File: uvm_mem_test.c

package info (click to toggle)
nvidia-open-gpu-kernel-modules 550.163.01-4
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 87,488 kB
  • sloc: ansic: 1,143,669; cpp: 22,547; sh: 3,721; makefile: 627; python: 315
file content (643 lines) | stat: -rw-r--r-- 21,901 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*******************************************************************************
    Copyright (c) 2016-2023 NVIDIA Corporation

    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to
    deal in the Software without restriction, including without limitation the
    rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
    sell copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

        The above copyright notice and this permission notice shall be
        included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.

*******************************************************************************/
#include "uvm_hal.h"
#include "uvm_global.h"
#include "uvm_gpu.h"
#include "uvm_kvmalloc.h"
#include "uvm_mem.h"
#include "uvm_push.h"
#include "uvm_conf_computing.h"
#include "uvm_test.h"
#include "uvm_test_ioctl.h"
#include "uvm_va_space.h"

static const size_t sysmem_alloc_sizes[] = { 1, PAGE_SIZE - 1, PAGE_SIZE, 7 * PAGE_SIZE };

static NvU32 first_page_size(NvU32 page_sizes)
{
    return page_sizes & ~(page_sizes - 1);
}

#define for_each_page_size(page_size, page_sizes)                                   \
    for (page_size = first_page_size(page_sizes);                                   \
         page_size;                                                                 \
         page_size = first_page_size((page_sizes) & ~(page_size | (page_size - 1))))

static inline NV_STATUS __alloc_map_sysmem(NvU64 size, uvm_gpu_t *gpu, uvm_mem_t **sys_mem)
{
    if (g_uvm_global.conf_computing_enabled)
        return uvm_mem_alloc_sysmem_dma_and_map_cpu_kernel(size, gpu, current->mm, sys_mem);

    return uvm_mem_alloc_sysmem_and_map_cpu_kernel(size, current->mm, sys_mem);
}

static NV_STATUS check_accessible_from_gpu(uvm_gpu_t *gpu, uvm_mem_t *mem)
{
    NV_STATUS status = NV_OK;
    uvm_mem_t *sys_mem = NULL;
    uvm_push_t push;
    NvU64 *sys_verif;
    size_t i;
    NvU64 verif_size = mem->size;
    NvU64 offset;
    uvm_tracker_t tracker = UVM_TRACKER_INIT();

    verif_size = UVM_ALIGN_UP(verif_size, sizeof(*sys_verif));

    UVM_ASSERT(uvm_mem_physical_size(mem) >= verif_size);
    UVM_ASSERT(verif_size >= sizeof(*sys_verif));

    TEST_NV_CHECK_GOTO(__alloc_map_sysmem(verif_size, gpu, &sys_mem), done);
    TEST_NV_CHECK_GOTO(uvm_mem_map_gpu_kernel(sys_mem, gpu), done);

    sys_verif = (NvU64*)uvm_mem_get_cpu_addr_kernel(sys_mem);

    for (i = 0; i < verif_size / sizeof(*sys_verif); ++i)
        sys_verif[i] = mem->size + i;

    // Copy from sys_mem to mem (in mem->page_size chunks) using:
    //   - virtual access for sys_mem
    //   - physical access for mem, unless the channel only supports virtual
    //     addressing
    for (offset = 0; offset < verif_size; offset += mem->chunk_size) {
        uvm_gpu_address_t sys_mem_gpu_address, mem_gpu_address;
        size_t size_this_time = min((NvU64)mem->chunk_size, verif_size - offset);

        TEST_NV_CHECK_GOTO(uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_CPU_TO_GPU, &push, " "), done);

        sys_mem_gpu_address = uvm_mem_gpu_address_virtual_kernel(sys_mem, gpu);
        sys_mem_gpu_address.address += offset;

        if (uvm_channel_is_privileged(push.channel)) {
            mem_gpu_address = uvm_mem_gpu_address_copy(mem, gpu, offset, size_this_time);
        }
        else {
            mem_gpu_address = uvm_mem_gpu_address_virtual_kernel(mem, gpu);
            mem_gpu_address.address += offset;
        }

        uvm_push_set_description(&push,
                                 "Memcopy %zd bytes from virtual sys_mem 0x%llx to %s mem 0x%llx [mem loc: %s, page size: %u]",
                                 size_this_time,
                                 sys_mem_gpu_address.address,
                                 mem_gpu_address.is_virtual? "virtual" : "physical",
                                 mem_gpu_address.address,
                                 uvm_mem_is_sysmem(mem)? "sys" : "vid",
                                 mem->chunk_size);

        gpu->parent->ce_hal->memcopy(&push, mem_gpu_address, sys_mem_gpu_address, size_this_time);

        uvm_push_end(&push);
        TEST_NV_CHECK_GOTO(uvm_tracker_add_push(&tracker, &push), done);
    }

