1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
|
/*******************************************************************************
Copyright (c) 2015-2023 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
//
// High level description of PMM is in the header file, here some implementation
// details are discussed.
//
// There is one PMM object per GPU and the PMM state among GPUs is completely
// separate with the exception of a few shared kmem caches.
//
// PMM allocates all of the memory it manages from PMA which is the common GPU
// Physical Memory Allocator shared by UVM and RM (it's included as part of RM,
// but logically separate from it).
//
// The state of each GPU memory chunk is tracked in uvm_gpu_chunk_t objects.
// Each chunk has a type, size and state. Type and size are persistent
// throughout chunk's lifetime while its state changes as it's allocated, split,
// merged and freed.
//
// PMM maintains a pre-allocated flat array of root chunks covering all possible
// physical allocations that can be returned from PMA. For simplicity, PMM
// always allocates 2M (UVM_CHUNK_SIZE_MAX) chunks from PMA and each naturally
// aligned 2M chunk represents a single root chunk. The root chunks array is
// indexed by the physical address of each chunk divided by UVM_CHUNK_SIZE_MAX
// allowing for a simple and fast lookup of root chunks.
//
// Each root chunk has a tracker for any pending operations on the root chunk
// (including all of its subchunks in case it's split) to support asynchronous
// alloc and free. Each tracker is protected by a separate bitlock (see
// root_chunk_lock()) as synchronizing any pending operations might take a long
// time and it would be undesirable for that to block other operations of PMM.
// Notably some synchronization is required as part of allocation to handle GPU
// lifetime issues across VA spaces (see comments in uvm_pmm_gpu_alloc()). Bit
// locks (instead of a mutex in each root chunk) are used to save space.
//
// All free chunks (UVM_PMM_GPU_CHUNK_STATE_FREE) are kept on free lists, with
// one list per each combination of memory type and chunk size (see usage of
// uvm_pmm_gpu_t::free_list for reference). This allows for a very quick
// allocation and freeing of chunks in case the right size is already available
// on alloc or no merges are required on free. See claim_free_chunk() for
// allocation and chunk_free_locked() for freeing.
//
// When a chunk is allocated it transitions into the temporarily pinned state
// (UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED) until it's unpinned when it becomes
// allocated (UVM_PMM_GPU_CHUNK_STATE_ALLOCATED). This transition is only
// meaningful for user memory chunks where temporarily pinned chunks cannot be
// evicted. Kernel memory type chunks do not support eviction at all and they
// are transitioned into the allocated state as part of the allocation itself
// (see uvm_pmm_gpu_alloc_kernel). When the chunk is freed it transitions back
// to the free state and is placed on an appropriate free list.
//
// To support smaller allocations, PMM internally splits and merges root chunks
// as needed. Splitting and merging is protected by an exclusive lock
// (uvm_pmm_gpu_t::lock) to prevent PMM from over-allocating root chunks in case
// multiple threads race for a small allocation and there are no free chunks
// immediately available.
//
// Splitting is performed lazily, i.e. chunks are only split when a chunk of the
// requested type and size is not available. Splits are only done to the next
// smaller size and hence may need to be performed multiple times recursively to
// get to the desired chunk size. See alloc_chunk_with_splits(). All split
// chunks under the root chunk form a tree with all internal nodes being in
// split state and leaf nodes being in any of the free, allocated or pinned
// states.
//
// Merging is performed eagerly, i.e. whenever all chunks under a parent (split)
// chunk become free, they are merged into one bigger chunk. See
// free_chunk_with_merges().
//
// Splitting and merging already allocated chunks is also exposed to the users of
// allocated chunks. See uvm_pmm_gpu_split_chunk() and uvm_pmm_gpu_merge_chunk().
//
// As splits and merges are protected by a single PMM mutex, they are only
// performed when really necessary. See alloc_chunk() that falls back to split
// only as the last step and free_chunk() that similarly first tries performing
// a quick free.
//
// When a memory allocation from PMA fails and eviction is requested, PMM will
// check whether it can evict any user memory chunks to satisfy the request.
// All allocated user memory root chunks are tracked in an LRU list
// (root_chunks.va_block_used). A root chunk is moved to the tail of that list
// whenever any of its subchunks is allocated (unpinned) by a VA block (see
// uvm_pmm_gpu_unpin_allocated()). When a root chunk is selected for eviction,
// it has the eviction flag set (see pick_root_chunk_to_evict()). This flag
// affects many of the PMM operations on all of the subchunks of the root chunk
// being evicted. See usage of (root_)chunk_is_in_eviction(), in particular in
// chunk_free_locked() and claim_free_chunk().
//
// To evict a root chunk, all of its free subchunks are pinned, then all
// resident pages backed by it are moved to the CPU one VA block at a time.
// After all of them are moved, the root chunk is merged and returned to the
// caller. See evict_root_chunk() for details.
//
// Eviction is also possible to be triggered by PMA. This makes it possible for
// other PMA clients (most importantly RM which CUDA uses for non-UVM
// allocations) to successfully allocate memory from the user memory pool
// allocated by UVM. UVM registers two eviction callbacks with PMA that PMA
// calls as needed to perform the eviction:
// - uvm_pmm_gpu_pma_evict_range - for evicting a physical range
// - uvm_pmm_gpu_pma_evict_pages - for evicting a number of pages
//
// Both of them perform the eviction using the same building blocks as internal
// eviction, but see their implementation and references to pma.h for more
// details.
//
// PMM locking
// - PMM mutex
// Exclusive lock protecting both internal and external splits and merges, and
// eviction.
//
// - PMM list lock
// Protects state transitions of chunks and their movement among lists.
//
// - PMM root chunk bit locks
// Each bit lock protects the corresponding root chunk's allocation, freeing
// from/to PMA, root chunk trackers, and root chunk indirect_peer mappings.
//
// - PMA allocation/eviction lock
// A read-write semaphore used by the eviction path to flush any pending
// allocations. See usage of pma_lock in alloc_root_chunk() and
// uvm_pmm_gpu_pma_evict_range().
//
// == Trade-offs ===
//
// In general, PMM is optimized towards Pascal+ and 2M VA blocks (that's also
// the UVM_CHUNK_SIZE_MAX) as Pascal+ makes much heavier use of PMM:
// - Oversubscription is Pascal+ only
// - On pre-Pascal (UVM-Lite) CUDA currently pre-populates all managed memory
// and hence performance matters mostly only during CUDA memory allocation.
// - On Pascal+ CUDA doesn't pre-populate and memory is allocated on first
// touch.
//
// The root chunk size matching the VA block chunk size allows PMM to avoid
// having to split and merge for the hopefully (HMM might make this hard) common
// allocation size of 2M on Pascal+.
//
// Careful benchmarks and tweaking of PMM are yet to be performed, but there is
// some evidence for PMA to potentially cause issues for oversubscription (see
// bug 1775408).
//
#include "uvm_common.h"
#include "nv_uvm_interface.h"
#include "uvm_api.h"
#include "uvm_gpu.h"
#include "uvm_pmm_gpu.h"
#include "uvm_mem.h"
#include "uvm_mmu.h"
#include "uvm_global.h"
#include "uvm_kvmalloc.h"
#include "uvm_va_space.h"
#include "uvm_va_block.h"
#include "uvm_test.h"
#include "uvm_linux.h"
static int uvm_global_oversubscription = 1;
module_param(uvm_global_oversubscription, int, S_IRUGO);
MODULE_PARM_DESC(uvm_global_oversubscription, "Enable (1) or disable (0) global oversubscription support.");
#define UVM_PERF_PMA_BATCH_NONPINNED_ORDER_DEFAULT 6
// Non-pinned root chunks are allocated in batches, in order to minimize the
// number of calls into PMA. The number of root chunks in the batch is:
// (1 << uvm_perf_pma_batch_nonpinned_order)
static unsigned uvm_perf_pma_batch_nonpinned_order = UVM_PERF_PMA_BATCH_NONPINNED_ORDER_DEFAULT;
module_param(uvm_perf_pma_batch_nonpinned_order, uint, S_IRUGO);
// Helper type for refcounting cache
typedef struct
{
// Cache for given split size
struct kmem_cache *cache;
// Number of GPUs using given split size
NvU32 refcount;
// Name of cache
char name[32];
} kmem_cache_ref_t;
static kmem_cache_ref_t g_pma_address_batch_cache_ref;
struct uvm_pmm_gpu_chunk_suballoc_struct
{
// Number of allocated chunks (including pinned ones)
NvU32 allocated;
// Number of pinned leaf chunks under this chunk
//
// Tracked only for suballocs of root chunks to know whether a root chunk
// can be evicted. This is not in the uvm_gpu_root_chunk_t itself to stop
// the root chunks array from growing too much.
// TODO: Bug 1765193: Consider moving this to a union with the parent
// pointer in uvm_gpu_chunk_t as root chunks never have a parent or just put
// in the root chunk directly.
// TODO: Bug 1765193: This could be NvU16 if we enforce the smallest chunk
// size to be at least 2^21 / 2^16 = 32 bytes.
NvU32 pinned_leaf_chunks;
// Array of all child subchunks
// TODO: Bug 1765461: Can the array be inlined? It could save the parent
// pointer.
uvm_gpu_chunk_t *subchunks[];
};
typedef enum
{
CHUNK_WALK_PRE_ORDER,
CHUNK_WALK_POST_ORDER
} chunk_walk_order_t;
typedef NV_STATUS (*chunk_walk_func_t)(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data);
// Cache for allocation of uvm_pmm_gpu_chunk_suballoc_t. At index n it stores
// a suballoc structure for size 2**n.
//
// For convenience of init/deinit code level 0 is for allocation of chunks
static kmem_cache_ref_t chunk_split_cache[UVM_PMM_CHUNK_SPLIT_CACHE_SIZES];
#define CHUNK_CACHE chunk_split_cache[0].cache
const char *uvm_pmm_gpu_memory_type_string(uvm_pmm_gpu_memory_type_t type)
{
switch (type) {
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_MEMORY_TYPE_USER);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_MEMORY_TYPE_USER_UNPROTECTED);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_MEMORY_TYPE_KERNEL);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_MEMORY_TYPE_KERNEL_UNPROTECTED);
UVM_ENUM_STRING_DEFAULT();
}
BUILD_BUG_ON(UVM_PMM_GPU_MEMORY_TYPE_COUNT != 4);
}
const char *uvm_pmm_gpu_chunk_state_string(uvm_pmm_gpu_chunk_state_t state)
{
switch (state) {
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_CHUNK_STATE_FREE);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
UVM_ENUM_STRING_CASE(UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
UVM_ENUM_STRING_DEFAULT();
}
}
// The PMA APIs that can be called from PMA eviction callbacks (pmaPinPages and
// pmaFreePages*) need to be called differently depending whether it's as part
// of PMA eviction or not. The PMM context is used to plumb that information
// through the stack in a couple of places.
typedef enum
{
PMM_CONTEXT_DEFAULT,
PMM_CONTEXT_PMA_EVICTION,
} uvm_pmm_context_t;
// Freeing the root chunk not only needs to differentiate between two different
// contexts for calling pmaFreePages(), but also in some cases the free back to
// PMA needs to be skipped altogether.
typedef enum
{
FREE_ROOT_CHUNK_MODE_DEFAULT,
FREE_ROOT_CHUNK_MODE_PMA_EVICTION,
FREE_ROOT_CHUNK_MODE_SKIP_PMA_FREE
} free_root_chunk_mode_t;
static free_root_chunk_mode_t free_root_chunk_mode_from_pmm_context(uvm_pmm_context_t pmm_context)
{
switch (pmm_context) {
case PMM_CONTEXT_DEFAULT:
return FREE_ROOT_CHUNK_MODE_DEFAULT;
case PMM_CONTEXT_PMA_EVICTION:
return FREE_ROOT_CHUNK_MODE_PMA_EVICTION;
default:
UVM_ASSERT_MSG(false, "Invalid PMM context: 0x%x\n", pmm_context);
return FREE_ROOT_CHUNK_MODE_DEFAULT;
}
}
static NV_STATUS alloc_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunk);
static NV_STATUS alloc_root_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunk);
static void free_root_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk, free_root_chunk_mode_t free_mode);
static NV_STATUS split_gpu_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static void free_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static void free_chunk_with_merges(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static bool free_next_available_root_chunk(uvm_pmm_gpu_t *pmm, uvm_pmm_gpu_memory_type_t type);
static struct list_head *find_free_list(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_list_zero_t zero_type);
static bool check_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static struct list_head *find_free_list_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static void chunk_free_locked(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk);
static size_t root_chunk_index(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
size_t index = root_chunk->chunk.address / UVM_CHUNK_SIZE_MAX;
UVM_ASSERT(index < pmm->root_chunks.count);
return index;
}
static void root_chunk_lock(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
uvm_bit_lock(&pmm->root_chunks.bitlocks, root_chunk_index(pmm, root_chunk));
}
static void uvm_assert_root_chunk_locked(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
uvm_assert_bit_locked(&pmm->root_chunks.bitlocks, root_chunk_index(pmm, root_chunk));
}
static void root_chunk_unlock(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
uvm_bit_unlock(&pmm->root_chunks.bitlocks, root_chunk_index(pmm, root_chunk));
}
// TODO: Bug 1795559: Remove once PMA eviction is considered safe enough not to
// have an opt-out.
static bool gpu_supports_pma_eviction(uvm_gpu_t *gpu)
{
return uvm_global_oversubscription && uvm_parent_gpu_supports_eviction(gpu->parent);
}
uvm_gpu_t *uvm_pmm_to_gpu(uvm_pmm_gpu_t *pmm)
{
return container_of(pmm, uvm_gpu_t, pmm);
}
static uvm_gpu_root_chunk_t *root_chunk_from_address(uvm_pmm_gpu_t *pmm, NvU64 addr)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
size_t index = addr / UVM_CHUNK_SIZE_MAX;
uvm_gpu_root_chunk_t *root_chunk = &pmm->root_chunks.array[index];
UVM_ASSERT_MSG(addr <= gpu->mem_info.max_allocatable_address,
"Address 0x%llx vidmem max phys 0x%llx GPU %s\n",
addr,
gpu->mem_info.max_allocatable_address,
uvm_gpu_name(gpu));
UVM_ASSERT(root_chunk->chunk.address == UVM_ALIGN_DOWN(addr, UVM_CHUNK_SIZE_MAX));
return root_chunk;
}
static uvm_gpu_root_chunk_t *root_chunk_from_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
return root_chunk_from_address(pmm, chunk->address);
}
static bool chunk_is_root_chunk(uvm_gpu_chunk_t *chunk)
{
return uvm_gpu_chunk_get_size(chunk) == UVM_CHUNK_SIZE_MAX;
}
static bool chunk_is_root_chunk_pinned(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
chunk = &root_chunk->chunk;
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED)
return true;
else if (chunk->state != UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT)
return false;
UVM_ASSERT(chunk->suballoc);
return chunk->suballoc->pinned_leaf_chunks > 0;
}
// Pin a chunk and update its root chunk's pinned leaf chunks count if the
// chunk is not a root chunk.
static void chunk_pin(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
UVM_ASSERT(chunk->state != UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
chunk->state = UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED;
if (chunk_is_root_chunk(chunk))
return;
// For subchunks, update the pinned leaf chunks count tracked in the
// suballoc of the root chunk.
chunk = &root_chunk->chunk;
// The passed-in subchunk is not the root chunk so the root chunk has to be
// split.
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT, "chunk state %s\n",
uvm_pmm_gpu_chunk_state_string(chunk->state));
chunk->suballoc->pinned_leaf_chunks++;
}
// Unpin a chunk and update its root chunk's pinned leaf chunks count if the
// chunk is not a root chunk.
static void chunk_unpin(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_pmm_gpu_chunk_state_t new_state)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
UVM_ASSERT(chunk->va_block == NULL);
UVM_ASSERT(chunk_is_root_chunk_pinned(pmm, chunk));
UVM_ASSERT(new_state != UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
chunk->state = new_state;
if (chunk_is_root_chunk(chunk))
return;
// For subchunks, update the pinned leaf chunks count tracked in the
// suballoc of the root chunk.
chunk = &root_chunk->chunk;
// The passed-in subchunk is not the root chunk so the root chunk has to be
// split.
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT, "chunk state %s\n",
uvm_pmm_gpu_chunk_state_string(chunk->state));
UVM_ASSERT(chunk->suballoc->pinned_leaf_chunks != 0);
chunk->suballoc->pinned_leaf_chunks--;
}
bool uvm_pmm_gpu_memory_type_is_user(uvm_pmm_gpu_memory_type_t type)
{
UVM_ASSERT(type < UVM_PMM_GPU_MEMORY_TYPE_COUNT);
switch (type) {
case UVM_PMM_GPU_MEMORY_TYPE_USER: // Alias UVM_PMM_GPU_MEMORY_TYPE_USER_PROTECTED
case UVM_PMM_GPU_MEMORY_TYPE_USER_UNPROTECTED:
return true;
default:
return false;
}
}
static bool memory_type_is_protected(uvm_pmm_gpu_memory_type_t type)
{
switch (type) {
case UVM_PMM_GPU_MEMORY_TYPE_USER: // Alias UVM_PMM_GPU_MEMORY_TYPE_USER_PROTECTED
case UVM_PMM_GPU_MEMORY_TYPE_KERNEL: // Alias UVM_PMM_GPU_MEMORY_TYPE_KERNEL_PROTECTED:
return true;
default:
return false;
}
}
static void uvm_gpu_chunk_set_in_eviction(uvm_gpu_chunk_t *chunk, bool in_eviction)
{
UVM_ASSERT(uvm_pmm_gpu_memory_type_is_user(chunk->type));
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) == UVM_CHUNK_SIZE_MAX);
chunk->in_eviction = in_eviction;
}
// A helper that queries the eviction flag of root chunk of the given chunk.
