1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
|
/*******************************************************************************
Copyright (c) 2015-2023 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_common.h"
#include "uvm_linux.h"
#include "uvm_types.h"
#include "uvm_api.h"
#include "uvm_global.h"
#include "uvm_hal.h"
#include "uvm_va_range.h"
#include "uvm_va_block.h"
#include "uvm_kvmalloc.h"
#include "uvm_map_external.h"
#include "uvm_perf_thrashing.h"
#include "nv_uvm_interface.h"
static struct kmem_cache *g_uvm_va_range_cache __read_mostly;
static struct kmem_cache *g_uvm_vma_wrapper_cache __read_mostly;
NV_STATUS uvm_va_range_init(void)
{
g_uvm_va_range_cache = NV_KMEM_CACHE_CREATE("uvm_va_range_t", uvm_va_range_t);
if (!g_uvm_va_range_cache)
return NV_ERR_NO_MEMORY;
g_uvm_vma_wrapper_cache = NV_KMEM_CACHE_CREATE("uvm_vma_wrapper_t", uvm_vma_wrapper_t);
if (!g_uvm_vma_wrapper_cache)
return NV_ERR_NO_MEMORY;
return uvm_va_block_init();
}
void uvm_va_range_exit(void)
{
uvm_va_block_exit();
kmem_cache_destroy_safe(&g_uvm_va_range_cache);
kmem_cache_destroy_safe(&g_uvm_vma_wrapper_cache);
}
static NvU64 block_calc_start(uvm_va_range_t *va_range, size_t index)
{
NvU64 range_start = UVM_VA_BLOCK_ALIGN_DOWN(va_range->node.start);
NvU64 block_start = range_start + index * UVM_VA_BLOCK_SIZE;
NvU64 start = max(va_range->node.start, block_start);
UVM_ASSERT(start < va_range->node.end);
return start;
}
static NvU64 block_calc_end(uvm_va_range_t *va_range, size_t index)
{
NvU64 start = block_calc_start(va_range, index);
NvU64 block_end = UVM_VA_BLOCK_ALIGN_UP(start + 1) - 1; // Inclusive end
NvU64 end = min(va_range->node.end, block_end);
UVM_ASSERT(end > va_range->node.start);
return end;
}
// Called before the range's bounds have been adjusted. This may not actually
// shrink the blocks array. For example, if the shrink attempt fails then
// va_range's old array is left intact. This may waste memory, but it means this
// function cannot fail.
static void blocks_array_shrink(uvm_va_range_t *va_range, size_t new_num_blocks)
{
size_t new_size = new_num_blocks * sizeof(va_range->blocks[0]);
atomic_long_t *new_blocks;
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
UVM_ASSERT(va_range->blocks);
UVM_ASSERT(uvm_kvsize(va_range->blocks) >= uvm_va_range_num_blocks(va_range) * sizeof(va_range->blocks[0]));
UVM_ASSERT(new_num_blocks);
UVM_ASSERT(new_num_blocks <= uvm_va_range_num_blocks(va_range));
// TODO: Bug 1766579: This could be optimized by only shrinking the array
// when the new size is half of the old size or some similar
// threshold. Need to profile this on real apps to see if that's worth
// doing.
new_blocks = uvm_kvrealloc(va_range->blocks, new_size);
if (!new_blocks) {
// If we failed to allocate a smaller array, just leave the old one as-is
UVM_DBG_PRINT("Failed to shrink range [0x%llx, 0x%llx] from %zu blocks to %zu blocks\n",
va_range->node.start,
va_range->node.end,
uvm_kvsize(va_range->blocks) / sizeof(va_range->blocks[0]),
new_num_blocks);
return;
}
va_range->blocks = new_blocks;
}
static uvm_va_range_t *uvm_va_range_alloc(uvm_va_space_t *va_space, NvU64 start, NvU64 end)
{
uvm_va_range_t *va_range = nv_kmem_cache_zalloc(g_uvm_va_range_cache, NV_UVM_GFP_FLAGS);
if (!va_range)
return NULL;
uvm_assert_rwsem_locked_write(&va_space->lock);
va_range->va_space = va_space;
va_range->node.start = start;
va_range->node.end = end;
// The range is inserted into the VA space tree only at the end of creation,
// so clear the node so the destroy path knows whether to remove it.
