_lock);
status = nvUvmInterfaceCslQueryMessagePool(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT, remaining_encryptions);
UVM_ASSERT(status == NV_OK);
UVM_ASSERT(*remaining_encryptions <= NV_U32_MAX);
status = nvUvmInterfaceCslQueryMessagePool(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT, remaining_decryptions);
UVM_ASSERT(status == NV_OK);
UVM_ASSERT(*remaining_decryptions <= NV_U32_MAX);
// LCIC channels never use CPU encrypt/GPU decrypt
if (uvm_channel_is_lcic(channel))
UVM_ASSERT(*remaining_encryptions == NV_U32_MAX);
uvm_mutex_unlock(&channel->csl.ctx_lock);
}
static NV_STATUS uvm_conf_computing_rotate_channel_ivs_below_limit_internal(uvm_channel_t *channel, NvU64 limit)
{
NV_STATUS status = NV_OK;
NvU64 remaining_encryptions, remaining_decryptions;
bool rotate_encryption_iv, rotate_decryption_iv;
UVM_ASSERT(uvm_channel_is_locked_for_push(channel) ||
(uvm_channel_is_lcic(channel) && uvm_channel_manager_is_wlc_ready(channel->pool->manager)));
uvm_conf_computing_query_message_pools(channel, &remaining_encryptions, &remaining_decryptions);
// Ignore decryption limit for SEC2, only CE channels support
// GPU encrypt/CPU decrypt. However, RM reports _some_ decrementing
// value for SEC2 decryption counter.
rotate_decryption_iv = (remaining_decryptions <= limit) && uvm_channel_is_ce(channel);
rotate_encryption_iv = remaining_encryptions <= limit;
if (!rotate_encryption_iv && !rotate_decryption_iv)
return NV_OK;
// Wait for all in-flight pushes. The caller needs to guarantee that there
// are no concurrent pushes created, e.g. by only calling rotate after
// a channel is locked_for_push.
status = uvm_channel_wait(channel);
if (status != NV_OK)
return status;
uvm_mutex_lock(&channel->csl.ctx_lock);
if (rotate_encryption_iv)
status = nvUvmInterfaceCslRotateIv(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT);
if (status == NV_OK && rotate_decryption_iv)
status = nvUvmInterfaceCslRotateIv(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT);
uvm_mutex_unlock(&channel->csl.ctx_lock);
// Change the error to out of resources if the available IVs are running
// too low
if (status == NV_ERR_STATE_IN_USE &&
(remaining_encryptions < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN ||
remaining_decryptions < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN))
return NV_ERR_INSUFFICIENT_RESOURCES;
return status;
}
NV_STATUS uvm_conf_computing_rotate_channel_ivs_below_limit(uvm_channel_t *channel, NvU64 limit, bool retry_if_busy)
{
NV_STATUS status;
do {
status = uvm_conf_computing_rotate_channel_ivs_below_limit_internal(channel, limit);
} while (retry_if_busy && status == NV_ERR_STATE_IN_USE);
// Hide "busy" error. The rotation will be retried at the next opportunity.
if (!retry_if_busy && status == NV_ERR_STATE_IN_USE)
status = NV_OK;
return status;
}
NV_STATUS uvm_conf_computing_maybe_rotate_channel_ivs(uvm_channel_t *channel)
{
return uvm_conf_computing_rotate_channel_ivs_below_limit(channel, uvm_conf_computing_channel_iv_rotation_limit, false);
}
NV_STATUS uvm_conf_computing_maybe_rotate_channel_ivs_retry_busy(uvm_channel_t *channel)
{
return uvm_conf_computing_rotate_channel_ivs_below_limit(channel, uvm_conf_computing_channel_iv_rotation_limit, true);
}
void uvm_conf_computing_enable_key_rotation(uvm_gpu_t *gpu)
{
if (!g_uvm_global.conf_computing_enabled)
return;
// Key rotation cannot be enabled on UVM if it is disabled on RM
if (!gpu->parent->rm_info.gpuConfComputeCaps.bKeyRotationEnabled)
return;
gpu->channel_manager->conf_computing.key_rotation_enabled = true;
}
void uvm_conf_computing_disable_key_rotation(uvm_gpu_t *gpu)
{
if (!g_uvm_global.conf_computing_enabled)
return;
gpu->channel_manager->conf_computing.key_rotation_enabled = false;
}
bool uvm_conf_computing_is_key_rotation_enabled(uvm_gpu_t *gpu)
{
UVM_ASSERT(gpu);
// If the channel_manager is not set, we're in channel manager destroy
// path after the pointer was NULL-ed. Chances are that other key rotation
// infrastructure is not available either. Disallow the key rotation.