    TEST_NV_CHECK_GOTO(uvm_tracker_wait(&tracker), done);

    memset(sys_verif, 0, verif_size);

    // Copy back to sys_mem from mem (in sys_mem->page_size chunks) using:
    //   - physical access for sys_mem, unless the channel only supports virtual
    //     addressing
    //   - virtual access for mem
    for (offset = 0; offset < verif_size; offset += sys_mem->chunk_size) {
        uvm_gpu_address_t mem_gpu_address, sys_mem_gpu_address;
        size_t size_this_time = min((NvU64)sys_mem->chunk_size, verif_size - offset);

        TEST_NV_CHECK_GOTO(uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_GPU_TO_CPU, &push, " "), done);

        mem_gpu_address = uvm_mem_gpu_address_virtual_kernel(mem, gpu);
        mem_gpu_address.address += offset;

        if (uvm_channel_is_privileged(push.channel)) {
            sys_mem_gpu_address = uvm_mem_gpu_address_copy(sys_mem, gpu, offset, size_this_time);
        }
        else {
            sys_mem_gpu_address = uvm_mem_gpu_address_virtual_kernel(sys_mem, gpu);
            sys_mem_gpu_address.address += offset;
        }

        uvm_push_set_description(&push,
                                 "Memcopy %zd bytes from virtual mem 0x%llx to %s sys_mem 0x%llx",
                                 size_this_time,
                                 mem_gpu_address.address,
                                 sys_mem_gpu_address.is_virtual? "virtual" : "physical",
                                 sys_mem_gpu_address.address);

        gpu->parent->ce_hal->memcopy(&push, sys_mem_gpu_address, mem_gpu_address, size_this_time);

        uvm_push_end(&push);
        TEST_NV_CHECK_GOTO(uvm_tracker_add_push(&tracker, &push), done);
    }

    TEST_NV_CHECK_GOTO(uvm_tracker_wait(&tracker), done);

    for (i = 0; i < verif_size / sizeof(*sys_verif); ++i) {
        if (sys_verif[i] != mem->size + i) {
            UVM_TEST_PRINT("Verif failed for %zd = 0x%llx instead of 0x%llx, verif_size=0x%llx mem(size=0x%llx, page_size=%u, processor=%u)\n",
                           i,
                           sys_verif[i],
                           (NvU64)(verif_size + i),
                           verif_size,
                           mem->size,
                           mem->chunk_size,
                           uvm_mem_is_vidmem(mem) ? uvm_id_value(mem->backing_gpu->id) : UVM_ID_CPU_VALUE);
            status = NV_ERR_INVALID_STATE;
            goto done;
        }
    }

done:
    (void)uvm_tracker_wait(&tracker);
    uvm_tracker_deinit(&tracker);
    uvm_mem_free(sys_mem);

    return status;
}

static NV_STATUS test_map_gpu(uvm_mem_t *mem, uvm_gpu_t *gpu)
{
    NvU64 gpu_va;

    TEST_NV_CHECK_RET(uvm_mem_map_gpu_kernel(mem, gpu));
    TEST_CHECK_RET(uvm_mem_mapped_on_gpu_kernel(mem, gpu));
    TEST_CHECK_RET(!uvm_mem_mapped_on_gpu_user(mem, gpu));

    gpu_va = uvm_mem_get_gpu_va_kernel(mem, gpu);
    TEST_CHECK_RET(gpu_va >= gpu->parent->uvm_mem_va_base);
    TEST_CHECK_RET(gpu_va + uvm_mem_physical_size(mem) <= gpu->parent->uvm_mem_va_base + gpu->parent->uvm_mem_va_size);

    // Mapping if already mapped is OK
    TEST_NV_CHECK_RET(uvm_mem_map_gpu_kernel(mem, gpu));