RB_CLEAR_NODE(&va_range->node.rb_node);
return va_range;
}
static NV_STATUS uvm_va_range_alloc_reclaim(uvm_va_space_t *va_space,
struct mm_struct *mm,
uvm_va_range_type_t type,
NvU64 start,
NvU64 end,
uvm_va_range_t **out_va_range)
{
uvm_va_range_t *va_range;
NV_STATUS status;
// Check for no overlap with HMM blocks.
status = uvm_hmm_va_block_reclaim(va_space, mm, start, end);
if (status != NV_OK)
return status;
va_range = uvm_va_range_alloc(va_space, start, end);
if (!va_range)
return NV_ERR_NO_MEMORY;
va_range->type = type;
*out_va_range = va_range;
return NV_OK;
}
static uvm_va_range_t *uvm_va_range_alloc_managed(uvm_va_space_t *va_space, NvU64 start, NvU64 end)
{
uvm_va_range_t *va_range = NULL;
va_range = uvm_va_range_alloc(va_space, start, end);
if (!va_range)
goto error;
va_range->type = UVM_VA_RANGE_TYPE_MANAGED;
va_range->managed.policy = uvm_va_policy_default;
va_range->blocks = uvm_kvmalloc_zero(uvm_va_range_num_blocks(va_range) * sizeof(va_range->blocks[0]));
if (!va_range->blocks) {
UVM_DBG_PRINT("Failed to allocate %zu blocks\n", uvm_va_range_num_blocks(va_range));
goto error;
}
return va_range;
error:
uvm_va_range_destroy(va_range, NULL);
return NULL;
}
NV_STATUS uvm_va_range_create_mmap(uvm_va_space_t *va_space,
struct mm_struct *mm,
uvm_vma_wrapper_t *vma_wrapper,
uvm_va_range_t **out_va_range)
{
NV_STATUS status;
struct vm_area_struct *vma = vma_wrapper->vma;
uvm_va_range_t *va_range = NULL;
// Check for no overlap with HMM blocks.
status = uvm_hmm_va_block_reclaim(va_space, mm, vma->vm_start, vma->vm_end - 1);
if (status != NV_OK)
return status;
// vma->vm_end is exclusive but va_range end is inclusive
va_range = uvm_va_range_alloc_managed(va_space, vma->vm_start, vma->vm_end - 1);
if (!va_range) {
status = NV_ERR_NO_MEMORY;
goto error;
}
va_range->managed.vma_wrapper = vma_wrapper;
status = uvm_range_tree_add(&va_space->va_range_tree, &va_range->node);
if (status != NV_OK)
goto error;
if (out_va_range)
*out_va_range = va_range;
return NV_OK;
error:
uvm_va_range_destroy(va_range, NULL);
return status;
}
NV_STATUS uvm_va_range_create_external(uvm_va_space_t *va_space,
struct mm_struct *mm,
NvU64 start,
NvU64 length,
uvm_va_range_t **out_va_range)
{
NV_STATUS status;
uvm_va_range_t *va_range = NULL;
uvm_processor_mask_t *retained_mask = NULL;
NvU32 i;
status = uvm_va_range_alloc_reclaim(va_space,
mm,
UVM_VA_RANGE_TYPE_EXTERNAL,
start,
start + length - 1,
&va_range);
if (status != NV_OK)
return status;
UVM_ASSERT(!va_range->external.retained_mask);
retained_mask = uvm_processor_mask_cache_alloc();
if (!retained_mask) {
status = NV_ERR_NO_MEMORY;
goto error;
}
va_range->external.retained_mask = retained_mask;
for (i = 0; i < ARRAY_SIZE(va_range->external.gpu_ranges); i++) {
uvm_mutex_init(&va_range->external.gpu_ranges[i].lock, UVM_LOCK_ORDER_EXT_RANGE_TREE);
uvm_range_tree_init(&va_range->external.gpu_ranges[i].tree);
}
status = uvm_range_tree_add(&va_space->va_range_tree, &va_range->node);
if (status != NV_OK)
goto error;
if (out_va_range)
*out_va_range = va_range;
return NV_OK;