// Eviction is only tracked for root chunks.
static bool chunk_is_in_eviction(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
return root_chunk_from_chunk(pmm, chunk)->chunk.in_eviction;
}
uvm_gpu_t *uvm_gpu_chunk_get_gpu(const uvm_gpu_chunk_t *chunk)
{
uvm_gpu_t *gpu = uvm_gpu_get(uvm_gpu_id_from_index(chunk->gpu_index));
UVM_ASSERT(gpu);
return gpu;
}
struct page *uvm_gpu_chunk_to_page(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NvU64 sys_addr = chunk->address + gpu->parent->system_bus.memory_window_start;
unsigned long pfn = sys_addr >> PAGE_SHIFT;
UVM_ASSERT(sys_addr + uvm_gpu_chunk_get_size(chunk) <= gpu->parent->system_bus.memory_window_end + 1);
UVM_ASSERT(gpu->mem_info.numa.enabled);
return pfn_to_page(pfn);
}
void uvm_pmm_gpu_sync(uvm_pmm_gpu_t *pmm)
{
size_t i;
if (!pmm->initialized)
return;
// Just go over all root chunks and sync the ones that are not PMA OWNED.
// This is slow, but uvm_pmm_gpu_sync() is a rarely used operation not
// critical for performance.
for (i = 0; i < pmm->root_chunks.count; ++i) {
uvm_gpu_root_chunk_t *root_chunk = &pmm->root_chunks.array[i];
root_chunk_lock(pmm, root_chunk);
if (root_chunk->chunk.state != UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED) {
NV_STATUS status = uvm_tracker_wait(&root_chunk->tracker);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
}
root_chunk_unlock(pmm, root_chunk);
}
}
static uvm_pmm_gpu_memory_type_t pmm_squash_memory_type(uvm_pmm_gpu_memory_type_t type)
{
if (g_uvm_global.conf_computing_enabled)
return type;
// Enforce the contract that when the Confidential Computing feature is
// disabled, all user types are alike, as well as all kernel types,
// respectively. See uvm_pmm_gpu_memory_type_t.
if (uvm_pmm_gpu_memory_type_is_user(type))
return UVM_PMM_GPU_MEMORY_TYPE_USER;
return UVM_PMM_GPU_MEMORY_TYPE_KERNEL;
}
NV_STATUS uvm_pmm_gpu_alloc(uvm_pmm_gpu_t *pmm,
size_t num_chunks,
uvm_chunk_size_t chunk_size,
uvm_pmm_gpu_memory_type_t mem_type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunks,
uvm_tracker_t *out_tracker)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
uvm_tracker_t local_tracker = UVM_TRACKER_INIT();
size_t i;
UVM_ASSERT((unsigned)mem_type < UVM_PMM_GPU_MEMORY_TYPE_COUNT);
UVM_ASSERT_MSG(is_power_of_2(chunk_size), "chunk size %u\n", chunk_size);
UVM_ASSERT_MSG(chunk_size & pmm->chunk_sizes[mem_type], "chunk size %u\n", chunk_size);
UVM_ASSERT(num_chunks == 0 || chunks);
UVM_ASSERT((flags & UVM_PMM_ALLOC_FLAGS_MASK) == flags);
if (flags & UVM_PMM_ALLOC_FLAGS_EVICT) {
// If eviction is requested then VA block locks need to be lockable
uvm_assert_lockable_order(UVM_LOCK_ORDER_VA_BLOCK);
}
mem_type = pmm_squash_memory_type(mem_type);
for (i = 0; i < num_chunks; i++) {
uvm_gpu_root_chunk_t *root_chunk;
status = alloc_chunk(pmm, mem_type, chunk_size, flags, &chunks[i]);
if (status != NV_OK)
goto error;
root_chunk = root_chunk_from_chunk(pmm, chunks[i]);
root_chunk_lock(pmm, root_chunk);
uvm_tracker_remove_completed(&root_chunk->tracker);
status = uvm_tracker_add_tracker_safe(&local_tracker, &root_chunk->tracker);
root_chunk_unlock(pmm, root_chunk);
if (status != NV_OK) {
i++;
goto error;
}
}
// Before we return to the caller, we need to ensure that the tracker only
// contains tracker entries belonging to the PMM's GPU. Otherwise we
// could leak trackers for other GPUs into VA spaces which never
// registered those GPUs, causing lifetime problems when those GPUs go
// away.
status = uvm_tracker_wait_for_other_gpus(&local_tracker, gpu);
if (status != NV_OK)
goto error;
if (out_tracker) {
status = uvm_tracker_add_tracker_safe(out_tracker, &local_tracker);
uvm_tracker_clear(&local_tracker);
if (status != NV_OK)
goto error;
}
return uvm_tracker_wait_deinit(&local_tracker);
error:
uvm_tracker_deinit(&local_tracker);
while (i-- > 0)
free_chunk(pmm, chunks[i]);
// Reset the array to make error handling easier for callers.
memset(chunks, 0, sizeof(chunks[0]) * num_chunks);
return status;
}
static NV_STATUS pmm_gpu_alloc_kernel(uvm_pmm_gpu_t *pmm,
size_t num_chunks,
uvm_chunk_size_t chunk_size,
uvm_pmm_gpu_memory_type_t memory_type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunks,
uvm_tracker_t *out_tracker)
{
size_t i;
NV_STATUS status = uvm_pmm_gpu_alloc(pmm, num_chunks, chunk_size, memory_type, flags, chunks, out_tracker);
if (status != NV_OK)
return status;
for (i = 0; i < num_chunks; ++i) {
UVM_ASSERT(chunks[i]->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
uvm_spin_lock(&pmm->list_lock);
chunk_unpin(pmm, chunks[i], UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
chunks[i]->is_referenced = false;
uvm_spin_unlock(&pmm->list_lock);
}
return NV_OK;
}
static void chunk_update_lists_locked(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
if (uvm_pmm_gpu_memory_type_is_user(chunk->type)) {
if (chunk_is_root_chunk_pinned(pmm, chunk)) {
UVM_ASSERT(root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT ||
root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
list_del_init(&root_chunk->chunk.list);
}
else if (root_chunk->chunk.state != UVM_PMM_GPU_CHUNK_STATE_FREE) {
UVM_ASSERT(root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT ||
root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
list_move_tail(&root_chunk->chunk.list, &pmm->root_chunks.va_block_used);
}
}
// TODO: Bug 1757148: Improve fragmentation of split chunks
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_FREE)
list_move_tail(&chunk->list, find_free_list_chunk(pmm, chunk));
else if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED)
list_del_init(&chunk->list);
}
static void gpu_unpin_temp(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *chunk,
uvm_va_block_t *va_block,
bool is_referenced)
{
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
UVM_ASSERT(uvm_pmm_gpu_memory_type_is_user(chunk->type));
INIT_LIST_HEAD(&chunk->list);
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(!chunk->va_block);
UVM_ASSERT(va_block);
UVM_ASSERT(chunk->va_block_page_index < uvm_va_block_num_cpu_pages(va_block));
chunk_unpin(pmm, chunk, UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
chunk->is_referenced = is_referenced;
chunk->va_block = va_block;
chunk_update_lists_locked(pmm, chunk);
uvm_spin_unlock(&pmm->list_lock);
}
void uvm_pmm_gpu_unpin_allocated(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_va_block_t *va_block)
{
gpu_unpin_temp(pmm, chunk, va_block, false);
}
void uvm_pmm_gpu_unpin_referenced(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_va_block_t *va_block)
{
gpu_unpin_temp(pmm, chunk, va_block, true);
}
void uvm_pmm_gpu_free(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_tracker_t *tracker)
{
NV_STATUS status;
if (!chunk)
return;
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
if (tracker) {
uvm_gpu_root_chunk_t *root_chunk;
uvm_tracker_remove_completed(tracker);
root_chunk = root_chunk_from_chunk(pmm, chunk);
root_chunk_lock(pmm, root_chunk);
// Remove any completed entries from the root tracker to prevent it from
// growing too much over time.
uvm_tracker_remove_completed(&root_chunk->tracker);
status = uvm_tracker_add_tracker_safe(&root_chunk->tracker, tracker);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
root_chunk_unlock(pmm, root_chunk);
}
free_chunk(pmm, chunk);
}
static NvU32 num_subchunks(uvm_gpu_chunk_t *parent)
{
uvm_chunk_size_t parent_size, child_size;
UVM_ASSERT(parent->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
parent_size = uvm_gpu_chunk_get_size(parent);
child_size = uvm_gpu_chunk_get_size(parent->suballoc->subchunks[0]);
return (NvU32)uvm_div_pow2_64(parent_size, child_size);
}
static uvm_gpu_chunk_t *next_sibling(uvm_gpu_chunk_t *chunk)
{
uvm_gpu_chunk_t *parent = chunk->parent;
size_t index;
UVM_ASSERT(parent);
UVM_ASSERT(parent->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
index = (size_t)uvm_div_pow2_64(chunk->address - parent->address, uvm_gpu_chunk_get_size(chunk));
UVM_ASSERT(index < num_subchunks(parent));
++index;
if (index == num_subchunks(parent))
return NULL;
return parent->suballoc->subchunks[index];
}
// Check that the chunk is in a mergeable state: all children must be pinned or
// or all children must be allocated with the same reverse mapping.
//
// Always returns true so it can be called from an assert macro.
static bool assert_chunk_mergeable(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_chunk_t *first_child = chunk->suballoc->subchunks[0];
uvm_va_block_t *child_va_block = first_child->va_block;
size_t i;
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
UVM_ASSERT(first_child->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
first_child->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
for (i = 1; i < num_subchunks(chunk); i++) {
uvm_gpu_chunk_t *child = chunk->suballoc->subchunks[i];
UVM_ASSERT(child->state == first_child->state);
if (first_child->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
uvm_gpu_chunk_t *prev_child = chunk->suballoc->subchunks[i-1];
UVM_ASSERT(child->va_block == child_va_block);
UVM_ASSERT(child->va_block_page_index ==
prev_child->va_block_page_index + uvm_gpu_chunk_get_size(prev_child) / PAGE_SIZE);
UVM_ASSERT(child->is_referenced == prev_child->is_referenced);
}
}
if (first_child->state == UVM_PMM_GPU_CHUNK_STATE_FREE) {
UVM_ASSERT(chunk->suballoc->allocated == 0);
}
else {
UVM_ASSERT_MSG(chunk->suballoc->allocated == num_subchunks(chunk), "%u != %u\n",
chunk->suballoc->allocated, num_subchunks(chunk));
}
return true;
}
// Merges a previously-split chunk. Assumes that all of its children have
// uniform state. This only merges leaves, so none of the children can be in the
// split state themselves.
//
// The children need to be removed from any lists before the merge.
//
// The merged chunk inherits the former state of its children.
static void merge_gpu_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_pmm_gpu_chunk_suballoc_t *suballoc;
uvm_gpu_chunk_t *subchunk;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_pmm_gpu_chunk_state_t child_state;
size_t i, num_sub = num_subchunks(chunk);
uvm_assert_mutex_locked(&pmm->lock);
UVM_ASSERT(assert_chunk_mergeable(pmm, chunk));
// Transition the chunk state under the list lock first and then clean up
// the subchunk state.
uvm_spin_lock(&pmm->list_lock);
child_state = chunk->suballoc->subchunks[0]->state;
if (child_state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
subchunk = chunk->suballoc->subchunks[0];
UVM_ASSERT(subchunk->va_block);
chunk->va_block = subchunk->va_block;
chunk->va_block_page_index = subchunk->va_block_page_index;
chunk->is_referenced = subchunk->is_referenced;
}
else if (child_state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED) {
UVM_ASSERT(root_chunk->chunk.suballoc->pinned_leaf_chunks >= num_sub);
root_chunk->chunk.suballoc->pinned_leaf_chunks += 1 - num_sub;
}
chunk->state = child_state;
suballoc = chunk->suballoc;
chunk->suballoc = NULL;
// The resulting chunk is assumed to be non-zero as a simplification,
// instead of checking that all the subchunks are zero, since callers of
// uvm_pmm_gpu_alloc are not required to clear it. However, we think that
// this covers all relevant cases since it is uncommon to split a chunk and
// not to use any of the subchunks later on.
chunk->is_zero = false;
uvm_spin_unlock(&pmm->list_lock);
for (i = 0; i < num_sub; i++) {
subchunk = suballoc->subchunks[i];
// The subchunks should have been removed from their lists prior to the
// merge.
UVM_ASSERT(list_empty(&subchunk->list));
if (child_state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED)
UVM_ASSERT(subchunk->va_block != NULL);
kmem_cache_free(CHUNK_CACHE, subchunk);
}
kmem_cache_free(chunk_split_cache[ilog2(num_sub)].cache, suballoc);
}
// Checks that chunk is below ancestor in the tree. Always returns true so it
// can be called from an assert macro.
static bool assert_chunk_under(uvm_gpu_chunk_t *chunk, uvm_gpu_chunk_t *ancestor)
{
UVM_ASSERT(ancestor->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
UVM_ASSERT(ancestor->suballoc);
UVM_ASSERT(ancestor->address <= chunk->address);
UVM_ASSERT(chunk->address < ancestor->address + uvm_gpu_chunk_get_size(ancestor));
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) <= uvm_gpu_chunk_get_size(ancestor));
return true;
}
// Traverses the chunk tree from start in the given traversal order.
//
// If the callback returns a status value of NV_WARN_NOTHING_TO_DO when doing
// pre-order traversal, the traversal skips walking below that chunk. In all
// other cases, returning any non-NV_OK value stops the walk immediately and
// returns that status to the caller.
//
// Be careful modifying the tree from the callback. Changing the tree below the
// input chunk is fine and modifying the input chunk itself is fine, but the
// callback must not modify the tree above the input chunk. If that is needed,
// return a non-NV_OK status from the walk and re-start the walk.
static NV_STATUS chunk_walk(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *start,
chunk_walk_func_t func,
void *data,
chunk_walk_order_t order)
{
NV_STATUS status = NV_OK;
uvm_gpu_chunk_t *curr, *sibling;
curr = start;
do {
if (curr != start)
UVM_ASSERT(assert_chunk_under(curr, start));
if (order == CHUNK_WALK_PRE_ORDER) {
status = func(pmm, curr, data);
if (status != NV_OK && status != NV_WARN_NOTHING_TO_DO)
return status;
}
// Skip downward traversal on pre-order if requested
if (status != NV_WARN_NOTHING_TO_DO && curr->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT) {
// If the chunk is split, walk down
curr = curr->suballoc->subchunks[0];
}
else {
// This is a leaf chunk. If not start itself, check siblings.
while (curr != start) {
if (order == CHUNK_WALK_POST_ORDER) {
status = func(pmm, curr, data);
if (status != NV_OK)
return status;
}
sibling = next_sibling(curr);
if (sibling) {
curr = sibling;
break;
}
// curr is the last chunk in its parent. Walk up and try again.
curr = curr->parent;
UVM_ASSERT(curr);
UVM_ASSERT(curr->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
}
}
} while (curr != start);
// Invoke the final callback for start
if (order == CHUNK_WALK_POST_ORDER)
return func(pmm, curr, data);
return NV_OK;
}
static NV_STATUS chunk_walk_pre_order(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *start, chunk_walk_func_t func, void *data)
{
return chunk_walk(pmm, start, func, data, CHUNK_WALK_PRE_ORDER);
}
static NV_STATUS chunk_walk_post_order(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *start, chunk_walk_func_t func, void *data)
{
return chunk_walk(pmm, start, func, data, CHUNK_WALK_POST_ORDER);
}
typedef struct
{
// Target size for the leaf subchunks
uvm_chunk_size_t min_size;
// Number of subchunks split to this point. If the subchunks array is non-
// NULL, this is the number of elements currently in the array.
size_t num_subchunks_curr;
// Number of subchunks needed for the whole split
size_t num_subchunks_total;
// Storage for the final split chunks. May be NULL.
uvm_gpu_chunk_t **subchunks;
// For testing
bool inject_error;
} split_walk_t;
static NV_STATUS split_walk_func(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
uvm_chunk_size_t chunk_size, child_size;
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[chunk->type];
size_t i, num_children;
split_walk_t *args = data;
NV_STATUS status;
chunk_size = uvm_gpu_chunk_get_size(chunk);
UVM_ASSERT(chunk_size > args->min_size);
child_size = uvm_chunk_find_prev_size(chunk_sizes, chunk_size);
UVM_ASSERT(child_size != UVM_CHUNK_SIZE_INVALID);
num_children = chunk_size / child_size;
if (unlikely(args->inject_error)) {
// Inject errors on the last split. inject_split_error is a bitfield,
// so we must take the lock to modify it. This path is only used in
// testing.
if (child_size == args->min_size &&
args->num_subchunks_curr + num_children == args->num_subchunks_total) {
uvm_spin_lock(&pmm->list_lock);
chunk->inject_split_error = true;
uvm_spin_unlock(&pmm->list_lock);
}
}
status = split_gpu_chunk(pmm, chunk);
if (status != NV_OK)
return status;
// If we've hit our target, add all child subchunks to the array
if (child_size == args->min_size) {
for (i = 0; i < num_children; i++) {
UVM_ASSERT(args->num_subchunks_curr < args->num_subchunks_total);
if (args->subchunks)
args->subchunks[args->num_subchunks_curr] = chunk->suballoc->subchunks[i];
++args->num_subchunks_curr;
}
// No need to walk below this chunk
return NV_WARN_NOTHING_TO_DO;
}
return NV_OK;
}
static NV_STATUS merge_walk_func(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
// The merge walk uses post-order traversal, so all subchunks are guaranteed
// to have already been merged.