return gpu->channel_manager && gpu->channel_manager->conf_computing.key_rotation_enabled;
}
bool uvm_conf_computing_is_key_rotation_enabled_in_pool(uvm_channel_pool_t *pool)
{
if (!uvm_conf_computing_is_key_rotation_enabled(pool->manager->gpu))
return false;
// TODO: Bug 4586447: key rotation must be disabled in the SEC2 engine,
// because currently the encryption key is shared between UVM and RM, but
// UVM is not able to idle SEC2 channels owned by RM.
if (uvm_channel_pool_is_sec2(pool))
return false;
// Key rotation happens as part of channel reservation, and LCIC channels
// are never reserved directly. Rotation of keys in LCIC channels happens
// as the result of key rotation in WLC channels.
//
// Return false even if there is nothing fundamental prohibiting direct key
// rotation on LCIC pools
if (uvm_channel_pool_is_lcic(pool))
return false;
return true;
}
static bool conf_computing_is_key_rotation_pending_use_stats(uvm_channel_pool_t *pool)
{
NvU64 decrypted, encrypted;
UVM_ASSERT(!key_rotation_is_notifier_driven());
decrypted = atomic64_read(&pool->conf_computing.key_rotation.decrypted);
if (decrypted > UVM_CONF_COMPUTING_KEY_ROTATION_LOWER_THRESHOLD)
return true;
encrypted = atomic64_read(&pool->conf_computing.key_rotation.encrypted);
if (encrypted > UVM_CONF_COMPUTING_KEY_ROTATION_LOWER_THRESHOLD)
return true;
return false;
}
static bool conf_computing_is_key_rotation_pending_use_notifier(uvm_channel_pool_t *pool)
{
// If key rotation is pending for the pool's engine, then the key rotation
// notifier in any of the engine channels can be used by UVM to detect the
// situation. Note that RM doesn't update all the notifiers in a single
// atomic operation, so it is possible that the channel read by UVM (the
// first one in the pool) indicates that a key rotation is pending, but
// another channel in the pool (temporarily) indicates the opposite, or vice
// versa.
uvm_channel_t *first_channel = pool->channels;
UVM_ASSERT(key_rotation_is_notifier_driven());
UVM_ASSERT(first_channel != NULL);
return first_channel->channel_info.keyRotationNotifier->status == UVM_KEY_ROTATION_STATUS_PENDING;
}
bool uvm_conf_computing_is_key_rotation_pending_in_pool(uvm_channel_pool_t *pool)
{
if (!uvm_conf_computing_is_key_rotation_enabled_in_pool(pool))
return false;
if (key_rotation_is_notifier_driven())
return conf_computing_is_key_rotation_pending_use_notifier(pool);
else
return conf_computing_is_key_rotation_pending_use_stats(pool);
}
NV_STATUS uvm_conf_computing_rotate_pool_key(uvm_channel_pool_t *pool)
{
NV_STATUS status;
UVM_ASSERT(uvm_conf_computing_is_key_rotation_enabled_in_pool(pool));
UVM_ASSERT(pool->conf_computing.key_rotation.csl_contexts != NULL);
UVM_ASSERT(pool->conf_computing.key_rotation.num_csl_contexts > 0);
// NV_ERR_STATE_IN_USE indicates that RM was not able to acquire the
// required locks at this time. This status is not interpreted as an error,
// but as a sign for UVM to try again later. This is the same "protocol"
// used in IV rotation.
status = nvUvmInterfaceCslRotateKey(pool->conf_computing.key_rotation.csl_contexts,
pool->conf_computing.key_rotation.num_csl_contexts);
if (status == NV_OK) {
pool->conf_computing.key_rotation.version++;
if (!key_rotation_is_notifier_driven()) {
atomic64_set(&pool->conf_computing.key_rotation.decrypted, 0);
atomic64_set(&pool->conf_computing.key_rotation.encrypted, 0);
}
}
else if (status != NV_ERR_STATE_IN_USE) {
UVM_DBG_PRINT("nvUvmInterfaceCslRotateKey() failed in engine %u: %s\n",
pool->engine_index,
nvstatusToString(status));
}
return status;
}
__attribute__ ((format(printf, 6, 7)))
NV_STATUS uvm_conf_computing_util_memcopy_cpu_to_gpu(uvm_gpu_t *gpu,
uvm_gpu_address_t dst_gpu_address,
void *src_plain,
size_t size,
uvm_tracker_t *tracker,
const char *format,
...)