error:
uvm_va_range_destroy(va_range, NULL);
return status;
}
NV_STATUS uvm_va_range_create_channel(uvm_va_space_t *va_space,
struct mm_struct *mm,
NvU64 start,
NvU64 end,
uvm_va_range_t **out_va_range)
{
NV_STATUS status;
uvm_va_range_t *va_range = NULL;
status = uvm_va_range_alloc_reclaim(va_space,
mm,
UVM_VA_RANGE_TYPE_CHANNEL,
start,
end,
&va_range);
if (status != NV_OK)
return status;
INIT_LIST_HEAD(&va_range->channel.list_node);
status = uvm_range_tree_add(&va_space->va_range_tree, &va_range->node);
if (status != NV_OK)
goto error;
if (out_va_range)
*out_va_range = va_range;
return NV_OK;
error:
uvm_va_range_destroy(va_range, NULL);
return status;
}
NV_STATUS uvm_va_range_create_sked_reflected(uvm_va_space_t *va_space,
struct mm_struct *mm,
NvU64 start,
NvU64 length,
uvm_va_range_t **out_va_range)
{
NV_STATUS status;
uvm_va_range_t *va_range = NULL;
status = uvm_va_range_alloc_reclaim(va_space,
mm,
UVM_VA_RANGE_TYPE_SKED_REFLECTED,
start,
start + length - 1,
&va_range);
if (status != NV_OK)
return status;
status = uvm_range_tree_add(&va_space->va_range_tree, &va_range->node);
if (status != NV_OK)
goto error;
if (out_va_range)
*out_va_range = va_range;
return NV_OK;
error:
uvm_va_range_destroy(va_range, NULL);
return status;
}
NV_STATUS uvm_va_range_create_semaphore_pool(uvm_va_space_t *va_space,
struct mm_struct *mm,
NvU64 start,
NvU64 length,
const UvmGpuMappingAttributes *per_gpu_attrs,
NvU32 per_gpu_attrs_count,
uvm_va_range_t **out_va_range)
{
static const uvm_mem_gpu_mapping_attrs_t default_attrs = {
.protection = UVM_PROT_READ_WRITE_ATOMIC,
.is_cacheable = false
};
NV_STATUS status;
uvm_va_range_t *va_range = NULL;
uvm_mem_alloc_params_t mem_alloc_params = { 0 };
NvU32 i;
uvm_gpu_id_t gpu_id;
status = uvm_va_range_alloc_reclaim(va_space,
mm,
UVM_VA_RANGE_TYPE_SEMAPHORE_POOL,
start,
start + length - 1,
&va_range);
if (status != NV_OK)
return status;
uvm_tracker_init(&va_range->semaphore_pool.tracker);
uvm_mutex_init(&va_range->semaphore_pool.tracker_lock, UVM_LOCK_ORDER_SEMA_POOL_TRACKER);
status = uvm_range_tree_add(&va_space->va_range_tree, &va_range->node);
if (status != NV_OK)
goto error;
// The semaphore pool memory is located in sysmem, and must be zeroed upon
// allocation because it may be mapped on the user VA space.
mem_alloc_params.page_size = UVM_PAGE_SIZE_DEFAULT;
mem_alloc_params.size = length;
mem_alloc_params.zero = true;
mem_alloc_params.mm = mm;
va_range->semaphore_pool.default_gpu_attrs = default_attrs;
va_range->semaphore_pool.owner = NULL;
for_each_gpu_id(gpu_id)
va_range->semaphore_pool.gpu_attrs[uvm_id_gpu_index(gpu_id)] = default_attrs;
for (i = 0; i < per_gpu_attrs_count; i++) {
uvm_gpu_t *gpu;
uvm_mem_gpu_mapping_attrs_t attrs = default_attrs;
status = uvm_mem_translate_gpu_attributes(&per_gpu_attrs[i], va_space, &gpu, &attrs);
if (status != NV_OK)
goto error;
if (i == 0 && g_uvm_global.conf_computing_enabled)
mem_alloc_params.dma_owner = gpu;
if (attrs.is_cacheable) {
// At most 1 GPU can have this memory cached, in which case it is
// the 'owner' GPU.