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT)
merge_gpu_chunk(pmm, chunk);
return NV_OK;
}
static void uvm_pmm_gpu_merge_chunk_locked(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
NV_STATUS status;
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
uvm_assert_mutex_locked(&pmm->lock);
status = chunk_walk_post_order(pmm, chunk, merge_walk_func, NULL);
// merge_walk_func can't fail
UVM_ASSERT(status == NV_OK);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
}
NV_STATUS uvm_pmm_gpu_split_chunk(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *chunk,
uvm_chunk_size_t subchunk_size,
uvm_gpu_chunk_t **subchunks)
{
NV_STATUS status;
split_walk_t walk_args =
{
.min_size = subchunk_size,
.num_subchunks_curr = 0,
.num_subchunks_total = uvm_gpu_chunk_get_size(chunk) / subchunk_size,
.subchunks = subchunks,
.inject_error = chunk->inject_split_error,
};
UVM_ASSERT(is_power_of_2(subchunk_size));
UVM_ASSERT(subchunk_size & pmm->chunk_sizes[chunk->type]);
UVM_ASSERT(subchunk_size < uvm_gpu_chunk_get_size(chunk));
uvm_mutex_lock(&pmm->lock);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
// If we're supposed to inject an error, clear out the root chunk's flag so
// we can inject after nearly all chunks have been split. Otherwise
// split_gpu_chunk will fail on the first try, without creating the tree.
if (unlikely(walk_args.inject_error)) {
// inject_split_error is a bitfield, so we must take the lock to modify
// it. This path is only used in testing.
uvm_spin_lock(&pmm->list_lock);
chunk->inject_split_error = false;
uvm_spin_unlock(&pmm->list_lock);
}
status = chunk_walk_pre_order(pmm, chunk, split_walk_func, &walk_args);
if (status != NV_OK) {
// Put the chunk back in its original state
uvm_pmm_gpu_merge_chunk_locked(pmm, chunk);
}
else {
UVM_ASSERT(walk_args.num_subchunks_curr == walk_args.num_subchunks_total);
}
uvm_mutex_unlock(&pmm->lock);
return status;
}
typedef struct
{
size_t num_written;
size_t num_to_write;
size_t num_to_skip;
uvm_gpu_chunk_t **subchunks;
} get_subchunks_walk_t;
static NV_STATUS get_subchunks_walk_func(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
get_subchunks_walk_t *args = data;
// We're only collecting leaf chunks
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT)
return NV_OK;
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
if (args->num_to_skip) {
--args->num_to_skip;
return NV_OK;
}
UVM_ASSERT(args->num_written < args->num_to_write);
args->subchunks[args->num_written++] = chunk;
// Bail immediately once we hit our limit. Note that this is not an error:
// we just need to exit the walk.
if (args->num_written == args->num_to_write)
return NV_ERR_OUT_OF_RANGE;
return NV_OK;
}
size_t uvm_pmm_gpu_get_subchunks(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *parent,
size_t start_index,
size_t num_subchunks,
uvm_gpu_chunk_t **subchunks)
{
NV_STATUS status;
get_subchunks_walk_t walk_args =
{
.num_written = 0,
.num_to_write = num_subchunks,
.num_to_skip = start_index,
.subchunks = subchunks,
};
if (num_subchunks == 0)
return 0;
UVM_ASSERT(parent->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
parent->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
parent->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
uvm_mutex_lock(&pmm->lock);
// Either pre- or post-order would work. Pick post-order just because we
// only care about leaf chunks and we may exit early, so we'd get slightly
// fewer callbacks.
status = chunk_walk_post_order(pmm, parent, get_subchunks_walk_func, &walk_args);
if (status != NV_OK) {
UVM_ASSERT(status == NV_ERR_OUT_OF_RANGE);
UVM_ASSERT(walk_args.num_written == walk_args.num_to_write);
}
uvm_mutex_unlock(&pmm->lock);
return walk_args.num_written;
}
static uvm_gpu_chunk_t *list_first_chunk(struct list_head *list)
{
return list_first_entry_or_null(list, uvm_gpu_chunk_t, list);
}
void uvm_pmm_gpu_merge_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_mutex_lock(&pmm->lock);
uvm_pmm_gpu_merge_chunk_locked(pmm, chunk);
uvm_mutex_unlock(&pmm->lock);
}
static void root_chunk_unmap_indirect_peer(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk, uvm_gpu_t *other_gpu)
{
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
size_t index = root_chunk_index(pmm, root_chunk);
long long new_count;
NV_STATUS status;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(other_gpu->id)];
uvm_assert_root_chunk_locked(pmm, root_chunk);
UVM_ASSERT(indirect_peer->dma_addrs);
UVM_ASSERT(root_chunk->chunk.state != UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED);
UVM_ASSERT(uvm_processor_mask_test(&root_chunk->indirect_peers_mapped, other_gpu->id));
// The tracker could have work which requires the indirect peer mappings to
// remain until finished, such as PTE unmaps of this chunk from indirect
// peers, so we need to wait. We also need to wait on the entire tracker,
// not just other_gpu's entries, because there might be implicit chained
// dependencies in the tracker.
//
// We know there can't be any other work which requires these mappings:
// - If we're freeing the root chunk back to PMA or switching types of the
// root chunk, nothing else can reference the chunk.
//
// - If the chunk is still allocated then global peer access must be in the
// process of being disabled, say because one of the GPUs is being
// unregistered. We know that all VA spaces must have already called
// disable_peers and have waited on those PTE unmaps. The chunk could be
// freed concurrently with this indirect peer unmap, but that will be
// serialized by the root chunk lock.
status = uvm_tracker_wait(&root_chunk->tracker);
if (status != NV_OK)
UVM_ASSERT(uvm_global_get_status() != NV_OK);
uvm_parent_gpu_unmap_cpu_pages(other_gpu->parent, indirect_peer->dma_addrs[index], UVM_CHUNK_SIZE_MAX);
uvm_processor_mask_clear(&root_chunk->indirect_peers_mapped, other_gpu->id);
new_count = atomic64_dec_return(&indirect_peer->map_count);
UVM_ASSERT(new_count >= 0);
}
static void root_chunk_unmap_indirect_peers(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
uvm_gpu_id_t other_gpu_id;
// Root chunks should use a global processor mask as they are not bound to
// a specific VA space. However, indirect peers are not supported when SMC
// partitioning is enabled and, therefore, we can obtain the uvm_gpu_t
// object directly from the uvm_parent_gpu_t object's id.
for_each_gpu_id_in_mask(other_gpu_id, &root_chunk->indirect_peers_mapped) {
uvm_gpu_t *other_gpu = uvm_gpu_get(other_gpu_id);
root_chunk_unmap_indirect_peer(pmm, root_chunk, other_gpu);
}
}
NV_STATUS uvm_pmm_gpu_indirect_peer_init(uvm_pmm_gpu_t *pmm, uvm_gpu_t *accessing_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NvU64 *dma_addrs;
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
NV_STATUS status = NV_OK;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(accessing_gpu->id)];
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
UVM_ASSERT(uvm_gpus_are_indirect_peers(gpu, accessing_gpu));
UVM_ASSERT(!indirect_peer->dma_addrs);
UVM_ASSERT(atomic64_read(&indirect_peer->map_count) == 0);
// Each root chunk tracks whether it has a mapping to a given indirect peer,
// so we don't need to initialize this array.
dma_addrs = uvm_kvmalloc(pmm->root_chunks.count * sizeof(dma_addrs[0]));
if (!dma_addrs)
status = NV_ERR_NO_MEMORY;
else
indirect_peer->dma_addrs = dma_addrs;
return status;
}
static bool check_indirect_peer_empty(uvm_pmm_gpu_t *pmm, uvm_gpu_t *other_gpu)
{
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
size_t i;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(other_gpu->id)];
for (i = 0; i < pmm->root_chunks.count; i++) {
uvm_gpu_root_chunk_t *root_chunk = &pmm->root_chunks.array[i];
// This doesn't take the root chunk lock because checking the mask is an
// atomic operation.
if (uvm_processor_mask_test(&root_chunk->indirect_peers_mapped, other_gpu->id)) {
UVM_ASSERT(atomic64_read(&indirect_peer->map_count) > 0);
return false;
}
}
UVM_ASSERT(atomic64_read(&indirect_peer->map_count) == 0);
return true;
}
void uvm_pmm_gpu_indirect_peer_destroy(uvm_pmm_gpu_t *pmm, uvm_gpu_t *other_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
size_t i;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(other_gpu->id)];
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
UVM_ASSERT(uvm_gpus_are_indirect_peers(gpu, other_gpu));
if (!indirect_peer->dma_addrs) {
UVM_ASSERT(check_indirect_peer_empty(pmm, other_gpu));
return;
}
// Just go over all root chunks and unmap them. This is slow, but it is not
// a frequent operation.
for (i = 0; i < pmm->root_chunks.count && atomic64_read(&indirect_peer->map_count); i++) {
uvm_gpu_root_chunk_t *root_chunk = &pmm->root_chunks.array[i];
// Take the root chunk lock to prevent chunks from transitioning in or
// out of the PMA_OWNED state, and to serialize updates to the tracker
// and indirect_peers_mapped mask. Note that indirect peers besides
// other_gpu could be trying to create mappings concurrently.
root_chunk_lock(pmm, root_chunk);
if (root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED)
UVM_ASSERT(uvm_processor_mask_empty(&root_chunk->indirect_peers_mapped));
else if (uvm_processor_mask_test(&root_chunk->indirect_peers_mapped, other_gpu->id))
root_chunk_unmap_indirect_peer(pmm, root_chunk, other_gpu);
root_chunk_unlock(pmm, root_chunk);
}
UVM_ASSERT(check_indirect_peer_empty(pmm, other_gpu));
uvm_kvfree(indirect_peer->dma_addrs);
indirect_peer->dma_addrs = NULL;
}
NV_STATUS uvm_pmm_gpu_indirect_peer_map(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_gpu_t *accessing_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
size_t index = root_chunk_index(pmm, root_chunk);
NV_STATUS status = NV_OK;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(accessing_gpu->id)];
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
UVM_ASSERT(uvm_gpus_are_indirect_peers(gpu, accessing_gpu));
UVM_ASSERT(indirect_peer->dma_addrs);
// Serialize:
// - Concurrent mappings to this root chunk (same or different GPUs)
// - Concurrent unmappings of this root chunk (must be a different GPU)
root_chunk_lock(pmm, root_chunk);
if (!uvm_processor_mask_test(&root_chunk->indirect_peers_mapped, accessing_gpu->id)) {
status = uvm_parent_gpu_map_cpu_pages(accessing_gpu->parent,
uvm_gpu_chunk_to_page(pmm, &root_chunk->chunk),
UVM_CHUNK_SIZE_MAX,
&indirect_peer->dma_addrs[index]);
if (status == NV_OK) {
uvm_processor_mask_set(&root_chunk->indirect_peers_mapped, accessing_gpu->id);
atomic64_inc(&indirect_peer->map_count);
}
}
root_chunk_unlock(pmm, root_chunk);
return status;
}
NvU64 uvm_pmm_gpu_indirect_peer_addr(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, uvm_gpu_t *accessing_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_root_chunk_indirect_peer_t *indirect_peer;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
size_t index = root_chunk_index(pmm, root_chunk);
NvU64 chunk_offset = chunk->address - root_chunk->chunk.address;
indirect_peer = &pmm->root_chunks.indirect_peer[uvm_id_gpu_index(accessing_gpu->id)];
UVM_ASSERT(uvm_gpus_are_indirect_peers(gpu, accessing_gpu));
UVM_ASSERT(indirect_peer->dma_addrs);
UVM_ASSERT(uvm_processor_mask_test(&root_chunk->indirect_peers_mapped, accessing_gpu->id));
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
return indirect_peer->dma_addrs[index] + chunk_offset;
}
uvm_gpu_phys_address_t uvm_pmm_gpu_peer_phys_address(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *chunk,
uvm_gpu_t *accessing_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_peer_t *peer_caps = uvm_gpu_peer_caps(accessing_gpu, gpu);
uvm_aperture_t aperture = uvm_gpu_peer_aperture(accessing_gpu, gpu);
NvU64 addr;
if (peer_caps->is_indirect_peer)
addr = uvm_pmm_gpu_indirect_peer_addr(pmm, chunk, accessing_gpu);
else if (uvm_gpus_are_nvswitch_connected(accessing_gpu, gpu))
addr = chunk->address + gpu->parent->nvswitch_info.fabric_memory_window_start;
else
addr = chunk->address;
return uvm_gpu_phys_address(aperture, addr);
}
uvm_gpu_address_t uvm_pmm_gpu_peer_copy_address(uvm_pmm_gpu_t *pmm,
uvm_gpu_chunk_t *chunk,
uvm_gpu_t *accessing_gpu)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_peer_t *peer_caps = uvm_gpu_peer_caps(accessing_gpu, gpu);
uvm_gpu_identity_mapping_t *gpu_peer_mapping;
if (peer_caps->is_indirect_peer ||
(accessing_gpu->parent->peer_copy_mode == UVM_GPU_PEER_COPY_MODE_PHYSICAL)) {
// Indirect peers are accessed as sysmem addresses, so they don't need
// to use identity mappings.
return uvm_gpu_address_from_phys(uvm_pmm_gpu_peer_phys_address(pmm, chunk, accessing_gpu));
}
UVM_ASSERT(accessing_gpu->parent->peer_copy_mode == UVM_GPU_PEER_COPY_MODE_VIRTUAL);
gpu_peer_mapping = uvm_gpu_get_peer_mapping(accessing_gpu, gpu->id);
return uvm_gpu_address_virtual(gpu_peer_mapping->base + chunk->address);
}
static NV_STATUS evict_root_chunk_from_va_block(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk, uvm_va_block_t *va_block)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
uvm_tracker_t tracker = UVM_TRACKER_INIT();
UVM_ASSERT(va_block);
// To evict the chunks from the VA block we need to lock it, but we already
// have the PMM lock held. Unlock it first and re-lock it after.
uvm_mutex_unlock(&pmm->lock);
uvm_mutex_lock(&va_block->lock);
status = uvm_va_block_evict_chunks(va_block, gpu, &root_chunk->chunk, &tracker);
uvm_mutex_unlock(&va_block->lock);
// The block has been retained by find_and_retain_va_block_to_evict(),
// release it here as it's not needed any more. Notably do that even if
// uvm_va_block_evict_chunks() fails.
uvm_va_block_release(va_block);
if (status == NV_OK) {
root_chunk_lock(pmm, root_chunk);
status = uvm_tracker_add_tracker_safe(&root_chunk->tracker, &tracker);
root_chunk_unlock(pmm, root_chunk);
}
uvm_tracker_deinit(&tracker);
uvm_mutex_lock(&pmm->lock);
return status;
}
void uvm_pmm_gpu_mark_chunk_evicted(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(chunk_is_in_eviction(pmm, chunk));
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
UVM_ASSERT(chunk->va_block != NULL);
chunk->va_block = NULL;
chunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
chunk_pin(pmm, chunk);
uvm_spin_unlock(&pmm->list_lock);
}
static NV_STATUS pin_free_chunks_func(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
uvm_assert_mutex_locked(&pmm->lock);
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(chunk_is_in_eviction(pmm, chunk));
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_FREE) {
list_del_init(&chunk->list);
chunk_pin(pmm, chunk);
if (chunk->parent)
chunk->parent->suballoc->allocated++;
}
uvm_spin_unlock(&pmm->list_lock);
return NV_OK;
}
static NV_STATUS free_first_pinned_chunk_func(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
uvm_assert_mutex_locked(&pmm->lock);
UVM_ASSERT(!chunk_is_in_eviction(pmm, chunk));
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED) {
free_chunk_with_merges(pmm, chunk);
return NV_ERR_MORE_DATA_AVAILABLE;
}
return NV_OK;
}
typedef struct
{
uvm_va_block_t *va_block_to_evict_from;
} evict_data_t;
static NV_STATUS find_and_retain_va_block_to_evict(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
NV_STATUS status = NV_OK;
evict_data_t *evict_data = (evict_data_t *)data;
UVM_ASSERT(evict_data->va_block_to_evict_from == NULL);
uvm_spin_lock(&pmm->list_lock);
// All free chunks should have been pinned already by pin_free_chunks_func().