    // Unmap
    uvm_mem_unmap_gpu_kernel(mem, gpu);
    TEST_CHECK_RET(!uvm_mem_mapped_on_gpu_kernel(mem, gpu));

    // Unmapping an unmapped memory is OK
    uvm_mem_unmap_gpu_kernel(mem, gpu);
    uvm_mem_unmap_gpu_user(mem, gpu);

    // Map again
    TEST_NV_CHECK_RET(uvm_mem_map_gpu_kernel(mem, gpu));

    // Should get the same VA
    TEST_CHECK_RET(gpu_va == uvm_mem_get_gpu_va_kernel(mem, gpu));

    return check_accessible_from_gpu(gpu, mem);
}

static NV_STATUS test_map_cpu(uvm_mem_t *mem)
{
    char *cpu_addr;

    if (uvm_mem_is_vidmem(mem))
        UVM_ASSERT(mem->backing_gpu->mem_info.numa.enabled);

    // Map
    TEST_NV_CHECK_RET(uvm_mem_map_cpu_kernel(mem));
    TEST_CHECK_RET(uvm_mem_mapped_on_cpu_kernel(mem));
    TEST_CHECK_RET(!uvm_mem_mapped_on_cpu_user(mem));
    TEST_CHECK_RET(uvm_mem_get_cpu_addr_kernel(mem) != NULL);

    // Mapping if already mapped is OK
    TEST_NV_CHECK_RET(uvm_mem_map_cpu_kernel(mem));

    // Unmap
    uvm_mem_unmap_cpu_kernel(mem);
    TEST_CHECK_RET(!uvm_mem_mapped_on_cpu_kernel(mem));

    // Unmapping an unmapped memory is OK
    uvm_mem_unmap_cpu_kernel(mem);
    uvm_mem_unmap_cpu_user(mem);

    // Map again
    TEST_NV_CHECK_RET(uvm_mem_map_cpu_kernel(mem));

    cpu_addr = uvm_mem_get_cpu_addr_kernel(mem);
    TEST_CHECK_RET(cpu_addr != NULL);

    memset(cpu_addr, 3, mem->size);

    return NV_OK;
}

static NV_STATUS test_alloc_sysmem(uvm_va_space_t *va_space, NvU32 page_size, size_t size, uvm_mem_t **mem_out)
{
    NV_STATUS status;
    uvm_mem_t *mem;
    uvm_gpu_t *gpu;
    uvm_mem_alloc_params_t params = { 0 };

    params.size = size;
    params.page_size = page_size;
    params.mm = current->mm;

    status = uvm_mem_alloc(&params, &mem);
    TEST_CHECK_GOTO(status == NV_OK, error);

    TEST_CHECK_GOTO(test_map_cpu(mem) == NV_OK, error);

    for_each_va_space_gpu(gpu, va_space)
        TEST_NV_CHECK_GOTO(test_map_gpu(mem, gpu), error);

    *mem_out = mem;

    return NV_OK;

error:
    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_alloc_sysmem_dma(uvm_va_space_t *va_space, uvm_gpu_t *dma_owner, size_t size, uvm_mem_t **mem_out)
{
    NV_STATUS status;
    uvm_mem_t *mem;
    uvm_gpu_t *gpu;
    uvm_mem_alloc_params_t params = { 0 };

    params.size = size;
    params.page_size = PAGE_SIZE;
    params.dma_owner = dma_owner;
    params.mm = current->mm;

    status = uvm_mem_alloc(&params, &mem);
    TEST_CHECK_GOTO(status == NV_OK, error);

    TEST_CHECK_GOTO(test_map_cpu(mem) == NV_OK, error);

    // Mapping twice on the dma_owner is OK.
    for_each_va_space_gpu(gpu, va_space)
        TEST_NV_CHECK_GOTO(test_map_gpu(mem, gpu), error);

    *mem_out = mem;

    return NV_OK;

error:
    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_alloc_vidmem(uvm_gpu_t *gpu, NvU32 page_size, size_t size, uvm_mem_t **mem_out)
{
    NV_STATUS status;
    uvm_mem_t *mem;
    uvm_mem_alloc_params_t params = { 0 };

    params.backing_gpu = gpu;
    params.page_size = page_size;
    params.size = size;
    params.mm = current->mm;

    status = uvm_mem_alloc(&params, &mem);
    TEST_CHECK_GOTO(status == NV_OK, error);

    if (page_size == UVM_PAGE_SIZE_DEFAULT) {
        if (gpu->mem_info.numa.enabled)
            TEST_CHECK_GOTO(mem->chunk_size >= PAGE_SIZE && mem->chunk_size <= max(size, (size_t)PAGE_SIZE), error);
        else
            TEST_CHECK_GOTO(mem->chunk_size == UVM_PAGE_SIZE_4K || mem->chunk_size <= size, error);
    }