if (va_range->semaphore_pool.owner != NULL) {
UVM_DBG_PRINT("Caching of semaphore pool requested on >1 GPU.");
status = NV_ERR_INVALID_ARGUMENT;
goto error;
}
va_range->semaphore_pool.owner = gpu;
}
va_range->semaphore_pool.gpu_attrs[uvm_id_gpu_index(gpu->id)] = attrs;
}
status = uvm_mem_alloc(&mem_alloc_params, &va_range->semaphore_pool.mem);
if (status != NV_OK)
goto error;
status = uvm_mem_map_cpu_kernel(va_range->semaphore_pool.mem);
if (status != NV_OK)
goto error;
if (out_va_range)
*out_va_range = va_range;
return NV_OK;
error:
uvm_va_range_destroy(va_range, NULL);
return status;
}
static void uvm_va_range_destroy_managed(uvm_va_range_t *va_range)
{
uvm_va_block_t *block;
uvm_va_block_t *block_tmp;
uvm_perf_event_data_t event_data;
NV_STATUS status;
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
if (va_range->blocks) {
// Unmap and drop our ref count on each block
for_each_va_block_in_va_range_safe(va_range, block, block_tmp)
uvm_va_block_kill(block);
uvm_kvfree(va_range->blocks);
}
event_data.range_destroy.range = va_range;
uvm_perf_event_notify(&va_range->va_space->perf_events, UVM_PERF_EVENT_RANGE_DESTROY, &event_data);
status = uvm_range_group_assign_range(va_range->va_space, NULL, va_range->node.start, va_range->node.end);
UVM_ASSERT(status == NV_OK);
}
static void uvm_va_range_destroy_external(uvm_va_range_t *va_range, struct list_head *deferred_free_list)
{
uvm_gpu_t *gpu;
uvm_processor_mask_cache_free(va_range->external.retained_mask);
if (uvm_processor_mask_empty(&va_range->external.mapped_gpus))
return;
UVM_ASSERT(deferred_free_list);
for_each_va_space_gpu_in_mask(gpu, va_range->va_space, &va_range->external.mapped_gpus) {
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, gpu);
uvm_ext_gpu_map_t *ext_map, *ext_map_next;
uvm_mutex_lock(&range_tree->lock);
uvm_ext_gpu_map_for_each_safe(ext_map, ext_map_next, va_range, gpu)
uvm_ext_gpu_map_destroy(va_range, ext_map, deferred_free_list);
uvm_mutex_unlock(&range_tree->lock);
}
UVM_ASSERT(uvm_processor_mask_empty(&va_range->external.mapped_gpus));
}
static void uvm_va_range_destroy_channel(uvm_va_range_t *va_range)
{
uvm_gpu_va_space_t *gpu_va_space = va_range->channel.gpu_va_space;
uvm_membar_t membar;
UVM_ASSERT(va_range->channel.ref_count == 0);
// Unmap the buffer
if (gpu_va_space && va_range->channel.pt_range_vec.ranges) {
membar = uvm_hal_downgrade_membar_type(gpu_va_space->gpu, va_range->channel.aperture == UVM_APERTURE_VID);
uvm_page_table_range_vec_clear_ptes(&va_range->channel.pt_range_vec, membar);
uvm_page_table_range_vec_deinit(&va_range->channel.pt_range_vec);
}
list_del(&va_range->channel.list_node);
// Channel unregister handles releasing this descriptor back to RM
va_range->channel.rm_descriptor = 0;
}
static void uvm_va_range_destroy_sked_reflected(uvm_va_range_t *va_range)
{
uvm_gpu_va_space_t *gpu_va_space = va_range->sked_reflected.gpu_va_space;
if (!gpu_va_space || !va_range->sked_reflected.pt_range_vec.ranges)
return;
// The SKED reflected mapping has no physical backing and hence no physical
// accesses can be pending to it and no membar is needed.