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT,
"state %s\n", uvm_pmm_gpu_chunk_state_string(chunk->state));
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
UVM_ASSERT(chunk->va_block);
evict_data->va_block_to_evict_from = chunk->va_block;
uvm_va_block_retain(chunk->va_block);
status = NV_ERR_MORE_DATA_AVAILABLE;
}
uvm_spin_unlock(&pmm->list_lock);
return status;
}
static bool root_chunk_has_elevated_page(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
struct page *page;
if (!gpu->mem_info.numa.enabled)
return false;
page = uvm_gpu_chunk_to_page(pmm, chunk);
return page_count(page) > UVM_CHUNK_SIZE_MAX / PAGE_SIZE;
}
static NV_STATUS evict_root_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk, uvm_pmm_context_t pmm_context)
{
NV_STATUS status;
NV_STATUS free_status;
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
const uvm_pmm_gpu_memory_type_t type = chunk->type;
uvm_assert_mutex_locked(&pmm->lock);
// First pin all the free subchunks
status = chunk_walk_pre_order(pmm, chunk, pin_free_chunks_func, NULL);
UVM_ASSERT(status == NV_OK);
while (1) {
evict_data_t evict = {0};
status = chunk_walk_pre_order(pmm, chunk, find_and_retain_va_block_to_evict, &evict);
// find_and_retain_va_block_to_evict() returns NV_ERR_MORE_DATA_AVAILABLE
// immediately after finding the first VA block to evict from and NV_OK
// if no more blocks are left.
if (status != NV_ERR_MORE_DATA_AVAILABLE) {
UVM_ASSERT(status == NV_OK);
break;
}
// Evict the chunks from the VA block. Notably this will unlock and
// re-lock the PMM mutex. This is ok as we don't rely on any PMM state
// that can change across the calls. In particular, the walk to pick the
// next VA block to evict above is always started from the root chunk.
status = evict_root_chunk_from_va_block(pmm, root_chunk, evict.va_block_to_evict_from);
if (status != NV_OK)
goto error;
}
// All of the leaf chunks should be pinned now, merge them all back into a
// pinned root chunk.
uvm_pmm_gpu_merge_chunk_locked(pmm, chunk);
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
uvm_gpu_chunk_set_in_eviction(chunk, false);
chunk->is_zero = false;
uvm_spin_unlock(&pmm->list_lock);
// Bug 2085760: Check if there is any page within the evicted chunk with an
// elevated refcount. In such case there is another holder of the page,
// which prevents us from reusing it. This can happen on systems where
// struct pages backed by GPU memory are directly available to third-party
// device drivers. Note that at this point, the chunk ends up not being in
// a chunk free list. We can just free it, so PMA will handle the page with
// elevated refcount.
if (root_chunk_has_elevated_page(pmm, root_chunk)) {
free_root_chunk(pmm, root_chunk, free_root_chunk_mode_from_pmm_context(pmm_context));
return NV_ERR_IN_USE;
}
UVM_ASSERT(check_chunk(pmm, chunk));
return NV_OK;
error:
// On error we need to free all the chunks that we were able to evict so
// far. They should all be pinned.
// Clear the eviction state so any new chunks freed by other threads are
// actually freed instead of pinned. We need the list lock to make the
// eviction check and conditional pin in chunk_free_locked atomic with our
// free-if-pinned loop below.
uvm_spin_lock(&pmm->list_lock);
uvm_gpu_chunk_set_in_eviction(chunk, false);
// In case we didn't manage to evict any chunks and hence the root is still
// unpinned, we need to put it back on an eviction list.
// chunk_update_lists_locked() will do that.
chunk_update_lists_locked(pmm, chunk);
uvm_spin_unlock(&pmm->list_lock);
do {
free_status = chunk_walk_pre_order(pmm, chunk, free_first_pinned_chunk_func, NULL);
} while (free_status == NV_ERR_MORE_DATA_AVAILABLE);
UVM_ASSERT(free_status == NV_OK);
(void)free_next_available_root_chunk(pmm, type);
return status;
}
static bool chunk_is_evictable(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
if (root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED)
return false;
if (chunk_is_root_chunk_pinned(pmm, chunk))
return false;
if (chunk_is_in_eviction(pmm, chunk))
return false;
// An evictable chunk's root should be on one of the eviction lists.
UVM_ASSERT(!list_empty(&root_chunk->chunk.list));
return true;
}
static void chunk_start_eviction(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
chunk = &root_chunk->chunk;
uvm_assert_spinlock_locked(&pmm->list_lock);
UVM_ASSERT(chunk_is_evictable(pmm, chunk));
UVM_ASSERT(!list_empty(&chunk->list));
list_del_init(&chunk->list);
uvm_gpu_chunk_set_in_eviction(chunk, true);
}
static void root_chunk_update_eviction_list(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, struct list_head *list)
{
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) == UVM_CHUNK_SIZE_MAX);
UVM_ASSERT(uvm_pmm_gpu_memory_type_is_user(chunk->type));
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
if (!chunk_is_root_chunk_pinned(pmm, chunk) && !chunk_is_in_eviction(pmm, chunk)) {
// An unpinned chunk not selected for eviction should be on one of the
// eviction lists.
UVM_ASSERT(!list_empty(&chunk->list));
list_move_tail(&chunk->list, list);
}
uvm_spin_unlock(&pmm->list_lock);
}
void uvm_pmm_gpu_mark_root_chunk_used(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
root_chunk_update_eviction_list(pmm, chunk, &pmm->root_chunks.va_block_used);
}
void uvm_pmm_gpu_mark_root_chunk_unused(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
root_chunk_update_eviction_list(pmm, chunk, &pmm->root_chunks.va_block_unused);
}
static uvm_gpu_root_chunk_t *pick_root_chunk_to_evict(uvm_pmm_gpu_t *pmm)
{
uvm_gpu_chunk_t *chunk;
uvm_spin_lock(&pmm->list_lock);
// Check if there are root chunks sitting in the free lists. Non-zero
// chunks are preferred.
chunk = list_first_chunk(find_free_list(pmm,
UVM_PMM_GPU_MEMORY_TYPE_USER,
UVM_CHUNK_SIZE_MAX,
UVM_PMM_LIST_NO_ZERO));
if (chunk)
UVM_ASSERT(!chunk->is_zero);
if (!chunk) {
chunk = list_first_chunk(find_free_list(pmm,
UVM_PMM_GPU_MEMORY_TYPE_USER,
UVM_CHUNK_SIZE_MAX,
UVM_PMM_LIST_ZERO));
if (chunk)
UVM_ASSERT(chunk->is_zero);
}
if (!chunk)
chunk = list_first_chunk(&pmm->root_chunks.va_block_unused);
// TODO: Bug 1765193: Move the chunks to the tail of the used list whenever
// they get mapped.
if (!chunk)
chunk = list_first_chunk(&pmm->root_chunks.va_block_used);
if (chunk)
chunk_start_eviction(pmm, chunk);
uvm_spin_unlock(&pmm->list_lock);
if (chunk)
return root_chunk_from_chunk(pmm, chunk);
return NULL;
}
static NV_STATUS pick_and_evict_root_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_context_t pmm_context,
uvm_gpu_chunk_t **out_chunk)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
uvm_gpu_chunk_t *chunk;
uvm_gpu_root_chunk_t *root_chunk;
UVM_ASSERT(uvm_parent_gpu_supports_eviction(gpu->parent));
uvm_assert_mutex_locked(&pmm->lock);
root_chunk = pick_root_chunk_to_evict(pmm);
if (!root_chunk)
return NV_ERR_NO_MEMORY;
status = evict_root_chunk(pmm, root_chunk, pmm_context);
if (status != NV_OK)
return status;
chunk = &root_chunk->chunk;
if (uvm_pmm_gpu_memory_type_is_kernel(type)) {
NvU32 flags = 0;
if (pmm_context == PMM_CONTEXT_PMA_EVICTION)
flags |= UVM_PMA_CALLED_FROM_PMA_EVICTION;
// Transitioning user memory type to kernel memory type requires pinning
// it so that PMA doesn't pick it for eviction.
status = nvUvmInterfacePmaPinPages(pmm->pma,
&chunk->address,
1,
UVM_CHUNK_SIZE_MAX,
flags);
if (status == NV_ERR_IN_USE) {
// Pinning can fail if some of the pages have been chosen for
// eviction already. In that case free the root chunk back to PMA
// and let the caller retry.
free_root_chunk(pmm, root_chunk, free_root_chunk_mode_from_pmm_context(pmm_context));
return status;
}
UVM_ASSERT_MSG(status == NV_OK,
"pmaPinPages(root_chunk=0x%llx) failed unexpectedly: %s\n",
chunk->address,
nvstatusToString(status));
// Unmap any indirect peer physical mappings for this chunk, since
// kernel chunks generally don't need them.
root_chunk_lock(pmm, root_chunk);
root_chunk_unmap_indirect_peers(pmm, root_chunk);
root_chunk_unlock(pmm, root_chunk);
uvm_spin_lock(&pmm->list_lock);
chunk->type = type;
uvm_spin_unlock(&pmm->list_lock);
}
*out_chunk = chunk;
return NV_OK;
}
static NV_STATUS pick_and_evict_root_chunk_retry(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_context_t pmm_context,
uvm_gpu_chunk_t **out_chunk)
{
NV_STATUS status;
// Eviction can fail if the chunk gets selected for PMA eviction at
// the same time. Keep retrying.
do {
status = pick_and_evict_root_chunk(pmm, type, pmm_context, out_chunk);
} while (status == NV_ERR_IN_USE);
return status;
}
static uvm_gpu_chunk_t *find_free_chunk_locked(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_list_zero_t zero_type)
{
struct list_head *free_list = find_free_list(pmm, type, chunk_size, zero_type);
uvm_gpu_chunk_t *tmp, *chunk;
uvm_assert_spinlock_locked(&pmm->list_lock);
list_for_each_entry_safe(chunk, tmp, free_list, list) {
if (zero_type == UVM_PMM_LIST_ZERO)
UVM_ASSERT(chunk->is_zero);
else
UVM_ASSERT(!chunk->is_zero);
if (chunk_is_in_eviction(pmm, chunk)) {
// Remove chunks that have been picked for eviction from the free
// lists. The eviction path does it with pin_free_chunks_func(),
// but there is a window between when a root chunk is chosen for
// eviction and all of its subchunks are removed from free lists.
list_del_init(&chunk->list);
}
else {
// Bug 2085760: When NUMA GPU is enabled, also check that the root
// chunk containing the candidate free chunk doesn't have any page
// escaped to another driver. If that is the case, just skip such
// chunk hoping that the page will eventually lose the extra
// reference.
// References can only be added when a virtual mapping to the page
// exists, so once a chunk in the free list has no elevated pages
// the chunk is safe to reuse.
if (!root_chunk_has_elevated_page(pmm, root_chunk_from_chunk(pmm, chunk)))
return chunk;
}
}
return NULL;
}
static uvm_gpu_chunk_t *claim_free_chunk(uvm_pmm_gpu_t *pmm, uvm_pmm_gpu_memory_type_t type, uvm_chunk_size_t chunk_size)
{
uvm_gpu_chunk_t *chunk;
uvm_spin_lock(&pmm->list_lock);
// Prefer zero free chunks as they are likely going to be used for a new
// allocation.
//
// TODO: Bug 2446832: Allow callers to request non-zero chunks in PMM
// allocation functions, so we don't waste zero chunks.
chunk = find_free_chunk_locked(pmm, type, chunk_size, UVM_PMM_LIST_ZERO);
if (!chunk)
chunk = find_free_chunk_locked(pmm, type, chunk_size, UVM_PMM_LIST_NO_ZERO);
if (!chunk)
goto out;
UVM_ASSERT_MSG(uvm_gpu_chunk_get_size(chunk) == chunk_size, "chunk size %u expected %u\n",
uvm_gpu_chunk_get_size(chunk), chunk_size);
UVM_ASSERT(chunk->type == type);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_FREE);
UVM_ASSERT(!chunk_is_in_eviction(pmm, chunk));
if (chunk->parent) {
UVM_ASSERT(chunk->parent->suballoc);
UVM_ASSERT(chunk->parent->type == type);
UVM_ASSERT(chunk->parent->suballoc->allocated < num_subchunks(chunk->parent));
chunk->parent->suballoc->allocated++;
}
chunk_pin(pmm, chunk);
chunk_update_lists_locked(pmm, chunk);
out:
uvm_spin_unlock(&pmm->list_lock);
return chunk;
}
static NV_STATUS alloc_or_evict_root_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunk_out)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
uvm_gpu_chunk_t *chunk;
status = alloc_root_chunk(pmm, type, flags, &chunk);
if (status != NV_OK) {
if ((flags & UVM_PMM_ALLOC_FLAGS_EVICT) && uvm_parent_gpu_supports_eviction(gpu->parent))
status = pick_and_evict_root_chunk_retry(pmm, type, PMM_CONTEXT_DEFAULT, chunk_out);
return status;
}
*chunk_out = chunk;
return status;
}
// Same as alloc_or_evit_root_chunk(), but without the PMM lock held.
static NV_STATUS alloc_or_evict_root_chunk_unlocked(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **chunk_out)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
uvm_gpu_chunk_t *chunk;
status = alloc_root_chunk(pmm, type, flags, &chunk);
if (status != NV_OK) {
if ((flags & UVM_PMM_ALLOC_FLAGS_EVICT) && uvm_parent_gpu_supports_eviction(gpu->parent)) {
uvm_mutex_lock(&pmm->lock);
status = pick_and_evict_root_chunk_retry(pmm, type, PMM_CONTEXT_DEFAULT, chunk_out);
uvm_mutex_unlock(&pmm->lock);
}
return status;
}
*chunk_out = chunk;
return status;
}
static NV_STATUS alloc_chunk_with_splits(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **out_chunk)
{
NV_STATUS status;
uvm_chunk_size_t cur_size;
uvm_gpu_chunk_t *chunk;
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[type];
uvm_assert_mutex_locked(&pmm->lock);
UVM_ASSERT(chunk_size != UVM_CHUNK_SIZE_MAX);
// Check for a free chunk again in case a different thread freed something
// up while this thread was waiting for the PMM lock.
chunk = claim_free_chunk(pmm, type, chunk_size);
if (chunk) {
// A free chunk was claimed, return immediately.
UVM_ASSERT(check_chunk(pmm, chunk));
*out_chunk = chunk;
return NV_OK;
}
cur_size = chunk_size;
// Look for a bigger free chunk that can be split
for_each_chunk_size_from(cur_size, chunk_sizes) {
chunk = claim_free_chunk(pmm, type, cur_size);
if (chunk)
break;
}
if (unlikely(!chunk)) {
status = alloc_or_evict_root_chunk(pmm, type, flags, &chunk);
if (status != NV_OK)
return status;
cur_size = UVM_CHUNK_SIZE_MAX;
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) == cur_size);
}
UVM_ASSERT(chunk);
for_each_chunk_size_rev_from(cur_size, chunk_sizes) {
NvU32 i;
uvm_gpu_chunk_t *parent;
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) == cur_size);
UVM_ASSERT(chunk->type == type);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
if (chunk->parent) {
UVM_ASSERT(chunk->parent->suballoc);
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk->parent) == uvm_chunk_find_next_size(chunk_sizes, cur_size));
UVM_ASSERT(chunk->parent->type == type);
UVM_ASSERT_MSG(chunk->parent->suballoc->allocated <= num_subchunks(chunk->parent), "allocated %u num %u\n",
chunk->parent->suballoc->allocated, num_subchunks(chunk->parent));
}
if (cur_size == chunk_size) {
*out_chunk = chunk;
return NV_OK;
}
status = split_gpu_chunk(pmm, chunk);
if (status != NV_OK) {
free_chunk_with_merges(pmm, chunk);
return status;
}
parent = chunk;
// Use the first subchunk for further splitting, if needed.
chunk = parent->suballoc->subchunks[0];
// And add the rest to the free list
uvm_spin_lock(&pmm->list_lock);
for (i = 1; i < num_subchunks(parent); ++i)
chunk_free_locked(pmm, parent->suballoc->subchunks[i]);
uvm_spin_unlock(&pmm->list_lock);
}
UVM_PANIC();
}
// Allocates a single chunk of a given size. If needed, splits a chunk of
// bigger size or, if that is not possible, allocates from PMA or evicts.
NV_STATUS alloc_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **out_chunk)
{
NV_STATUS status;
uvm_gpu_chunk_t *chunk;
chunk = claim_free_chunk(pmm, type, chunk_size);
if (chunk) {
// A free chunk could be claimed, we are done.
goto out;
}
if (chunk_size == UVM_CHUNK_SIZE_MAX) {
// For chunks of root chunk size we won't be doing any splitting so we
// can just directly try allocating without holding the PMM lock. If
// eviction is necessary, the lock will be acquired internally.
status = alloc_or_evict_root_chunk_unlocked(pmm, type, flags, &chunk);
if (status != NV_OK)
return status;
goto out;
}
// We didn't find a free chunk and we will require splits so acquire the
// PMM lock.
uvm_mutex_lock(&pmm->lock);
status = alloc_chunk_with_splits(pmm, type, chunk_size, flags, &chunk);
uvm_mutex_unlock(&pmm->lock);
if (status != NV_OK) {
(void)free_next_available_root_chunk(pmm, type);
return status;
}
out:
*out_chunk = chunk;
return NV_OK;
}
// Initialize the given root chunk. If the initial state is
// UVM_PMM_GPU_CHUNK_STATE_FREE, the chunk is added to the corresponding free
// list.
//
// PMA lock must be held by the caller
static void init_root_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_gpu_root_chunk_t *root_chunk,
uvm_pmm_gpu_chunk_state_t initial_state,
bool is_zero)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
uvm_assert_rwsem_locked(&pmm->pma_lock);
root_chunk_lock(pmm, root_chunk);
uvm_tracker_init(&root_chunk->tracker);
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED,
"Address 0x%llx state %s GPU %s\n",
chunk->address,
uvm_pmm_gpu_chunk_state_string(chunk->state),
uvm_gpu_name(gpu));
UVM_ASSERT(chunk->parent == NULL);
UVM_ASSERT(chunk->suballoc == NULL);
UVM_ASSERT(chunk->va_block == NULL);
UVM_ASSERT(chunk->va_block_page_index == PAGES_PER_UVM_VA_BLOCK);
UVM_ASSERT(list_empty(&chunk->list));
UVM_ASSERT(uvm_gpu_chunk_get_size(chunk) == UVM_CHUNK_SIZE_MAX);
UVM_ASSERT(!root_chunk_has_elevated_page(pmm, root_chunk));
UVM_ASSERT(initial_state == UVM_PMM_GPU_CHUNK_STATE_FREE ||
initial_state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
chunk->type = type;
chunk->state = initial_state;
chunk->is_zero = is_zero;
chunk_update_lists_locked(pmm, chunk);
uvm_spin_unlock(&pmm->list_lock);
root_chunk_unlock(pmm, root_chunk);
}
NV_STATUS alloc_root_chunk(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_pmm_alloc_flags_t flags,
uvm_gpu_chunk_t **out_chunk)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NV_STATUS status;
UvmPmaAllocationOptions options = {0};
NvU32 num_chunks;
NvU32 i;
bool used_kmem_cache = false;
UvmGpuPointer pa;
UvmGpuPointer *pas;
// TODO: Bug 2444368: On P9 systems, PMA scrubbing is very slow. For now,
// zero the chunk within UVM. Re-evaluate this condition once PMA scrubbing
// is improved.