    TEST_NV_CHECK_GOTO(test_map_gpu(mem, gpu), error);

    if (gpu->mem_info.numa.enabled && (page_size == UVM_PAGE_SIZE_DEFAULT || page_size >= PAGE_SIZE))
        TEST_CHECK_GOTO(test_map_cpu(mem) == NV_OK, error);

    *mem_out = mem;

    return NV_OK;

error:
    uvm_mem_free(mem);
    return status;
}

static bool should_test_page_size(size_t alloc_size, NvU32 page_size)
{
    if (g_uvm_global.num_simulated_devices == 0)
        return true;

    return alloc_size <= UVM_PAGE_SIZE_2M || page_size == UVM_PAGE_SIZE_2M;
}

static NV_STATUS test_all(uvm_va_space_t *va_space)
{
    NV_STATUS status = NV_OK;
    uvm_gpu_t *gpu;
    NvU32 gpu_count;
    uvm_mem_t **all_mem = NULL;
    NvU32 allocation_count;
    NvU32 current_alloc = 0;

    // Create allocations of these sizes
    static const size_t sizes[] = {1, 4, 16, 1024, 4096, 1024 * 1024, 7 * 1024 * 1024 + 17 };

    // Pascal+ can map sysmem with 4K, 64K and 2M PTEs, other GPUs can only use
    // 4K. Test all of the sizes supported by Pascal+ and 128K to match big page
    // size on pre-Pascal GPUs with 128K big page size.
    // Ampere+ also supports 512M PTEs, but since UVM's maximum chunk size is
    // 2M, we don't test for this page size.
    static const NvU32 cpu_chunk_sizes = PAGE_SIZE | UVM_PAGE_SIZE_64K | UVM_PAGE_SIZE_128K | UVM_PAGE_SIZE_2M;

    // All supported page sizes will be tested, CPU has the most with 4 and +1
    // for the default.
    static const int max_supported_page_sizes = 4 + 1;
    int i;


    // TODO: Bug 3839176: the test is waived on Confidential Computing because
    // it assumes that GPU can access system memory without using encryption.
    if (g_uvm_global.conf_computing_enabled)
        return NV_OK;

    gpu_count = uvm_processor_mask_get_gpu_count(&va_space->registered_gpus);

    // +1 for the CPU
    allocation_count = (gpu_count + 1) * max_supported_page_sizes * ARRAY_SIZE(sizes);

    // For the DMA allocations per GPU
    allocation_count += gpu_count * ARRAY_SIZE(sizes);

    all_mem = uvm_kvmalloc_zero(sizeof(*all_mem) * allocation_count);

    if (all_mem == NULL)
        return NV_ERR_NO_MEMORY;

    for (i = 0; i < ARRAY_SIZE(sizes); ++i) {
        NvU32 page_size = 0;
        uvm_mem_t *mem;

        if (should_test_page_size(sizes[i], UVM_PAGE_SIZE_DEFAULT)) {
            status = test_alloc_sysmem(va_space, UVM_PAGE_SIZE_DEFAULT, sizes[i], &mem);
            if (status != NV_OK) {
                UVM_TEST_PRINT("Failed to alloc sysmem size %zd, page_size default\n", sizes[i], page_size);
                goto cleanup;
            }
            all_mem[current_alloc++] = mem;
        }

        for_each_page_size(page_size, cpu_chunk_sizes) {
            if (!should_test_page_size(sizes[i], page_size))
                continue;

            status = test_alloc_sysmem(va_space, page_size, sizes[i], &mem);
            if (status != NV_OK) {
                UVM_TEST_PRINT("Failed to alloc sysmem size %zd, page_size %u\n", sizes[i], page_size);
                goto cleanup;
            }
            all_mem[current_alloc++] = mem;
        }

        for_each_va_space_gpu(gpu, va_space) {
            NvU32 page_sizes = gpu->address_space_tree.hal->page_sizes();