uvm_page_table_range_vec_clear_ptes(&va_range->sked_reflected.pt_range_vec, UVM_MEMBAR_NONE);
uvm_page_table_range_vec_deinit(&va_range->sked_reflected.pt_range_vec);
va_range->sked_reflected.gpu_va_space = NULL;
}
static void uvm_va_range_destroy_semaphore_pool(uvm_va_range_t *va_range)
{
NV_STATUS status = uvm_tracker_wait_deinit(&va_range->semaphore_pool.tracker);
if (status != NV_OK) {
UVM_ASSERT_MSG(status == uvm_global_get_status(),
"uvm_tracker_wait() returned %d (%s) in uvm_va_range_destroy_semaphore_pool()\n",
status,
nvstatusToString(status));
}
uvm_mem_free(va_range->semaphore_pool.mem);
va_range->semaphore_pool.mem = NULL;
}
void uvm_va_range_destroy(uvm_va_range_t *va_range, struct list_head *deferred_free_list)
{
if (!va_range)
return;
if (!RB_EMPTY_NODE(&va_range->node.rb_node))
uvm_range_tree_remove(&va_range->va_space->va_range_tree, &va_range->node);
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_INVALID:
// Skip partially-created ranges with unset types
break;
case UVM_VA_RANGE_TYPE_MANAGED:
uvm_va_range_destroy_managed(va_range);
break;
case UVM_VA_RANGE_TYPE_EXTERNAL:
uvm_va_range_destroy_external(va_range, deferred_free_list);
break;
case UVM_VA_RANGE_TYPE_CHANNEL:
uvm_va_range_destroy_channel(va_range);
break;
case UVM_VA_RANGE_TYPE_SKED_REFLECTED:
uvm_va_range_destroy_sked_reflected(va_range);
break;
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
uvm_va_range_destroy_semaphore_pool(va_range);
break;
default:
UVM_ASSERT_MSG(0, "[0x%llx, 0x%llx] has type %d\n",
va_range->node.start, va_range->node.end, va_range->type);
}
kmem_cache_free(g_uvm_va_range_cache, va_range);
}
void uvm_va_range_zombify(uvm_va_range_t *va_range)
{
if (!va_range)
return;
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
UVM_ASSERT(va_range->managed.vma_wrapper);
// Destroy will be done by uvm_destroy_vma_managed
va_range->managed.vma_wrapper = NULL;
}
NV_STATUS uvm_api_clean_up_zombie_resources(UVM_CLEAN_UP_ZOMBIE_RESOURCES_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range, *va_range_next;
uvm_va_space_down_write(va_space);
uvm_for_each_va_range_safe(va_range, va_range_next, va_space) {
if (uvm_va_range_is_managed_zombie(va_range))
uvm_va_range_destroy(va_range, NULL);
}
uvm_va_space_up_write(va_space);
return NV_OK;
}
NV_STATUS uvm_api_validate_va_range(UVM_VALIDATE_VA_RANGE_PARAMS *params, struct file *filp)
{
NV_STATUS status = NV_ERR_INVALID_ADDRESS;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range;
uvm_va_space_down_read(va_space);
va_range = uvm_va_range_find(va_space, params->base);
if (va_range && va_range->node.start == params->base && va_range->node.end + 1 == params->base + params->length)
status = NV_OK;
uvm_va_space_up_read(va_space);
return status;
}
static NV_STATUS va_range_add_gpu_va_space_managed(uvm_va_range_t *va_range,
uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm)
{
uvm_va_space_t *va_space = va_range->va_space;
uvm_gpu_t *gpu = gpu_va_space->gpu;
NV_STATUS status = NV_OK;
const bool should_add_remote_mappings =
uvm_processor_mask_test(&uvm_va_range_get_policy(va_range)->accessed_by, gpu->id) ||
uvm_processor_mask_test(&va_range->uvm_lite_gpus, gpu->id);
// By this time, the gpu is already in the registration mask.
const bool should_disable_read_duplication =
uvm_va_range_get_policy(va_range)->read_duplication == UVM_READ_DUPLICATION_ENABLED &&
(uvm_va_space_can_read_duplicate(va_space, NULL) != uvm_va_space_can_read_duplicate(va_space, gpu));
// Combine conditions to perform a single VA block traversal
if (gpu_va_space->ats.enabled || should_add_remote_mappings || should_disable_read_duplication) {
uvm_va_block_t *va_block;
uvm_va_block_context_t *va_block_context = uvm_va_space_block_context(va_space, mm);
// TODO: Bug 2090378. Consolidate all per-VA block operations within
// uvm_va_block_add_gpu_va_space so we only need to take the VA block
// once.
for_each_va_block_in_va_range(va_range, va_block) {
if (gpu_va_space->ats.enabled) {
// Notify that a new GPU VA space has been created. This is only
// currently used for PDE1 pre-population on ATS systems.
status = UVM_VA_BLOCK_LOCK_RETRY(va_block, NULL, uvm_va_block_add_gpu_va_space(va_block, gpu_va_space));
if (status != NV_OK)
break;
}
if (should_add_remote_mappings) {
// Now that we have a GPU VA space, map any VA ranges for which
// this GPU is a UVM-Lite GPU or has accessed_by set.