//
// TODO: Bug 2446832: Most (all?) kernel chunks don't require scrubbing.
// Also, user pages that are about to be overwritten, don't need to be
// zeroed, either. Add an interface to uvm_pmm_gpu_alloc for callers to
// specify when they don't need zeroed pages.
const bool skip_pma_scrubbing = gpu->mem_info.numa.enabled;
UVM_ASSERT(uvm_pmm_gpu_memory_type_is_user(type) || uvm_pmm_gpu_memory_type_is_kernel(type));
options.flags = UVM_PMA_ALLOCATE_DONT_EVICT;
if (uvm_pmm_gpu_memory_type_is_kernel(type) || !gpu_supports_pma_eviction(gpu))
options.flags |= UVM_PMA_ALLOCATE_PINNED;
if (skip_pma_scrubbing)
options.flags |= UVM_PMA_ALLOCATE_NO_ZERO;
// TODO: Bug 200480500: Batching is currently disabled on P9. Re-enable
// when the performance of best-effort allocations is verified.
if (gpu->mem_info.numa.enabled)
flags |= UVM_PMM_ALLOC_FLAGS_DONT_BATCH;
// When the Confidential Computing feature is enabled, allocate GPU memory
// in the protected region, unless specified otherwise.
if (g_uvm_global.conf_computing_enabled && memory_type_is_protected(type))
options.flags |= UVM_PMA_ALLOCATE_PROTECTED_REGION;
if (!gpu->parent->rm_info.isSimulated &&
!(options.flags & UVM_PMA_ALLOCATE_PINNED) &&
!(flags & UVM_PMM_ALLOC_FLAGS_DONT_BATCH)) {
num_chunks = 1 << uvm_perf_pma_batch_nonpinned_order;
// Allocate a batch of root chunks in order to reduce the number of
// calls to PMA. The first one is returned as allocated, the rest are
// added to the corresponding free list.
pas = kmem_cache_alloc(g_pma_address_batch_cache_ref.cache, NV_UVM_GFP_FLAGS);
if (!pas)
return NV_ERR_NO_MEMORY;
// Make the allocation best-effort to avoid retries if the whole batch
// cannot be allocated.
options.flags |= UVM_PMA_ALLOCATE_ALLOW_PARTIAL;
used_kmem_cache = true;
}
else {
num_chunks = 1;
pas = &pa;
}
// Acquire the PMA lock for read so that uvm_pmm_gpu_pma_evict_range() can
// flush out any pending allocs.
uvm_down_read(&pmm->pma_lock);
status = nvUvmInterfacePmaAllocPages(pmm->pma, num_chunks, UVM_CHUNK_SIZE_MAX, &options, pas);
if (status != NV_OK)
goto exit_unlock;
// Batched allocations are best-effort. Therefore, we need to adjust the
// number of allocated chunks.
if (used_kmem_cache) {
UVM_ASSERT(options.numPagesAllocated <= num_chunks);
UVM_ASSERT(options.numPagesAllocated > 0);
num_chunks = options.numPagesAllocated;
}
for (i = 0; i < num_chunks; ++i) {
uvm_pmm_gpu_chunk_state_t initial_state;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_address(pmm, pas[i]);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
if (i == 0) {
initial_state = UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED;
*out_chunk = chunk;
}
else {
initial_state = UVM_PMM_GPU_CHUNK_STATE_FREE;
}
UVM_ASSERT_MSG(IS_ALIGNED(pas[i], UVM_CHUNK_SIZE_MAX), "Address 0x%llx\n", pas[i]);
UVM_ASSERT(chunk->address == pas[i]);
init_root_chunk(pmm,
type,
root_chunk,
initial_state,
!!(options.resultFlags & UVM_PMA_ALLOCATE_RESULT_IS_ZERO));
}
exit_unlock:
uvm_up_read(&pmm->pma_lock);
if (used_kmem_cache)
kmem_cache_free(g_pma_address_batch_cache_ref.cache, pas);
return status;
}
void free_root_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_root_chunk_t *root_chunk, free_root_chunk_mode_t free_mode)
{
NV_STATUS status;
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
NvU32 flags = 0;
// Acquire the PMA lock for read so that uvm_pmm_gpu_pma_evict_range() can
// flush out any pending frees.
uvm_down_read(&pmm->pma_lock);
root_chunk_lock(pmm, root_chunk);
root_chunk_unmap_indirect_peers(pmm, root_chunk);
status = uvm_tracker_wait_deinit(&root_chunk->tracker);
if (status != NV_OK) {
// TODO: Bug 1766184: Handle RC/ECC. For now just go ahead and free the chunk anyway.
UVM_ASSERT(uvm_global_get_status() != NV_OK);
}
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED,
"Address 0x%llx state %s GPU %s\n",
chunk->address,
uvm_pmm_gpu_chunk_state_string(chunk->state),
uvm_gpu_name(gpu));
UVM_ASSERT(list_empty(&chunk->list));
chunk_unpin(pmm, chunk, UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED);
uvm_spin_unlock(&pmm->list_lock);
root_chunk_unlock(pmm, root_chunk);
if (free_mode == FREE_ROOT_CHUNK_MODE_SKIP_PMA_FREE) {
uvm_up_read(&pmm->pma_lock);
return;
}
if (free_mode == FREE_ROOT_CHUNK_MODE_PMA_EVICTION)
flags |= UVM_PMA_CALLED_FROM_PMA_EVICTION;
if (chunk->is_zero)
flags |= UVM_PMA_FREE_IS_ZERO;
nvUvmInterfacePmaFreePages(pmm->pma, &chunk->address, 1, UVM_CHUNK_SIZE_MAX, flags);
uvm_up_read(&pmm->pma_lock);
}
// Splits the input chunk into subchunks of the next size down. The chunk state
// can be UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED or
// UVM_PMM_GPU_CHUNK_STATE_ALLOCATED.
//
// UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED: This is a split for allocation.
//
// UVM_PMM_GPU_CHUNK_STATE_ALLOCATED: This is an in-place split. The new chunks
// are also marked allocated and they inherit the reverse map from the original.
//
// The PMM lock must be held when calling this function.
NV_STATUS split_gpu_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_chunk_size_t chunk_size = uvm_gpu_chunk_get_size(chunk);
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[chunk->type];
uvm_chunk_size_t subchunk_size;
size_t cache_idx, num_sub;
int i;
NV_STATUS status;
uvm_pmm_gpu_chunk_suballoc_t *suballoc;
uvm_gpu_chunk_t *subchunk;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_mutex_locked(&pmm->lock);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
subchunk_size = uvm_chunk_find_prev_size(chunk_sizes, chunk_size);
UVM_ASSERT(subchunk_size != UVM_CHUNK_SIZE_INVALID);
num_sub = chunk_size / subchunk_size;
cache_idx = ilog2(num_sub);
UVM_ASSERT(chunk_split_cache[cache_idx].cache != NULL);
suballoc = nv_kmem_cache_zalloc(chunk_split_cache[cache_idx].cache, NV_UVM_GFP_FLAGS);
if (suballoc == NULL)
return NV_ERR_NO_MEMORY;
for (i = 0; i < num_sub; i++) {
// If requested, inject a failure on the last subchunk
if (unlikely(chunk->inject_split_error) && i == num_sub - 1) {
status = NV_ERR_NO_MEMORY;
goto cleanup;
}
subchunk = nv_kmem_cache_zalloc(CHUNK_CACHE, NV_UVM_GFP_FLAGS);
if (!subchunk) {
status = NV_ERR_NO_MEMORY;
goto cleanup;
}
suballoc->subchunks[i] = subchunk;
subchunk->gpu_index = chunk->gpu_index;
subchunk->address = chunk->address + i * subchunk_size;
subchunk->type = chunk->type;
uvm_gpu_chunk_set_size(subchunk, subchunk_size);
subchunk->parent = chunk;
subchunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
subchunk->is_zero = chunk->is_zero;
INIT_LIST_HEAD(&subchunk->list);
// The child inherits the parent's state.
subchunk->state = chunk->state;
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
UVM_ASSERT(chunk->va_block);
uvm_assert_mutex_locked(&chunk->va_block->lock);
subchunk->va_block = chunk->va_block;
subchunk->va_block_page_index = chunk->va_block_page_index + (i * subchunk_size) / PAGE_SIZE;
subchunk->is_referenced = chunk->is_referenced;
}
}
// We're splitting an allocated or pinned chunk in-place.
suballoc->allocated = num_sub;
// Now that all of the subchunk state has been initialized, transition the
// parent into the split state under the list lock.
uvm_spin_lock(&pmm->list_lock);
chunk->suballoc = suballoc;
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
chunk->va_block = NULL;
chunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
chunk->is_referenced = false;
}
else if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED) {
// -1 for the parent chunk that is going to transition into the split state.
root_chunk->chunk.suballoc->pinned_leaf_chunks += num_sub - 1;
// When a pinned root chunk gets split, the count starts at 0 not
// accounting for the root chunk itself so add the 1 back.
if (chunk_is_root_chunk(chunk))
root_chunk->chunk.suballoc->pinned_leaf_chunks += 1;
}
chunk->state = UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT;
uvm_spin_unlock(&pmm->list_lock);
return NV_OK;
cleanup:
for (i = 0; i < num_sub; i++) {
if (suballoc->subchunks[i] == NULL)
break;
kmem_cache_free(CHUNK_CACHE, suballoc->subchunks[i]);
}
kmem_cache_free(chunk_split_cache[cache_idx].cache, suballoc);
return status;
}
// Sanity check the chunk, the chunk's tree, and any mappings to the chunk. The
// chunk must be newly-freed or newly-allocated, but its state may not reflect
// that yet.
//
// This function always returns true so it can be called from an assert macro.
static bool check_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[chunk->type];
uvm_gpu_chunk_t *parent = chunk->parent;
uvm_chunk_size_t chunk_size = uvm_gpu_chunk_get_size(chunk);
uvm_chunk_size_t parent_size;
UVM_ASSERT(chunk_size & chunk_sizes);
UVM_ASSERT(IS_ALIGNED(chunk->address, chunk_size));
UVM_ASSERT(uvm_id_equal(uvm_gpu_id_from_index(chunk->gpu_index), gpu->id));
// See pmm_squash_memory_type().
if (!g_uvm_global.conf_computing_enabled)
UVM_ASSERT((chunk->type == UVM_PMM_GPU_MEMORY_TYPE_USER) || (chunk->type == UVM_PMM_GPU_MEMORY_TYPE_KERNEL));
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT)
UVM_ASSERT(chunk_size > uvm_chunk_find_first_size(chunk_sizes));
if (parent) {
UVM_ASSERT(parent->type == chunk->type);
parent_size = uvm_gpu_chunk_get_size(parent);
UVM_ASSERT(uvm_chunk_find_next_size(chunk_sizes, chunk_size) == parent_size);
UVM_ASSERT(parent_size <= uvm_chunk_find_last_size(chunk_sizes));
UVM_ASSERT(parent->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
UVM_ASSERT(parent->suballoc);
UVM_ASSERT(parent->suballoc->allocated > 0);
UVM_ASSERT(parent->suballoc->allocated <= num_subchunks(parent));
UVM_ASSERT(parent->address <= chunk->address);
UVM_ASSERT(chunk->address < parent->address + parent_size);
}
else {
UVM_ASSERT(chunk_size == uvm_chunk_find_last_size(chunk_sizes));
}
if (uvm_pmm_sysmem_mappings_indirect_supported()) {
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_gpu_id_t other_gpu_id;
root_chunk_lock(pmm, root_chunk);
// See root_chunk_unmap_indirect_peers for the usage of uvm_gpu_get
for_each_gpu_id_in_mask(other_gpu_id, &root_chunk->indirect_peers_mapped) {
uvm_gpu_t *other_gpu = uvm_gpu_get(other_gpu_id);
NvU64 peer_addr = uvm_pmm_gpu_indirect_peer_addr(pmm, chunk, other_gpu);
uvm_reverse_map_t reverse_map;
size_t num_mappings;
num_mappings = uvm_pmm_sysmem_mappings_dma_to_virt(&other_gpu->pmm_reverse_sysmem_mappings,
peer_addr,
uvm_gpu_chunk_get_size(chunk),
&reverse_map,
1);
UVM_ASSERT(num_mappings == 0);
}
root_chunk_unlock(pmm, root_chunk);
}
return true;
}
static bool chunk_is_last_allocated_child(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_assert_spinlock_locked(&pmm->list_lock);
if (!chunk->parent)
return false;
return chunk->parent->suballoc->allocated == 1;
}
static void chunk_free_locked(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_chunk(pmm, chunk);
uvm_assert_spinlock_locked(&pmm->list_lock);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
if (root_chunk->chunk.in_eviction) {
// A root chunk with pinned subchunks would never be picked for eviction
// so this one has to be in the allocated state. Pin it and let the
// evicting thread pick it up.
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
UVM_ASSERT(chunk->va_block != NULL);
UVM_ASSERT(chunk->va_block_page_index != PAGES_PER_UVM_VA_BLOCK);
UVM_ASSERT(list_empty(&chunk->list));
chunk->va_block = NULL;
chunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
chunk->is_zero = false;
chunk_pin(pmm, chunk);
return;
}
if (chunk->parent) {
UVM_ASSERT(chunk->parent->suballoc->allocated > 0);
--chunk->parent->suballoc->allocated;
if (chunk->parent->suballoc->allocated == 0) {
// Freeing the last subchunk should trigger a merge and the PMM
// mutex is required to perform it.
uvm_assert_mutex_locked(&pmm->lock);
}
}
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED) {
chunk_unpin(pmm, chunk, UVM_PMM_GPU_CHUNK_STATE_FREE);
}
else {
chunk->state = UVM_PMM_GPU_CHUNK_STATE_FREE;
chunk->va_block = NULL;
}
chunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
chunk->is_zero = false;
chunk_update_lists_locked(pmm, chunk);
}
static bool try_chunk_free(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
bool freed = false;
uvm_spin_lock(&pmm->list_lock);
UVM_ASSERT(chunk->state != UVM_PMM_GPU_CHUNK_STATE_ALLOCATED || !chunk->is_referenced);
chunk->inject_split_error = false;
// Chunks that are the last allocated child need to trigger a merge and are
// handled by free_or_prepare_for_merge().
if (!chunk_is_last_allocated_child(pmm, chunk)) {
chunk_free_locked(pmm, chunk);
freed = true;
}
uvm_spin_unlock(&pmm->list_lock);
return freed;
}
// Return NULL if the chunk could be freed immediately. Otherwise, if the chunk
// was the last allocated child, return the parent chunk to be merged with all
// of its children taken off the free list in TEMP_PINNED state.
static uvm_gpu_chunk_t *free_or_prepare_for_merge(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_gpu_chunk_t *parent = NULL;
NvU32 i;
uvm_assert_mutex_locked(&pmm->lock);
if (!chunk->parent) {
bool freed = try_chunk_free(pmm, chunk);
// Freeing a root chunk should never fail
UVM_ASSERT(freed);
return NULL;
}
uvm_spin_lock(&pmm->list_lock);
if (chunk_is_last_allocated_child(pmm, chunk))
parent = chunk->parent;
chunk_free_locked(pmm, chunk);
if (parent == NULL) {
UVM_ASSERT(chunk->parent->suballoc->allocated != 0);
goto done;
}
UVM_ASSERT(chunk->parent->suballoc->allocated == 0);
// Pin all the subchunks to prepare them for being merged.
for (i = 0; i < num_subchunks(chunk->parent); ++i) {
uvm_gpu_chunk_t *subchunk = chunk->parent->suballoc->subchunks[i];
UVM_ASSERT(subchunk->state == UVM_PMM_GPU_CHUNK_STATE_FREE);
list_del_init(&subchunk->list);
subchunk->state = UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED;
}
root_chunk_from_chunk(pmm, chunk)->chunk.suballoc->pinned_leaf_chunks += num_subchunks(chunk->parent);
chunk->parent->suballoc->allocated = num_subchunks(chunk->parent);
parent = chunk->parent;
done:
uvm_spin_unlock(&pmm->list_lock);
return parent;
}
static void free_chunk_with_merges(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
uvm_assert_mutex_locked(&pmm->lock);
while (1) {
// When called from the free_chunk path this check_chunk is redundant,
// but we have some PMM-internal direct calls of this function.