{
NV_STATUS status;
uvm_push_t push;
uvm_conf_computing_dma_buffer_t *dma_buffer;
uvm_gpu_address_t src_gpu_address, auth_tag_gpu_address;
void *dst_cipher, *auth_tag;
va_list args;
UVM_ASSERT(g_uvm_global.conf_computing_enabled);
UVM_ASSERT(size <= UVM_CONF_COMPUTING_DMA_BUFFER_SIZE);
status = uvm_conf_computing_dma_buffer_alloc(&gpu->conf_computing.dma_buffer_pool, &dma_buffer, NULL);
if (status != NV_OK)
return status;
va_start(args, format);
status = uvm_push_begin_acquire(gpu->channel_manager, UVM_CHANNEL_TYPE_CPU_TO_GPU, tracker, &push, format, args);
va_end(args);
if (status != NV_OK)
goto out;
dst_cipher = uvm_mem_get_cpu_addr_kernel(dma_buffer->alloc);
auth_tag = uvm_mem_get_cpu_addr_kernel(dma_buffer->auth_tag);
uvm_conf_computing_cpu_encrypt(push.channel, dst_cipher, src_plain, NULL, size, auth_tag);
src_gpu_address = uvm_mem_gpu_address_virtual_kernel(dma_buffer->alloc, gpu);
auth_tag_gpu_address = uvm_mem_gpu_address_virtual_kernel(dma_buffer->auth_tag, gpu);
gpu->parent->ce_hal->decrypt(&push, dst_gpu_address, src_gpu_address, size, auth_tag_gpu_address);
status = uvm_push_end_and_wait(&push);
out:
uvm_conf_computing_dma_buffer_free(&gpu->conf_computing.dma_buffer_pool, dma_buffer, NULL);
return status;
}
__attribute__ ((format(printf, 6, 7)))
NV_STATUS uvm_conf_computing_util_memcopy_gpu_to_cpu(uvm_gpu_t *gpu,
void *dst_plain,
uvm_gpu_address_t src_gpu_address,
size_t size,
uvm_tracker_t *tracker,
const char *format,
...)
{
NV_STATUS status;
uvm_push_t push;
uvm_conf_computing_dma_buffer_t *dma_buffer;
uvm_gpu_address_t dst_gpu_address, auth_tag_gpu_address;
void *src_cipher, *auth_tag;
va_list args;
UVM_ASSERT(g_uvm_global.conf_computing_enabled);
UVM_ASSERT(size <= UVM_CONF_COMPUTING_DMA_BUFFER_SIZE);
status = uvm_conf_computing_dma_buffer_alloc(&gpu->conf_computing.dma_buffer_pool, &dma_buffer, NULL);
if (status != NV_OK)
return status;
va_start(args, format);
status = uvm_push_begin_acquire(gpu->channel_manager, UVM_CHANNEL_TYPE_GPU_TO_CPU, tracker, &push, format, args);
va_end(args);
if (status != NV_OK)
goto out;
uvm_conf_computing_log_gpu_encryption(push.channel, size, dma_buffer->decrypt_iv);
dma_buffer->key_version[0] = uvm_channel_pool_key_version(push.channel->pool);
dst_gpu_address = uvm_mem_gpu_address_virtual_kernel(dma_buffer->alloc, gpu);
auth_tag_gpu_address = uvm_mem_gpu_address_virtual_kernel(dma_buffer->auth_tag, gpu);
gpu->parent->ce_hal->encrypt(&push, dst_gpu_address, src_gpu_address, size, auth_tag_gpu_address);
status = uvm_push_end_and_wait(&push);
if (status != NV_OK)
goto out;
src_cipher = uvm_mem_get_cpu_addr_kernel(dma_buffer->alloc);
auth_tag = uvm_mem_get_cpu_addr_kernel(dma_buffer->auth_tag);
status = uvm_conf_computing_cpu_decrypt(push.channel,
dst_plain,
src_cipher,
dma_buffer->decrypt_iv,
dma_buffer->key_version[0],
size,
auth_tag);
out:
uvm_conf_computing_dma_buffer_free(&gpu->conf_computing.dma_buffer_pool, dma_buffer, NULL);
return status;
}
|