status = uvm_va_block_set_accessed_by(va_block, va_block_context, gpu->id);
if (status != NV_OK)
break;
}
if (should_disable_read_duplication) {
status = uvm_va_block_unset_read_duplication(va_block, va_block_context);
if (status != NV_OK)
break;
}
}
}
return status;
}
static NV_STATUS va_range_add_gpu_va_space_semaphore_pool(uvm_va_range_t *va_range, uvm_gpu_t *gpu)
{
uvm_mem_gpu_mapping_attrs_t *attrs;
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL);
UVM_ASSERT(uvm_mem_mapped_on_gpu_kernel(va_range->semaphore_pool.mem, gpu));
attrs = &va_range->semaphore_pool.gpu_attrs[uvm_id_gpu_index(gpu->id)];
return uvm_mem_map_gpu_user(va_range->semaphore_pool.mem,
gpu,
va_range->va_space,
(void *)va_range->node.start,
attrs);
}
NV_STATUS uvm_va_range_add_gpu_va_space(uvm_va_range_t *va_range,
uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm)
{
UVM_ASSERT(va_range->type < UVM_VA_RANGE_TYPE_MAX);
if (va_range->inject_add_gpu_va_space_error) {
va_range->inject_add_gpu_va_space_error = false;
return NV_ERR_NO_MEMORY;
}
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
return va_range_add_gpu_va_space_managed(va_range, gpu_va_space, mm);
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
return va_range_add_gpu_va_space_semaphore_pool(va_range, gpu_va_space->gpu);
default:
return NV_OK;
}
}
static void va_range_remove_gpu_va_space_managed(uvm_va_range_t *va_range,
uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm)
{
uvm_va_block_t *va_block;
uvm_va_space_t *va_space = va_range->va_space;
bool should_enable_read_duplicate;
uvm_va_block_context_t *va_block_context = uvm_va_space_block_context(va_space, mm);
should_enable_read_duplicate =
uvm_va_range_get_policy(va_range)->read_duplication == UVM_READ_DUPLICATION_ENABLED &&
uvm_va_space_can_read_duplicate(va_space, NULL) != uvm_va_space_can_read_duplicate(va_space, gpu_va_space->gpu);
for_each_va_block_in_va_range(va_range, va_block) {
uvm_mutex_lock(&va_block->lock);
uvm_va_block_remove_gpu_va_space(va_block, gpu_va_space, va_block_context);
uvm_mutex_unlock(&va_block->lock);
if (should_enable_read_duplicate)
uvm_va_block_set_read_duplication(va_block, va_block_context);
}
}
static void va_range_remove_gpu_va_space_external(uvm_va_range_t *va_range,
uvm_gpu_t *gpu,
struct list_head *deferred_free_list)
{
uvm_ext_gpu_range_tree_t *range_tree;
uvm_ext_gpu_map_t *ext_map, *ext_map_next;
UVM_ASSERT(deferred_free_list);
range_tree = uvm_ext_gpu_range_tree(va_range, gpu);
uvm_mutex_lock(&range_tree->lock);
uvm_ext_gpu_map_for_each_safe(ext_map, ext_map_next, va_range, gpu)
uvm_ext_gpu_map_destroy(va_range, ext_map, deferred_free_list);
uvm_mutex_unlock(&range_tree->lock);
}
static void va_range_remove_gpu_va_space_semaphore_pool(uvm_va_range_t *va_range, uvm_gpu_t *gpu)
{
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL);
if (g_uvm_global.conf_computing_enabled && (va_range->semaphore_pool.mem->dma_owner == gpu))
uvm_va_range_destroy(va_range, NULL);
else
uvm_mem_unmap_gpu_user(va_range->semaphore_pool.mem, gpu);
}
void uvm_va_range_remove_gpu_va_space(uvm_va_range_t *va_range,
uvm_gpu_va_space_t *gpu_va_space,
struct mm_struct *mm,
struct list_head *deferred_free_list)
{
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
va_range_remove_gpu_va_space_managed(va_range, gpu_va_space, mm);
break;
case UVM_VA_RANGE_TYPE_EXTERNAL:
va_range_remove_gpu_va_space_external(va_range, gpu_va_space->gpu, deferred_free_list);
break;
case UVM_VA_RANGE_TYPE_CHANNEL:
// All channels under this GPU VA space should've been removed before
// removing the GPU VA space.