UVM_ASSERT(check_chunk(pmm, chunk));
chunk = free_or_prepare_for_merge(pmm, chunk);
if (!chunk)
break;
merge_gpu_chunk(pmm, chunk);
}
}
// Mark the chunk as free and put it on the free list. If this is a suballocated
// chunk and the parent has no more allocated chunks, the parent is freed and so
// on up the tree.
static void free_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
bool try_free = true;
const bool is_root = chunk_is_root_chunk(chunk);
const uvm_pmm_gpu_memory_type_t type = chunk->type;
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED ||
chunk->state == UVM_PMM_GPU_CHUNK_STATE_TEMP_PINNED);
UVM_ASSERT(check_chunk(pmm, chunk));
if (try_chunk_free(pmm, chunk)) {
try_free = is_root;
}
else {
// Freeing a chunk can only fail if it requires merging. Take the PMM lock
// and free it with merges supported.
uvm_mutex_lock(&pmm->lock);
free_chunk_with_merges(pmm, chunk);
uvm_mutex_unlock(&pmm->lock);
}
// Once try_chunk_free succeeds or free_chunk_with_merges returns, it's no
// longer safe to access chunk in general. All you know is that the
// chunk you freed was put on the free list by the call. Since the spin lock
// has been dropped, any other thread could have come in and allocated the
// chunk in the meantime. Therefore, this next step just looks for a
// root chunk to free, without assuming that one is actually there.
if (try_free)
(void)free_next_available_root_chunk(pmm, type);
}
// Finds and frees the next root chunk of the given type (if any) that can be
// freed. Returns true if a root chunk was freed, or false otherwise.
bool free_next_available_root_chunk(uvm_pmm_gpu_t *pmm, uvm_pmm_gpu_memory_type_t type)
{
uvm_gpu_chunk_t *result;
UVM_ASSERT(uvm_chunk_find_last_size(pmm->chunk_sizes[type]) == UVM_CHUNK_SIZE_MAX);
uvm_spin_lock(&pmm->list_lock);
// Prefer non-zero free chunk as memory is about to be released to PMA
result = list_first_chunk(find_free_list(pmm, type, UVM_CHUNK_SIZE_MAX, UVM_PMM_LIST_NO_ZERO));
if (result)
UVM_ASSERT(!result->is_zero);
if (!result) {
result = list_first_chunk(find_free_list(pmm, type, UVM_CHUNK_SIZE_MAX, UVM_PMM_LIST_ZERO));
if (result)
UVM_ASSERT(result->is_zero);
}
if (result != NULL) {
list_del_init(&result->list);
UVM_ASSERT(result->state == UVM_PMM_GPU_CHUNK_STATE_FREE);
UVM_ASSERT(uvm_gpu_chunk_get_size(result) == UVM_CHUNK_SIZE_MAX);
UVM_ASSERT(result->type == type);
// The chunk has been freed and removed from the free list so it
// can't get allocated again, but it could be targeted for eviction
// by physical address. Pin it temporarily to protect the chunk from
// eviction between dropping the list lock and taking the root chunk
// lock.
chunk_pin(pmm, result);
}
uvm_spin_unlock(&pmm->list_lock);
if (result != NULL) {
free_root_chunk(pmm, root_chunk_from_chunk(pmm, result), FREE_ROOT_CHUNK_MODE_DEFAULT);
return true;
}
return false;
}
// Get free list for the given chunk size and type
struct list_head *find_free_list(uvm_pmm_gpu_t *pmm,
uvm_pmm_gpu_memory_type_t type,
uvm_chunk_size_t chunk_size,
uvm_pmm_list_zero_t zero_type)
{
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[type];
size_t idx = hweight_long(chunk_sizes & (chunk_size - 1));
UVM_ASSERT(is_power_of_2(chunk_size));
UVM_ASSERT_MSG(chunk_size & chunk_sizes, "chunk size 0x%x chunk sizes 0x%x\n", chunk_size, chunk_sizes);
return &pmm->free_list[type][idx][zero_type];
}
struct list_head *find_free_list_chunk(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
return find_free_list(pmm,
chunk->type,
uvm_gpu_chunk_get_size(chunk),
chunk->is_zero? UVM_PMM_LIST_ZERO : UVM_PMM_LIST_NO_ZERO);
}
static bool uvm_pmm_should_inject_pma_eviction_error(uvm_pmm_gpu_t *pmm)
{
uvm_assert_mutex_locked(&pmm->lock);
if (unlikely(pmm->inject_pma_evict_error_after_num_chunks > 0))
return --pmm->inject_pma_evict_error_after_num_chunks == 0;
return false;
}
// See the documentation of pmaEvictPagesCb_t in pma.h for details of the
// expected semantics.
static NV_STATUS uvm_pmm_gpu_pma_evict_pages(void *void_pmm,
NvU32 page_size,
NvU64 *pages,
NvU32 num_pages_to_evict,
NvU64 phys_start,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
NV_STATUS status;
uvm_pmm_gpu_t *pmm = (uvm_pmm_gpu_t *)void_pmm;
uvm_gpu_chunk_t *chunk;
NvU64 num_pages_evicted_so_far = 0;
NvU64 num_pages_left_to_evict = num_pages_to_evict;
const NvU64 pages_per_chunk = UVM_CHUNK_SIZE_MAX / page_size;
bool all_pages_are_zero = true;
UVM_ASSERT(IS_ALIGNED(UVM_CHUNK_SIZE_MAX, page_size));
UVM_ASSERT(UVM_CHUNK_SIZE_MAX >= page_size);
// Currently, when the Confidential Computing feature is enabled, the
// entirety of vidmem is protected.
if (g_uvm_global.conf_computing_enabled && (mem_type != UVM_PMA_GPU_MEMORY_TYPE_PROTECTED))
return NV_ERR_INVALID_ARGUMENT;
while (num_pages_left_to_evict > 0) {
uvm_gpu_root_chunk_t *root_chunk;
uvm_page_index_t page_index;
NvU64 pages_this_time = min(pages_per_chunk, num_pages_left_to_evict);
uvm_mutex_lock(&pmm->lock);
if (uvm_pmm_should_inject_pma_eviction_error(pmm)) {
status = NV_ERR_NO_MEMORY;
}
else {
status = pick_and_evict_root_chunk_retry(pmm,
UVM_PMM_GPU_MEMORY_TYPE_KERNEL,
PMM_CONTEXT_PMA_EVICTION,
&chunk);
}
uvm_mutex_unlock(&pmm->lock);
// TODO: Bug 1795559: Consider waiting for any pinned user allocations
// to be unpinned.
if (status != NV_OK)
goto error;
root_chunk = root_chunk_from_chunk(pmm, chunk);
if (chunk->address < phys_start || chunk->address + UVM_CHUNK_SIZE_MAX > phys_end) {
// If the chunk we get is outside of the physical range requested,
// just give up and return an error.
//
// TODO: Bug 1795559: PMA pre-populates the array of pages with a
// list of candidates that were unpinned before triggering eviction.
// If they were marked for eviction, we could fall back to evicting
// those instead and be sure that it succeeds.
free_root_chunk(pmm, root_chunk, FREE_ROOT_CHUNK_MODE_PMA_EVICTION);
status = NV_ERR_NO_MEMORY;
goto error;
}
all_pages_are_zero = all_pages_are_zero && chunk->is_zero;
// Free the root chunk as far as PMM's state is concerned, but skip the
// free back to PMA as that would make it available for other PMA
// allocations.
free_root_chunk(pmm, root_chunk, FREE_ROOT_CHUNK_MODE_SKIP_PMA_FREE);
for (page_index = 0; page_index < pages_this_time; page_index++)
pages[num_pages_evicted_so_far++] = chunk->address + page_index * page_size;
num_pages_left_to_evict -= pages_this_time;
// If we didn't use a whole root chunk, free its tail back to PMA
// directly.
if (pages_this_time != pages_per_chunk) {
NvU64 address = chunk->address + pages_this_time * page_size;
NvU64 num_pages = pages_per_chunk - pages_this_time;
NvU32 free_flags = UVM_PMA_CALLED_FROM_PMA_EVICTION | UVM_PMA_ALLOCATE_CONTIGUOUS;
if (chunk->is_zero)
free_flags |= UVM_PMA_FREE_IS_ZERO;
// Free the whole tail as a contiguous allocation
nvUvmInterfacePmaFreePages(pmm->pma, &address, num_pages, page_size, free_flags);
}
}
return NV_OK;
error:
// On error, free all of the evicted pages back to PMA directly.
if (num_pages_evicted_so_far > 0) {
NvU32 free_flags = UVM_PMA_CALLED_FROM_PMA_EVICTION;
if (all_pages_are_zero)
free_flags |= UVM_PMA_FREE_IS_ZERO;
nvUvmInterfacePmaFreePages(pmm->pma, pages, num_pages_evicted_so_far, page_size, free_flags);
}
return status;
}
static NV_STATUS uvm_pmm_gpu_pma_evict_pages_wrapper(void *void_pmm,
NvU32 page_size,
NvU64 *pages,
NvU32 num_pages_to_evict,
NvU64 phys_start,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
NV_STATUS status;
// RM invokes the eviction callbacks with its API lock held, but not its GPU
// lock.
uvm_record_lock_rm_api();
status = uvm_pmm_gpu_pma_evict_pages(void_pmm, page_size, pages, num_pages_to_evict, phys_start, phys_end, mem_type);
uvm_record_unlock_rm_api();
return status;
}
static NV_STATUS uvm_pmm_gpu_pma_evict_pages_wrapper_entry(void *void_pmm,
NvU64 page_size,
NvU64 *pages,
NvU32 num_pages_to_evict,
NvU64 phys_start,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
UVM_ENTRY_RET(uvm_pmm_gpu_pma_evict_pages_wrapper(void_pmm,
page_size,
pages,
num_pages_to_evict,
phys_start,
phys_end,
mem_type));
}
// See the documentation of pmaEvictRangeCb_t in pma.h for details of the
// expected semantics.
static NV_STATUS uvm_pmm_gpu_pma_evict_range(void *void_pmm,
NvU64 phys_begin,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
NV_STATUS status;
uvm_pmm_gpu_t *pmm = (uvm_pmm_gpu_t *)void_pmm;
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
NvU64 address = UVM_ALIGN_DOWN(phys_begin, UVM_CHUNK_SIZE_MAX);
UVM_ASSERT_MSG(phys_begin <= phys_end, "range [0x%llx, 0x%llx]\n", phys_begin, phys_end);
UVM_ASSERT_MSG(phys_end <= gpu->mem_info.max_allocatable_address,
"range [0x%llx, 0x%llx]\n",
phys_begin,
phys_end);
// Make sure that all pending allocations, that could have started before
// the eviction callback was called, are done. This is required to guarantee
// that any address that, PMA thinks, is owned by UVM has been indeed recorded
// in PMM's state. Taking the pma_lock in write mode will make sure all
// readers (pending allocations and frees) are done, but will also
// unnecessarily stop new allocations from starting until it's released.
// TODO: Bug 1795559: SRCU would likely be better for this type of
// synchronization, but that's GPL. Figure out whether we can do anything
// better easily.
uvm_down_write(&pmm->pma_lock);
uvm_up_write(&pmm->pma_lock);
for (; address <= phys_end; address += UVM_CHUNK_SIZE_MAX) {
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_address(pmm, address);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
bool eviction_started = false;
uvm_spin_loop_t spin;
bool should_inject_error;
uvm_spin_loop_init(&spin);
// Wait until we can start eviction or the chunk is returned to PMA
do {
uvm_spin_lock(&pmm->list_lock);
if (chunk->state != UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED) {
UVM_ASSERT(uvm_pmm_gpu_memory_type_is_user(chunk->type));
if (chunk_is_evictable(pmm, chunk)) {
chunk_start_eviction(pmm, chunk);
eviction_started = true;
}
}
uvm_spin_unlock(&pmm->list_lock);
// TODO: Bug 1795559: Replace this with a wait queue.
if (UVM_SPIN_LOOP(&spin) == NV_ERR_TIMEOUT_RETRY) {
UVM_ERR_PRINT("Stuck waiting for root chunk 0x%llx to be unpinned, giving up\n", chunk->address);
return NV_ERR_NO_MEMORY;
}
} while (!eviction_started && chunk->state != UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED);
// The eviction callback gets called with a physical range that might be
// only partially allocated by UVM. Skip the chunks that UVM doesn't own.
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED)
continue;
uvm_mutex_lock(&pmm->lock);
status = evict_root_chunk(pmm, root_chunk, PMM_CONTEXT_PMA_EVICTION);
should_inject_error = uvm_pmm_should_inject_pma_eviction_error(pmm);
uvm_mutex_unlock(&pmm->lock);
if (status != NV_OK)
return status;
free_root_chunk(pmm, root_chunk, FREE_ROOT_CHUNK_MODE_PMA_EVICTION);
if (should_inject_error)
return NV_ERR_NO_MEMORY;
}
// Make sure that all pending frees for chunks that the eviction above could
// have observed as PMA owned are done. This is required to guarantee that
// any address that, PMM thinks, is owned by PMA, has been actually freed
// back to PMA. Taking the pma_lock in write mode will make sure all
// readers (pending frees) are done, but will also unnecessarily stop new
// allocations and frees from starting until it's released.
uvm_down_write(&pmm->pma_lock);
uvm_up_write(&pmm->pma_lock);
return NV_OK;
}
static NV_STATUS uvm_pmm_gpu_pma_evict_range_wrapper(void *void_pmm,
NvU64 phys_begin,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
NV_STATUS status;
// RM invokes the eviction callbacks with its API lock held, but not its GPU
// lock.
uvm_record_lock_rm_api();
status = uvm_pmm_gpu_pma_evict_range(void_pmm, phys_begin, phys_end, mem_type);
uvm_record_unlock_rm_api();
return status;
}
static NV_STATUS uvm_pmm_gpu_pma_evict_range_wrapper_entry(void *void_pmm,
NvU64 phys_begin,
NvU64 phys_end,
UVM_PMA_GPU_MEMORY_TYPE mem_type)
{
UVM_ENTRY_RET(uvm_pmm_gpu_pma_evict_range_wrapper(void_pmm, phys_begin, phys_end, mem_type));
}
static void deinit_chunk_split_cache(uvm_pmm_gpu_t *pmm)
{
unsigned long subchunk_count_log2;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
for_each_set_bit(subchunk_count_log2, pmm->chunk_split_cache_initialized, UVM_PMM_CHUNK_SPLIT_CACHE_SIZES) {
UVM_ASSERT(chunk_split_cache[subchunk_count_log2].refcount > 0);
UVM_ASSERT(chunk_split_cache[subchunk_count_log2].cache);
if (--chunk_split_cache[subchunk_count_log2].refcount == 0)
kmem_cache_destroy_safe(&chunk_split_cache[subchunk_count_log2].cache);
__clear_bit(subchunk_count_log2, pmm->chunk_split_cache_initialized);
}
}
static NV_STATUS init_chunk_split_cache_level(uvm_pmm_gpu_t *pmm, size_t level)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (!test_bit(level, pmm->chunk_split_cache_initialized)) {
if (!chunk_split_cache[level].cache) {
size_t size;
size_t align;
if (level == 0) {
strncpy(chunk_split_cache[level].name, "uvm_gpu_chunk_t", sizeof(chunk_split_cache[level].name) - 1);
size = sizeof(uvm_gpu_chunk_t);
align = __alignof__(uvm_gpu_chunk_t);
} else {
snprintf(chunk_split_cache[level].name,
sizeof(chunk_split_cache[level].name),
"uvm_gpu_chunk_%u", (unsigned)level);
size = sizeof(uvm_pmm_gpu_chunk_suballoc_t) + (sizeof(uvm_gpu_chunk_t *) << level);
align = __alignof__(uvm_pmm_gpu_chunk_suballoc_t);
}
chunk_split_cache[level].cache =
nv_kmem_cache_create(chunk_split_cache[level].name, size, align);
if (!chunk_split_cache[level].cache)
return NV_ERR_NO_MEMORY;
UVM_ASSERT(chunk_split_cache[level].refcount == 0);
} else {
UVM_ASSERT(chunk_split_cache[level].refcount > 0);
}
++chunk_split_cache[level].refcount;
UVM_ASSERT_MSG(chunk_split_cache[level].refcount != 0, "Overflow of refcount\n");
__set_bit(level, pmm->chunk_split_cache_initialized);
}
return NV_OK;
}
// Initializes the split cache for given GPU.
//
// It walks through all memory splits - in other words all ratios of neighboring
// pairs of sizes - and allocates kmem cache for them, unless they are already
// allocated.