            UVM_ASSERT(max_supported_page_sizes >= hweight_long(page_sizes));

            status = test_alloc_vidmem(gpu, UVM_PAGE_SIZE_DEFAULT, sizes[i], &mem);
            if (status != NV_OK) {
                UVM_TEST_PRINT("Test alloc vidmem failed, page_size default size %zd GPU %s\n",
                               sizes[i],
                               uvm_gpu_name(gpu));
                goto cleanup;
            }
            all_mem[current_alloc++] = mem;

            page_sizes &= UVM_CHUNK_SIZES_MASK;
            for_each_page_size(page_size, page_sizes) {
                status = test_alloc_vidmem(gpu, page_size, sizes[i], &mem);
                if (status != NV_OK) {
                    UVM_TEST_PRINT("Test alloc vidmem failed, page_size %u size %zd GPU %s\n",
                                   page_size,
                                   sizes[i],
                                   uvm_gpu_name(gpu));
                    goto cleanup;
                }
                all_mem[current_alloc++] = mem;

            }

            status = test_alloc_sysmem_dma(va_space, gpu, sizes[i], &mem);
            if (status != NV_OK) {
                UVM_TEST_PRINT("Test alloc sysmem DMA failed, size %zd GPU %s\n",
                               sizes[i],
                               uvm_gpu_name(gpu));
                goto cleanup;
            }
            all_mem[current_alloc++] = mem;
        }
    }

cleanup:
    for (i = 0; i < current_alloc; ++i)
        uvm_mem_free(all_mem[i]);

    uvm_kvfree(all_mem);

    return status;
}

static NV_STATUS test_basic_vidmem(uvm_gpu_t *gpu)
{
    NV_STATUS status = NV_OK;
    NvU32 page_size;
    NvU32 page_sizes = gpu->address_space_tree.hal->page_sizes();
    NvU32 biggest_page_size = uvm_mmu_biggest_page_size_up_to(&gpu->address_space_tree, UVM_CHUNK_SIZE_MAX);
    NvU32 smallest_page_size = page_sizes & ~(page_sizes - 1);
    uvm_mem_t *mem = NULL;

    page_sizes &= UVM_CHUNK_SIZES_MASK;
    for_each_page_size(page_size, page_sizes) {
        TEST_CHECK_GOTO(uvm_mem_alloc_vidmem(page_size - 1, gpu, &mem) == NV_OK, done);
        if (gpu->mem_info.numa.enabled)
            TEST_CHECK_GOTO(mem->chunk_size >= PAGE_SIZE && mem->chunk_size <= max(page_size, (NvU32)PAGE_SIZE), done);
        else
            TEST_CHECK_GOTO(mem->chunk_size < page_size || page_size == smallest_page_size, done);
        uvm_mem_free(mem);
        mem = NULL;

        TEST_CHECK_GOTO(uvm_mem_alloc_vidmem(page_size, gpu, &mem) == NV_OK, done);
        if (gpu->mem_info.numa.enabled)
            TEST_CHECK_GOTO(mem->chunk_size == max(page_size, (NvU32)PAGE_SIZE), done);
        else
            TEST_CHECK_GOTO(mem->chunk_size == page_size, done);
        uvm_mem_free(mem);
        mem = NULL;
    }

    TEST_CHECK_GOTO(uvm_mem_alloc_vidmem(5 * ((NvU64)biggest_page_size) - 1, gpu, &mem) == NV_OK, done);
    TEST_CHECK_GOTO(mem->chunk_size == biggest_page_size, done);

done:
    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_basic_vidmem_unprotected(uvm_gpu_t *gpu)
{
    NV_STATUS status = NV_OK;
    uvm_mem_t *mem = NULL;

    uvm_mem_alloc_params_t params = { 0 };
    params.size = UVM_PAGE_SIZE_4K;
    params.backing_gpu = gpu;
    params.page_size = UVM_PAGE_SIZE_4K;

    // If CC is enabled, the protection flag is observed. Because currently all
    // vidmem is in the protected region, the allocation should succeed.
    //
    // If CC is disabled, the protection flag is ignored.
    params.is_unprotected = false;
    TEST_NV_CHECK_RET(uvm_mem_alloc(&params, &mem));

    uvm_mem_free(mem);
    mem = NULL;