UVM_ASSERT(va_range->channel.gpu_va_space != gpu_va_space);
break;
case UVM_VA_RANGE_TYPE_SKED_REFLECTED:
if (va_range->sked_reflected.gpu_va_space == gpu_va_space)
uvm_va_range_destroy_sked_reflected(va_range);
break;
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
va_range_remove_gpu_va_space_semaphore_pool(va_range, gpu_va_space->gpu);
break;
default:
UVM_ASSERT_MSG(0, "[0x%llx, 0x%llx] has type %d\n",
va_range->node.start, va_range->node.end, va_range->type);
}
}
static NV_STATUS uvm_va_range_enable_peer_managed(uvm_va_range_t *va_range, uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
NV_STATUS status;
uvm_va_block_t *va_block;
bool gpu0_accessed_by = uvm_processor_mask_test(&uvm_va_range_get_policy(va_range)->accessed_by, gpu0->id);
bool gpu1_accessed_by = uvm_processor_mask_test(&uvm_va_range_get_policy(va_range)->accessed_by, gpu1->id);
uvm_va_space_t *va_space = va_range->va_space;
uvm_va_block_context_t *va_block_context = uvm_va_space_block_context(va_space, NULL);
for_each_va_block_in_va_range(va_range, va_block) {
// TODO: Bug 1767224: Refactor the uvm_va_block_set_accessed_by logic
// into uvm_va_block_enable_peer.
uvm_mutex_lock(&va_block->lock);
status = uvm_va_block_enable_peer(va_block, gpu0, gpu1);
uvm_mutex_unlock(&va_block->lock);
if (status != NV_OK)
return status;
// For UVM-Lite at most one GPU needs to map the peer GPU if it's the
// preferred location, but it doesn't hurt to just try mapping both.
if (gpu0_accessed_by) {
status = uvm_va_block_set_accessed_by(va_block,
va_block_context,
gpu0->id);
if (status != NV_OK)
return status;
}
if (gpu1_accessed_by) {
status = uvm_va_block_set_accessed_by(va_block,
va_block_context,
gpu1->id);
if (status != NV_OK)
return status;
}
}
return NV_OK;
}
NV_STATUS uvm_va_range_enable_peer(uvm_va_range_t *va_range, uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
return uvm_va_range_enable_peer_managed(va_range, gpu0, gpu1);
case UVM_VA_RANGE_TYPE_EXTERNAL:
// UVM_VA_RANGE_TYPE_EXTERNAL doesn't create new mappings when enabling peer access
return NV_OK;
case UVM_VA_RANGE_TYPE_CHANNEL:
// UVM_VA_RANGE_TYPE_CHANNEL should never have peer mappings
return NV_OK;
case UVM_VA_RANGE_TYPE_SKED_REFLECTED:
// UVM_VA_RANGE_TYPE_SKED_REFLECTED should never have peer mappings
return NV_OK;
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
// UVM_VA_RANGE_TYPE_SEMAPHORE_POOL should never have peer mappings
return NV_OK;
default:
UVM_ASSERT_MSG(0, "[0x%llx, 0x%llx] has type %d\n",
va_range->node.start, va_range->node.end, va_range->type);
return NV_ERR_NOT_SUPPORTED;
}
}
static void uvm_va_range_disable_peer_external(uvm_va_range_t *va_range,
uvm_gpu_t *mapping_gpu,
uvm_gpu_t *owning_gpu,
struct list_head *deferred_free_list)
{
uvm_ext_gpu_range_tree_t *range_tree;
uvm_ext_gpu_map_t *ext_map, *ext_map_next;
range_tree = uvm_ext_gpu_range_tree(va_range, mapping_gpu);
uvm_mutex_lock(&range_tree->lock);
uvm_ext_gpu_map_for_each_safe(ext_map, ext_map_next, va_range, mapping_gpu) {
if (ext_map->owning_gpu == owning_gpu && (!ext_map->is_sysmem || ext_map->is_egm)) {
UVM_ASSERT(deferred_free_list);
uvm_ext_gpu_map_destroy(va_range, ext_map, deferred_free_list);
}
}
uvm_mutex_unlock(&range_tree->lock);
}
static void uvm_va_range_disable_peer_managed(uvm_va_range_t *va_range, uvm_gpu_t *gpu0, uvm_gpu_t *gpu1)
{
uvm_va_block_t *va_block;
uvm_gpu_t *uvm_lite_gpu_to_unmap = NULL;
bool uvm_lite_mode = uvm_processor_mask_test(&va_range->uvm_lite_gpus, gpu0->id) &&
uvm_processor_mask_test(&va_range->uvm_lite_gpus, gpu1->id);
if (uvm_lite_mode) {
// In UVM-Lite mode, the UVM-Lite GPUs can only have mappings to the the
// preferred location. If peer mappings are being disabled to the
// preferred location, then unmap the other GPU.