//
// It also bumps the refcount if this GPU did not use such split yet.
static NV_STATUS init_chunk_split_cache(uvm_pmm_gpu_t *pmm)
{
NV_STATUS status;
uvm_pmm_gpu_memory_type_t type;
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
for (type = 0; type < UVM_PMM_GPU_MEMORY_TYPE_COUNT; type++) {
uvm_chunk_size_t prev_size, cur_size;
uvm_chunk_sizes_mask_t chunk_sizes = pmm->chunk_sizes[type];
// Iterate over each pair of neighboring sizes. Note that same level
// may be visited multiple times and it is handled internally by
// init_chunk_split_cache_level
prev_size = uvm_chunk_find_first_size(chunk_sizes);
cur_size = uvm_chunk_find_next_size(chunk_sizes, prev_size);
for_each_chunk_size_from(cur_size, chunk_sizes) {
size_t subchunk_count = cur_size / prev_size;
size_t level = ilog2(subchunk_count);
status = init_chunk_split_cache_level(pmm, level);
if (status != NV_OK)
return status;
prev_size = cur_size;
}
}
return init_chunk_split_cache_level(pmm, 0);
}
static NV_STATUS init_pma_address_batch_cache(uvm_pmm_gpu_t *pmm)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
if (!g_pma_address_batch_cache_ref.cache) {
const size_t address_batch_size = sizeof(UvmGpuPointer) << uvm_perf_pma_batch_nonpinned_order;
snprintf(g_pma_address_batch_cache_ref.name,
sizeof(g_pma_address_batch_cache_ref.name),
"pma_address_batch");
g_pma_address_batch_cache_ref.cache =
nv_kmem_cache_create(g_pma_address_batch_cache_ref.name,
address_batch_size, __alignof__(UvmGpuPointer));
if (!g_pma_address_batch_cache_ref.cache)
return NV_ERR_NO_MEMORY;
UVM_ASSERT(g_pma_address_batch_cache_ref.refcount == 0);
}
else {
UVM_ASSERT(g_pma_address_batch_cache_ref.refcount > 0);
}
pmm->pma_address_cache_initialized = true;
++g_pma_address_batch_cache_ref.refcount;
UVM_ASSERT_MSG(g_pma_address_batch_cache_ref.refcount != 0, "Overflow of refcount\n");
return NV_OK;
}
static void deinit_pma_address_batch_cache(uvm_pmm_gpu_t *pmm)
{
if (pmm->pma_address_cache_initialized) {
UVM_ASSERT(g_pma_address_batch_cache_ref.refcount > 0);
UVM_ASSERT(g_pma_address_batch_cache_ref.cache);
if (--g_pma_address_batch_cache_ref.refcount == 0)
kmem_cache_destroy_safe(&g_pma_address_batch_cache_ref.cache);
pmm->pma_address_cache_initialized = false;
}
}
static void deinit_caches(uvm_pmm_gpu_t *pmm)
{
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
deinit_pma_address_batch_cache(pmm);
deinit_chunk_split_cache(pmm);
}
static NV_STATUS init_caches(uvm_pmm_gpu_t *pmm)
{
NV_STATUS status;
status = init_pma_address_batch_cache(pmm);
if (status != NV_OK)
goto cleanup;
status = init_chunk_split_cache(pmm);
if (status != NV_OK)
goto cleanup;
return NV_OK;
cleanup:
deinit_caches(pmm);
return status;
}
typedef struct
{
// Start/end of the physical region to be traversed (IN)
NvU64 phys_start;
NvU64 phys_end;
// Pointer to the array of mappins where to store results (OUT)
uvm_reverse_map_t *mappings;
// Number of entries written to mappings (OUT)
NvU32 num_mappings;
} get_chunk_mappings_data_t;
// Chunk traversal function used for phys-to-virt translation. These are the
// possible return values.
//
// - NV_ERR_OUT_OF_RANGE: no allocated physical chunks were found
// - NV_ERR_MORE_DATA_AVAILABLE: allocated physical chunks were found
// - NV_OK: allocated physical chunks may have been found. Check num_mappings
static NV_STATUS get_chunk_mappings_in_range(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk, void *data)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
get_chunk_mappings_data_t *get_chunk_mappings_data = (get_chunk_mappings_data_t *)data;
NvU64 chunk_end = chunk->address + uvm_gpu_chunk_get_size(chunk) - 1;
uvm_assert_mutex_locked(&pmm->lock);
// Kernel chunks do not have assigned VA blocks so we can just skip them
if (uvm_pmm_gpu_memory_type_is_kernel(chunk->type))
return NV_WARN_NOTHING_TO_DO;
// This chunk is located before the requested physical range. Skip its
// children and keep going
if (chunk_end < get_chunk_mappings_data->phys_start)
return NV_WARN_NOTHING_TO_DO;
// We are beyond the search phys range. Stop traversing.
if (chunk->address > get_chunk_mappings_data->phys_end) {
if (get_chunk_mappings_data->num_mappings > 0)
return NV_ERR_MORE_DATA_AVAILABLE;
else
return NV_ERR_OUT_OF_RANGE;
}
uvm_spin_lock(&pmm->list_lock);
// Return results for allocated leaf chunks, only
if (chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED) {
uvm_reverse_map_t *reverse_map;
UVM_ASSERT(chunk->va_block);
uvm_va_block_retain(chunk->va_block);
reverse_map = &get_chunk_mappings_data->mappings[get_chunk_mappings_data->num_mappings];
reverse_map->va_block = chunk->va_block;
reverse_map->region = uvm_va_block_region(chunk->va_block_page_index,
chunk->va_block_page_index + uvm_gpu_chunk_get_size(chunk) / PAGE_SIZE);
reverse_map->owner = gpu->id;
// If we land in the middle of a chunk, adjust the offset
if (get_chunk_mappings_data->phys_start > chunk->address) {
NvU64 offset = get_chunk_mappings_data->phys_start - chunk->address;
reverse_map->region.first += offset / PAGE_SIZE;
}
// If the physical range doesn't cover the whole chunk, adjust num_pages
if (get_chunk_mappings_data->phys_end < chunk_end)
reverse_map->region.outer -= (chunk_end - get_chunk_mappings_data->phys_end) / PAGE_SIZE;
++get_chunk_mappings_data->num_mappings;
}
uvm_spin_unlock(&pmm->list_lock);
return NV_OK;
}
NvU32 uvm_pmm_gpu_phys_to_virt(uvm_pmm_gpu_t *pmm, NvU64 phys_addr, NvU64 region_size, uvm_reverse_map_t *out_mappings)
{
NvU64 chunk_base_addr = UVM_ALIGN_DOWN(phys_addr, UVM_CHUNK_SIZE_MAX);
NvU64 size_in_chunk = min(UVM_CHUNK_SIZE_MAX - (phys_addr - chunk_base_addr), region_size);
NvU32 num_mappings = 0;
UVM_ASSERT(PAGE_ALIGNED(phys_addr));
UVM_ASSERT(PAGE_ALIGNED(region_size));
uvm_mutex_lock(&pmm->lock);
// Traverse the whole requested region
do {
NV_STATUS status = NV_OK;
uvm_gpu_root_chunk_t *root_chunk = root_chunk_from_address(pmm, phys_addr);
uvm_gpu_chunk_t *chunk = &root_chunk->chunk;
get_chunk_mappings_data_t get_chunk_mappings_data;
get_chunk_mappings_data.phys_start = phys_addr;
get_chunk_mappings_data.phys_end = phys_addr + size_in_chunk - 1;
get_chunk_mappings_data.mappings = out_mappings + num_mappings;
get_chunk_mappings_data.num_mappings = 0;
// Walk the chunks for the current root chunk
status = chunk_walk_pre_order(pmm,
chunk,
get_chunk_mappings_in_range,
&get_chunk_mappings_data);
if (status == NV_ERR_OUT_OF_RANGE)
break;
if (get_chunk_mappings_data.num_mappings > 0) {
UVM_ASSERT(status == NV_OK || status == NV_ERR_MORE_DATA_AVAILABLE);
num_mappings += get_chunk_mappings_data.num_mappings;
}
else {
UVM_ASSERT(status == NV_OK);
}
region_size -= size_in_chunk;
phys_addr += size_in_chunk;
size_in_chunk = min((NvU64)UVM_CHUNK_SIZE_MAX, region_size);
} while (region_size > 0);
uvm_mutex_unlock(&pmm->lock);
return num_mappings;
}
#if UVM_IS_CONFIG_HMM()
static uvm_pmm_gpu_t *devmem_page_to_pmm(struct page *page)
{
return container_of(page->pgmap, uvm_pmm_gpu_t, devmem.pagemap);
}
static uvm_gpu_chunk_t *devmem_page_to_chunk_locked(struct page *page)
{
uvm_pmm_gpu_t *pmm = devmem_page_to_pmm(page);
NvU64 chunk_addr = ((NvU64)page_to_pfn(page) << PAGE_SHIFT) - pmm->devmem.pagemap.range.start;
size_t index = chunk_addr / UVM_CHUNK_SIZE_MAX;
uvm_gpu_chunk_t *root_chunk;
uvm_gpu_chunk_t *chunk;
uvm_gpu_chunk_t *parent;
uvm_chunk_size_t chunk_size;
UVM_ASSERT(index < pmm->root_chunks.count);
root_chunk = &pmm->root_chunks.array[index].chunk;
UVM_ASSERT(root_chunk->address == UVM_ALIGN_DOWN(chunk_addr, UVM_CHUNK_SIZE_MAX));
// Find the uvm_gpu_chunk_t that corresponds to the device private struct
// page's PFN. The loop is only 0, 1, or 2 iterations.
for (chunk = root_chunk;
uvm_gpu_chunk_get_size(chunk) != page_size(page);
chunk = parent->suballoc->subchunks[index]) {
parent = chunk;
UVM_ASSERT(parent->state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT);
UVM_ASSERT(parent->suballoc);
chunk_size = uvm_gpu_chunk_get_size(parent->suballoc->subchunks[0]);
index = (size_t)uvm_div_pow2_64(chunk_addr - parent->address, chunk_size);
UVM_ASSERT(index < num_subchunks(parent));
}
UVM_ASSERT(chunk->address = chunk_addr);
UVM_ASSERT(chunk->state == UVM_PMM_GPU_CHUNK_STATE_ALLOCATED);
UVM_ASSERT(chunk->is_referenced);
return chunk;
}
uvm_gpu_chunk_t *uvm_pmm_devmem_page_to_chunk(struct page *page)
{
uvm_pmm_gpu_t *pmm = devmem_page_to_pmm(page);
uvm_gpu_chunk_t *chunk;
UVM_ASSERT(is_device_private_page(page));
uvm_spin_lock(&pmm->list_lock);
chunk = devmem_page_to_chunk_locked(page);
uvm_spin_unlock(&pmm->list_lock);
return chunk;
}
uvm_gpu_id_t uvm_pmm_devmem_page_to_gpu_id(struct page *page)
{
uvm_pmm_gpu_t *pmm = devmem_page_to_pmm(page);
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
UVM_ASSERT(is_device_private_page(page));
return gpu->id;
}
// Check there are no orphan pages. This should be only called as part of
// removing a GPU: after all work is stopped and all va_blocks have been
// destroyed. By now there should be no device-private page references left as
// there are no va_space's left on this GPU and orphan pages should be removed
// by va_space destruction or unregistration from the GPU.
static bool uvm_pmm_gpu_check_orphan_pages(uvm_pmm_gpu_t *pmm)
{
size_t i;
bool ret = true;
unsigned long pfn;
struct range range = pmm->devmem.pagemap.range;
if (!pmm->initialized || !uvm_hmm_is_enabled_system_wide())
return ret;
// Scan all the root chunks looking for subchunks which are still
// referenced.
for (i = 0; i < pmm->root_chunks.count; i++) {
uvm_gpu_root_chunk_t *root_chunk = &pmm->root_chunks.array[i];
root_chunk_lock(pmm, root_chunk);
if (root_chunk->chunk.state == UVM_PMM_GPU_CHUNK_STATE_IS_SPLIT)
ret = false;
root_chunk_unlock(pmm, root_chunk);
}
for (pfn = __phys_to_pfn(range.start); pfn <= __phys_to_pfn(range.end); pfn++) {
struct page *page = pfn_to_page(pfn);
if (!is_device_private_page(page)) {
ret = false;
break;
}
if (page_count(page)) {
ret = false;
break;
}
}
return ret;
}
static void devmem_page_free(struct page *page)
{
uvm_pmm_gpu_t *pmm = devmem_page_to_pmm(page);
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
uvm_gpu_chunk_t *chunk;
page->zone_device_data = NULL;
// We should be calling free_chunk() except that it acquires a mutex and
// we may be in an interrupt context where we can't do that. Instead,
// do a lazy free. Note that we have to use a "normal" spin lock because
// the UVM context is not available.
spin_lock(&pmm->list_lock.lock);
chunk = devmem_page_to_chunk_locked(page);
UVM_ASSERT(chunk->is_referenced);
chunk->is_referenced = false;
list_add_tail(&chunk->list, &pmm->root_chunks.va_block_lazy_free);
spin_unlock(&pmm->list_lock.lock);
nv_kthread_q_schedule_q_item(&gpu->parent->lazy_free_q,
&pmm->root_chunks.va_block_lazy_free_q_item);
}
// This is called by HMM when the CPU faults on a ZONE_DEVICE private entry.
static vm_fault_t devmem_fault(struct vm_fault *vmf)
{
uvm_va_space_t *va_space = vmf->page->zone_device_data;
if (!va_space)
return VM_FAULT_SIGBUS;
return uvm_va_space_cpu_fault_hmm(va_space, vmf->vma, vmf);
}
static vm_fault_t devmem_fault_entry(struct vm_fault *vmf)
{
UVM_ENTRY_RET(devmem_fault(vmf));
}
static const struct dev_pagemap_ops uvm_pmm_devmem_ops =
{
.page_free = devmem_page_free,
.migrate_to_ram = devmem_fault_entry,
};
static NV_STATUS devmem_init(uvm_pmm_gpu_t *pmm)
{
unsigned long size = pmm->root_chunks.count * UVM_CHUNK_SIZE_MAX;
uvm_pmm_gpu_devmem_t *devmem = &pmm->devmem;
struct resource *res;
void *ptr;
NV_STATUS status;
if (!uvm_hmm_is_enabled_system_wide()) {
devmem->pagemap.owner = NULL;
return NV_OK;
}
res = request_free_mem_region(&iomem_resource, size, "nvidia-uvm-hmm");
if (IS_ERR(res)) {
UVM_ERR_PRINT("request_free_mem_region() err %ld\n", PTR_ERR(res));
status = errno_to_nv_status(PTR_ERR(res));
goto err;
}
devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
devmem->pagemap.range.start = res->start;
devmem->pagemap.range.end = res->end;
devmem->pagemap.nr_range = 1;
devmem->pagemap.ops = &uvm_pmm_devmem_ops;
devmem->pagemap.owner = &g_uvm_global;
// Numa node ID doesn't matter for ZONE_DEVICE private pages.
ptr = memremap_pages(&devmem->pagemap, NUMA_NO_NODE);
if (IS_ERR(ptr)) {
UVM_ERR_PRINT("memremap_pages() err %ld\n", PTR_ERR(ptr));
status = errno_to_nv_status(PTR_ERR(ptr));
goto err_release;
}
return NV_OK;
err_release:
release_mem_region(res->start, resource_size(res));
err:
devmem->pagemap.owner = NULL;
return status;
}
static void devmem_deinit(uvm_pmm_gpu_t *pmm)
{
uvm_pmm_gpu_devmem_t *devmem = &pmm->devmem;
if (!devmem->pagemap.owner)
return;
memunmap_pages(&devmem->pagemap);
release_mem_region(devmem->pagemap.range.start, range_len(&devmem->pagemap.range));
}
unsigned long uvm_pmm_gpu_devmem_get_pfn(uvm_pmm_gpu_t *pmm, uvm_gpu_chunk_t *chunk)
{
return (pmm->devmem.pagemap.range.start + chunk->address) >> PAGE_SHIFT;
}
#endif // UVM_IS_CONFIG_HMM()
#if !UVM_IS_CONFIG_HMM()
static NV_STATUS devmem_init(uvm_pmm_gpu_t *pmm)
{
return NV_OK;
}
static void devmem_deinit(uvm_pmm_gpu_t *pmm)
{
}
static bool uvm_pmm_gpu_check_orphan_pages(uvm_pmm_gpu_t *pmm)
{
return true;
}
#endif // UVM_IS_CONFIG_HMM()
static void process_lazy_free(uvm_pmm_gpu_t *pmm)
{
uvm_gpu_chunk_t *chunk;
uvm_spin_lock(&pmm->list_lock);
// Note: We can't use list_for_each_safe_entry() because we drop the lock
// in the loop. Instead, just keep removing the first entry until the list
// is empty.
while (!list_empty(&pmm->root_chunks.va_block_lazy_free)) {
chunk = list_first_entry(&pmm->root_chunks.va_block_lazy_free, uvm_gpu_chunk_t, list);
list_del_init(&chunk->list);
uvm_spin_unlock(&pmm->list_lock);
free_chunk(pmm, chunk);
uvm_spin_lock(&pmm->list_lock);
}
uvm_spin_unlock(&pmm->list_lock);
}
static void process_lazy_free_entry(void *args)
{
UVM_ENTRY_VOID(process_lazy_free(args));
}
NV_STATUS uvm_pmm_gpu_init(uvm_pmm_gpu_t *pmm)
{
uvm_gpu_t *gpu = uvm_pmm_to_gpu(pmm);
const uvm_chunk_sizes_mask_t chunk_size_init[][UVM_PMM_GPU_MEMORY_TYPE_COUNT] =
{
{ gpu->parent->mmu_user_chunk_sizes,
gpu->parent->mmu_user_chunk_sizes,
gpu->parent->mmu_kernel_chunk_sizes,
gpu->parent->mmu_kernel_chunk_sizes },
{ 0, 0, uvm_mem_kernel_chunk_sizes(gpu), uvm_mem_kernel_chunk_sizes(gpu)},
};
NV_STATUS status = NV_OK;
size_t i, j, k;
// UVM_CHUNK_SIZE_INVALID is UVM_CHUNK_SIZE_MAX shifted left by 1. This protects
// UVM_CHUNK_SIZE_INVALID from being negative
BUILD_BUG_ON(UVM_CHUNK_SIZE_MAX >= UVM_CHUNK_SIZE_INVALID);
uvm_assert_mutex_locked(&g_uvm_global.global_lock);
for (i = 0; i < ARRAY_SIZE(pmm->free_list); i++) {
for (j = 0; j < ARRAY_SIZE(pmm->free_list[i]); j++) {
for (k = 0; k < ARRAY_SIZE(pmm->free_list[i][j]); k++)
INIT_LIST_HEAD(&pmm->free_list[i][j][k]);
}
}
INIT_LIST_HEAD(&pmm->root_chunks.va_block_used);
INIT_LIST_HEAD(&pmm->root_chunks.va_block_unused);
INIT_LIST_HEAD(&pmm->root_chunks.va_block_lazy_free);
nv_kthread_q_item_init(&pmm->root_chunks.va_block_lazy_free_q_item, process_lazy_free_entry, pmm);
uvm_mutex_init(&pmm->lock, UVM_LOCK_ORDER_PMM);
uvm_init_rwsem(&pmm->pma_lock, UVM_LOCK_ORDER_PMM_PMA);
uvm_spin_lock_init(&pmm->list_lock, UVM_LOCK_ORDER_LEAF);
pmm->initialized = true;
for (i = 0; i < UVM_PMM_GPU_MEMORY_TYPE_COUNT; i++) {
pmm->chunk_sizes[i] = 0;
// Add the common root chunk size to all memory types
pmm->chunk_sizes[i] |= UVM_CHUNK_SIZE_MAX;
for (j = 0; j < ARRAY_SIZE(chunk_size_init); j++)
pmm->chunk_sizes[i] |= chunk_size_init[j][i];
UVM_ASSERT(pmm->chunk_sizes[i] < UVM_CHUNK_SIZE_INVALID);
UVM_ASSERT_MSG(hweight_long(pmm->chunk_sizes[i]) <= UVM_MAX_CHUNK_SIZES,
"chunk sizes %lu, max chunk sizes %u\n", hweight_long(pmm->chunk_sizes[i]), UVM_MAX_CHUNK_SIZES);
}
status = init_caches(pmm);
if (status != NV_OK)
goto cleanup;
// Assert that max physical address of the GPU is not unreasonably big for
// creating the flat array of root chunks. 256GB should provide a reasonable
// amount of future-proofing and results in 128K chunks which is still
// manageable.