    // If CC is enabled, the allocation should fail because currently the
    // unprotected region is empty.
    //
    // If CC is disabled, the behavior should be identical to that of a
    // protected allocation.
    params.is_unprotected = true;
    if (g_uvm_global.conf_computing_enabled)
        TEST_CHECK_RET(uvm_mem_alloc(&params, &mem) == NV_ERR_NO_MEMORY);
    else
        TEST_NV_CHECK_RET(uvm_mem_alloc(&params, &mem));

    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_basic_sysmem(void)
{
    NV_STATUS status = NV_OK;
    uvm_mem_t *mem = NULL;
    int i;

    for (i = 0; i < ARRAY_SIZE(sysmem_alloc_sizes); ++i) {
        size_t size = sysmem_alloc_sizes[i];
        TEST_NV_CHECK_GOTO(uvm_mem_alloc_sysmem(size, current->mm, &mem), done);
        TEST_CHECK_GOTO(mem->chunk_size == PAGE_SIZE, done);
        uvm_mem_free(mem);
        mem = NULL;
    }

done:
    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_basic_sysmem_dma(uvm_gpu_t *gpu)
{
    NV_STATUS status = NV_OK;
    uvm_mem_t *mem = NULL;
    int i;

    for (i = 0; i < ARRAY_SIZE(sysmem_alloc_sizes); ++i) {
        size_t size = sysmem_alloc_sizes[i];
        TEST_NV_CHECK_GOTO(uvm_mem_alloc_sysmem_dma(size, gpu, current->mm, &mem), done);
        TEST_CHECK_GOTO(mem->chunk_size == PAGE_SIZE, done);
        uvm_mem_free(mem);
        mem = NULL;
    }

done:
    uvm_mem_free(mem);
    return status;
}

static NV_STATUS test_basic_dma_pool(uvm_gpu_t *gpu)
{
    size_t i, j;
    size_t num_buffers;
    size_t status = NV_OK;
    uvm_conf_computing_dma_buffer_t **dma_buffers;

    // If the Confidential Computing feature is disabled, the DMA buffers
    // pool is not initialized.
    if (!g_uvm_global.conf_computing_enabled)
        return NV_OK;

    // We're going to reclaim one more chunks that the pool have. Triggerring
    // one expansion.
    num_buffers = gpu->conf_computing.dma_buffer_pool.num_dma_buffers + 1;
    dma_buffers = uvm_kvmalloc_zero(sizeof(*dma_buffers) * num_buffers);
    if (dma_buffers == NULL)
        return NV_ERR_NO_MEMORY;

    for (i = 0; i < num_buffers; ++i) {
        status = uvm_conf_computing_dma_buffer_alloc(&gpu->conf_computing.dma_buffer_pool, &dma_buffers[i], NULL);
        if (status != NV_OK)
            break;
    }

    TEST_CHECK_GOTO(gpu->conf_computing.dma_buffer_pool.num_dma_buffers >= num_buffers, done);
    TEST_CHECK_GOTO(i == num_buffers, done);

done:
    j = i;
    for (i = 0; i < j; ++i)
        uvm_conf_computing_dma_buffer_free(&gpu->conf_computing.dma_buffer_pool, dma_buffers[i], NULL);

    uvm_kvfree(dma_buffers);
    return status;
}

static NV_STATUS test_basic(uvm_va_space_t *va_space)
{
    uvm_gpu_t *gpu;

    TEST_NV_CHECK_RET(test_basic_sysmem());

    for_each_va_space_gpu(gpu, va_space) {
        TEST_NV_CHECK_RET(test_basic_vidmem(gpu));
        TEST_NV_CHECK_RET(test_basic_sysmem_dma(gpu));
        TEST_NV_CHECK_RET(test_basic_vidmem_unprotected(gpu));
        TEST_NV_CHECK_RET(test_basic_dma_pool(gpu));
    }

    return NV_OK;
}

static NV_STATUS tests(uvm_va_space_t *va_space)
{
    TEST_NV_CHECK_RET(test_basic(va_space));
    TEST_NV_CHECK_RET(test_all(va_space));

    return NV_OK;
}

NV_STATUS uvm_test_mem_sanity(UVM_TEST_MEM_SANITY_PARAMS *params, struct file *filp)
{
    NV_STATUS status;
    uvm_va_space_t *va_space = uvm_va_space_get(filp);

    uvm_va_space_down_read(va_space);

    status = tests(va_space);

    uvm_va_space_up_read(va_space);

    return status;
}