UVM_ASSERT_MSG(gpu->mem_info.max_allocatable_address < UVM_GPU_MAX_PHYS_MEM,
"Max physical address 0x%llx exceeds limit of 0x%llx\n",
gpu->mem_info.max_allocatable_address,
UVM_GPU_MAX_PHYS_MEM);
// Align up the size to have a root chunk for the last part of the FB. PMM
// won't be able to allocate it, if it doesn't fit a whole root chunk, but
// it's convenient to have it for uvm_test_pma_alloc_free().
pmm->root_chunks.count = UVM_ALIGN_UP(gpu->mem_info.max_allocatable_address, UVM_CHUNK_SIZE_MAX) /
UVM_CHUNK_SIZE_MAX;
pmm->root_chunks.array = uvm_kvmalloc_zero(sizeof(*pmm->root_chunks.array) * pmm->root_chunks.count);
if (!pmm->root_chunks.array) {
status = NV_ERR_NO_MEMORY;
goto cleanup;
}
// Initialize all root chunks to be PMA owned and set their addresses
for (i = 0; i < pmm->root_chunks.count; ++i) {
uvm_gpu_chunk_t *chunk = &pmm->root_chunks.array[i].chunk;
INIT_LIST_HEAD(&chunk->list);
chunk->gpu_index = uvm_id_gpu_index(gpu->id);
chunk->state = UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED;
uvm_gpu_chunk_set_size(chunk, UVM_CHUNK_SIZE_MAX);
chunk->address = i * UVM_CHUNK_SIZE_MAX;
chunk->va_block_page_index = PAGES_PER_UVM_VA_BLOCK;
}
status = uvm_bit_locks_init(&pmm->root_chunks.bitlocks, pmm->root_chunks.count, UVM_LOCK_ORDER_PMM_ROOT_CHUNK);
if (status != NV_OK)
goto cleanup;
if (gpu->mem_info.size != 0) {
status = uvm_rm_locked_call(nvUvmInterfaceGetPmaObject(uvm_gpu_device_handle(gpu), &pmm->pma, &pmm->pma_stats));
if (status != NV_OK)
goto cleanup;
if (gpu_supports_pma_eviction(gpu)) {
status = nvUvmInterfacePmaRegisterEvictionCallbacks(pmm->pma,
uvm_pmm_gpu_pma_evict_pages_wrapper_entry,
uvm_pmm_gpu_pma_evict_range_wrapper_entry,
pmm);
if (status != NV_OK)
goto cleanup;
}
}
status = devmem_init(pmm);
if (status != NV_OK)
goto cleanup;
return NV_OK;
cleanup:
uvm_pmm_gpu_deinit(pmm);
return status;
}
// Return to PMA any remaining free root chunks. Currently only USER
// (non-pinned) chunks are pre-allocated, so the KERNEL free list should be
// empty at this point. However, we may want to batch the allocation of pinned
// pages in the future, too.
static void release_free_root_chunks(uvm_pmm_gpu_t *pmm)
{
uvm_pmm_gpu_memory_type_t type;
for (type = 0; type < UVM_PMM_GPU_MEMORY_TYPE_COUNT; ++type) {
uvm_pmm_list_zero_t zero_type;
while (free_next_available_root_chunk(pmm, type))
;
for (zero_type = 0; zero_type < UVM_PMM_LIST_ZERO_COUNT; ++zero_type)
UVM_ASSERT(list_empty(find_free_list(pmm, type, UVM_CHUNK_SIZE_MAX, zero_type)));
}
}
void uvm_pmm_gpu_deinit(uvm_pmm_gpu_t *pmm)
{
uvm_gpu_t *gpu;
size_t i, j, k;
if (!pmm->initialized)
return;
gpu = uvm_pmm_to_gpu(pmm);
UVM_ASSERT(uvm_pmm_gpu_check_orphan_pages(pmm));
nv_kthread_q_flush(&gpu->parent->lazy_free_q);
UVM_ASSERT(list_empty(&pmm->root_chunks.va_block_lazy_free));
release_free_root_chunks(pmm);
if (gpu->mem_info.size != 0 && gpu_supports_pma_eviction(gpu))
nvUvmInterfacePmaUnregisterEvictionCallbacks(pmm->pma);
// TODO: Bug 1766184: Handle ECC/RC
for (i = 0; i < ARRAY_SIZE(pmm->free_list); i++) {
for (j = 0; j < ARRAY_SIZE(pmm->free_list[i]); j++) {
for (k = 0; k < ARRAY_SIZE(pmm->free_list[i][j]); ++k) {
UVM_ASSERT_MSG(list_empty(&pmm->free_list[i][j][k]), "i: %s, j: %zu, k: %zu\n",
uvm_pmm_gpu_memory_type_string(i), j, k);
}
}
}
uvm_bit_locks_deinit(&pmm->root_chunks.bitlocks);
for (i = 0; i < ARRAY_SIZE(pmm->root_chunks.indirect_peer); i++) {
UVM_ASSERT(pmm->root_chunks.indirect_peer[i].dma_addrs == NULL);
UVM_ASSERT(atomic64_read(&pmm->root_chunks.indirect_peer[i].map_count) == 0);
}
if (pmm->root_chunks.array) {
// Make sure that all chunks have been returned to PMA
for (i = 0; i < pmm->root_chunks.count; ++i) {
uvm_gpu_chunk_t *chunk = &pmm->root_chunks.array[i].chunk;
UVM_ASSERT_MSG(chunk->state == UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED,
"index %zu state %s GPU %s\n",
i,
uvm_pmm_gpu_chunk_state_string(chunk->state),
uvm_gpu_name(gpu));
}
}
uvm_kvfree(pmm->root_chunks.array);
deinit_caches(pmm);
devmem_deinit(pmm);
pmm->initialized = false;
}
NV_STATUS uvm_test_evict_chunk(UVM_TEST_EVICT_CHUNK_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_block_t *block = NULL;
uvm_gpu_root_chunk_t *root_chunk = NULL;
uvm_pmm_gpu_t *pmm;
struct mm_struct *mm;
params->chunk_was_evicted = NV_FALSE;
params->evicted_physical_address = 0;
params->chunk_size_backing_virtual = 0;
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_read(va_space);
gpu = uvm_va_space_get_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu || !uvm_parent_gpu_supports_eviction(gpu->parent)) {
uvm_va_space_up_read(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return NV_ERR_INVALID_DEVICE;
}
pmm = &gpu->pmm;
// Retain the GPU before unlocking the VA space so that it sticks around.
uvm_gpu_retain(gpu);
// For virtual mode, look up and retain the block first so that eviction can
// be started without the VA space lock held.
if (params->eviction_mode == UvmTestEvictModeVirtual) {
if (mm)
status = uvm_va_block_find_create(va_space, params->address, NULL, &block);
else
status = uvm_va_block_find_create_managed(va_space, params->address, &block);
if (status != NV_OK) {
uvm_va_space_up_read(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
goto out;
}
// Retain the block before unlocking the VA space lock so that we can
// safely access it later.
uvm_va_block_retain(block);
}
// Unlock the VA space to emulate real eviction better where a VA space lock
// may not be held or may be held for a different VA space.
uvm_va_space_up_read(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
if (params->eviction_mode == UvmTestEvictModeVirtual) {
UVM_ASSERT(block);
uvm_mutex_lock(&block->lock);
// As the VA space lock is not held we need to make sure the block
// is still alive.
if (!uvm_va_block_is_dead(block)) {
// The block might have been split in the meantime and may no longer
// cover the address as a result.
if (params->address >= block->start && params->address <= block->end) {
uvm_gpu_chunk_t *chunk = uvm_va_block_lookup_gpu_chunk(block, gpu, params->address);
uvm_spin_lock(&pmm->list_lock);
if (chunk && chunk_is_evictable(pmm, chunk)) {
chunk_start_eviction(pmm, chunk);
root_chunk = root_chunk_from_chunk(pmm, chunk);
params->chunk_size_backing_virtual = uvm_gpu_chunk_get_size(chunk);
}
uvm_spin_unlock(&pmm->list_lock);
}
}
else {
// Consider it an error to free the block before the eviction ioctl
// is done.
status = NV_ERR_INVALID_ADDRESS;
}
uvm_mutex_unlock(&block->lock);
uvm_va_block_release(block);
if (status != NV_OK)
goto out;
}
else if (params->eviction_mode == UvmTestEvictModePhysical) {
uvm_gpu_chunk_t *chunk;
size_t index = params->address / UVM_CHUNK_SIZE_MAX;
if (index >= pmm->root_chunks.count) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
root_chunk = &pmm->root_chunks.array[index];
chunk = &root_chunk->chunk;
uvm_spin_lock(&pmm->list_lock);
if (chunk_is_evictable(pmm, chunk))
chunk_start_eviction(pmm, chunk);
else
chunk = NULL;
uvm_spin_unlock(&pmm->list_lock);
if (!chunk)
root_chunk = NULL;
}
else if (params->eviction_mode == UvmTestEvictModeDefault) {
root_chunk = pick_root_chunk_to_evict(pmm);
}
else {
UVM_DBG_PRINT("Invalid eviction mode: 0x%x\n", params->eviction_mode);
status = NV_ERR_INVALID_ARGUMENT;
goto out;
}
if (!root_chunk) {
// Not finding a chunk to evict is not considered an error, the caller
// can inspect the targeted_chunk_size to see whether anything was evicted.
goto out;
}
uvm_mutex_lock(&pmm->lock);
status = evict_root_chunk(pmm, root_chunk, PMM_CONTEXT_DEFAULT);
uvm_mutex_unlock(&pmm->lock);
if (status != NV_OK)
goto out;
params->chunk_was_evicted = NV_TRUE;
params->evicted_physical_address = root_chunk->chunk.address;
free_chunk(pmm, &root_chunk->chunk);
out:
uvm_gpu_release(gpu);
return status;
}
static NV_STATUS test_check_pma_allocated_chunks(uvm_pmm_gpu_t *pmm,
UVM_TEST_PMA_ALLOC_FREE_PARAMS *params,
NvU64 *pages)
{
NV_STATUS status = NV_OK;
NvU32 i;
for (i = 0; i < params->num_pages; ++i) {
uvm_gpu_root_chunk_t *root_chunk;
NvU64 address;
if (params->contiguous)
address = pages[0] + ((NvU64)params->page_size) * i;
else
address = pages[i];
root_chunk = root_chunk_from_address(pmm, address);
if (!IS_ALIGNED(address, params->page_size)) {
UVM_TEST_PRINT("Returned unaligned address 0x%llx page size %u\n", address, params->page_size);
status = NV_ERR_INVALID_STATE;
}
// The chunk should still be in the PMA owned state
uvm_spin_lock(&pmm->list_lock);
if (root_chunk->chunk.state != UVM_PMM_GPU_CHUNK_STATE_PMA_OWNED) {
UVM_TEST_PRINT("Root chunk 0x%llx invalid state: %s, allocated [0x%llx, 0x%llx)\n",
root_chunk->chunk.address,
uvm_pmm_gpu_chunk_state_string(root_chunk->chunk.state),
address, address + params->page_size);
status = NV_ERR_INVALID_STATE;
}
uvm_spin_unlock(&pmm->list_lock);
}
return status;
}
NV_STATUS uvm_test_pma_alloc_free(UVM_TEST_PMA_ALLOC_FREE_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu;
uvm_pmm_gpu_t *pmm;
NvU64 page;
NvU64 *pages = NULL;
NvU32 free_flags;
UvmPmaAllocationOptions options = {0};
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
pmm = &gpu->pmm;
options.flags = UVM_PMA_ALLOCATE_PINNED;
if (params->contiguous) {
options.flags |= UVM_PMA_ALLOCATE_CONTIGUOUS;
pages = &page;
}
else {
pages = uvm_kvmalloc(sizeof(*pages) * params->num_pages);
if (!pages) {
status = NV_ERR_NO_MEMORY;
goto out;
}
}
if (params->phys_begin != 0 || params->phys_end != 0) {
options.physBegin = params->phys_begin;
options.physEnd = params->phys_end;
options.flags |= UVM_PMA_ALLOCATE_SPECIFY_ADDRESS_RANGE;
}
status = nvUvmInterfacePmaAllocPages(pmm->pma, params->num_pages, params->page_size, &options, pages);
if (status != NV_OK)
goto out;
status = test_check_pma_allocated_chunks(pmm, params, pages);
if (status != NV_OK) {
UVM_TEST_PRINT("Failed before the nap\n");
goto free;
}
if (params->nap_us_before_free)
usleep_range(params->nap_us_before_free, params->nap_us_before_free + 10);
status = test_check_pma_allocated_chunks(pmm, params, pages);
if (status != NV_OK)
UVM_TEST_PRINT("Failed after the nap\n");
free:
free_flags = options.flags;
if (!!(options.resultFlags & UVM_PMA_ALLOCATE_RESULT_IS_ZERO))
free_flags |= UVM_PMA_FREE_IS_ZERO;
nvUvmInterfacePmaFreePages(gpu->pmm.pma, pages, params->num_pages, params->page_size, free_flags);
out:
if (!params->contiguous)
uvm_kvfree(pages);
uvm_gpu_release(gpu);
return status;
}
NV_STATUS uvm_test_pmm_alloc_free_root(UVM_TEST_PMM_ALLOC_FREE_ROOT_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_OK;
uvm_gpu_t *gpu;
uvm_pmm_gpu_t *pmm;
uvm_gpu_chunk_t *chunk;
uvm_tracker_t tracker = UVM_TRACKER_INIT();
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
pmm = &gpu->pmm;
status = uvm_pmm_gpu_alloc_user(pmm,
1,
UVM_CHUNK_SIZE_MAX,
UVM_PMM_ALLOC_FLAGS_EVICT | UVM_PMM_ALLOC_FLAGS_DONT_BATCH,
&chunk,
&tracker);
if (status != NV_OK)
goto out;
if (params->nap_us_before_free)
usleep_range(params->nap_us_before_free, params->nap_us_before_free + 10);
uvm_pmm_gpu_free(pmm, chunk, NULL);
uvm_tracker_deinit(&tracker);
out:
uvm_gpu_release(gpu);
return status;
}
NV_STATUS uvm_test_pmm_inject_pma_evict_error(UVM_TEST_PMM_INJECT_PMA_EVICT_ERROR_PARAMS *params, struct file *filp)
{
uvm_gpu_t *gpu;
uvm_pmm_gpu_t *pmm;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
pmm = &gpu->pmm;
uvm_mutex_lock(&pmm->lock);
pmm->inject_pma_evict_error_after_num_chunks = params->error_after_num_chunks;
uvm_mutex_unlock(&pmm->lock);
uvm_gpu_release(gpu);
return NV_OK;
}
NV_STATUS uvm_test_pmm_release_free_root_chunks(UVM_TEST_PMM_RELEASE_FREE_ROOT_CHUNKS_PARAMS *params,
struct file *filp)
{
uvm_gpu_t *gpu;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
release_free_root_chunks(&gpu->pmm);
uvm_gpu_release(gpu);
return NV_OK;
}
NV_STATUS uvm_test_pma_get_batch_size(UVM_TEST_PMA_GET_BATCH_SIZE_PARAMS *params, struct file *filp)
{
uvm_gpu_t *gpu;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
if (gpu->parent->rm_info.isSimulated)
params->pma_batch_size = UVM_CHUNK_SIZE_MAX;
else
params->pma_batch_size = (1 << uvm_perf_pma_batch_nonpinned_order) * UVM_CHUNK_SIZE_MAX;
uvm_gpu_release(gpu);
return NV_OK;
}
NV_STATUS uvm_test_pmm_query_pma_stats(UVM_TEST_PMM_QUERY_PMA_STATS_PARAMS *params, struct file *filp)
{
uvm_gpu_t *gpu;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
gpu = uvm_va_space_retain_gpu_by_uuid(va_space, ¶ms->gpu_uuid);
if (!gpu)
return NV_ERR_INVALID_DEVICE;
params->pma_stats.numFreePages64k = UVM_READ_ONCE(gpu->pmm.pma_stats->numFreePages64k);
params->pma_stats.numFreePages2m = UVM_READ_ONCE(gpu->pmm.pma_stats->numFreePages2m);
uvm_gpu_release(gpu);
return NV_OK;
}
|