// Nothing to do otherwise.
if (uvm_va_policy_preferred_location_equal(uvm_va_range_get_policy(va_range), gpu0->id, NUMA_NO_NODE))
uvm_lite_gpu_to_unmap = gpu1;
else if (uvm_va_policy_preferred_location_equal(uvm_va_range_get_policy(va_range), gpu1->id, NUMA_NO_NODE))
uvm_lite_gpu_to_unmap = gpu0;
else
return;
}
for_each_va_block_in_va_range(va_range, va_block) {
uvm_mutex_lock(&va_block->lock);
if (uvm_lite_mode)
uvm_va_block_unmap_preferred_location_uvm_lite(va_block, uvm_lite_gpu_to_unmap);
else
uvm_va_block_disable_peer(va_block, gpu0, gpu1);
uvm_mutex_unlock(&va_block->lock);
}
if (uvm_lite_mode && !uvm_range_group_all_migratable(va_range->va_space, va_range->node.start, va_range->node.end)) {
UVM_ASSERT(uvm_lite_gpu_to_unmap);
// Migration is prevented, but we had to unmap a UVM-Lite GPU. Update
// the accessed by and UVM-Lite GPUs masks as it cannot be considered a
// UVM-Lite GPU any more.
uvm_va_range_unset_accessed_by(va_range, uvm_lite_gpu_to_unmap->id, NULL);
}
}
void uvm_va_range_disable_peer(uvm_va_range_t *va_range,
uvm_gpu_t *gpu0,
uvm_gpu_t *gpu1,
struct list_head *deferred_free_list)
{
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
uvm_va_range_disable_peer_managed(va_range, gpu0, gpu1);
break;
case UVM_VA_RANGE_TYPE_EXTERNAL:
// If GPU 0 has a mapping to GPU 1, remove GPU 0's mapping
uvm_va_range_disable_peer_external(va_range, gpu0, gpu1, deferred_free_list);
// If GPU 1 has a mapping to GPU 0, remove GPU 1's mapping
uvm_va_range_disable_peer_external(va_range, gpu1, gpu0, deferred_free_list);
break;
case UVM_VA_RANGE_TYPE_CHANNEL:
// UVM_VA_RANGE_TYPE_CHANNEL should never have peer mappings
break;
case UVM_VA_RANGE_TYPE_SKED_REFLECTED:
// UVM_VA_RANGE_TYPE_SKED_REFLECTED should never have peer mappings
break;
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
// UVM_VA_RANGE_TYPE_SEMAPHORE_POOL should never have peer mappings
break;
default:
UVM_ASSERT_MSG(0, "[0x%llx, 0x%llx] has type %d\n",
va_range->node.start, va_range->node.end, va_range->type);
}
}
static NV_STATUS va_range_register_gpu_semaphore_pool(uvm_va_range_t *va_range, uvm_gpu_t *gpu)
{
// TODO: Bug 1812419: pass GPU mapping attributes to uvm_mem_map_gpu_kernel
// once that function accepts them.
return uvm_mem_map_gpu_kernel(va_range->semaphore_pool.mem, gpu);
}
NV_STATUS uvm_va_range_register_gpu(uvm_va_range_t *va_range, uvm_gpu_t *gpu)
{
UVM_ASSERT(va_range->type < UVM_VA_RANGE_TYPE_MAX);
uvm_assert_rwsem_locked_write(&va_range->va_space->lock);
if (va_range->type == UVM_VA_RANGE_TYPE_SEMAPHORE_POOL)
return va_range_register_gpu_semaphore_pool(va_range, gpu);
return NV_OK;
}
static void va_range_unregister_gpu_managed(uvm_va_range_t *va_range, uvm_gpu_t *gpu, struct mm_struct *mm)
{
uvm_va_block_t *va_block;
// Reset preferred location and accessed-by of VA ranges if needed
// Note: ignoring the return code of uvm_va_range_set_preferred_location since this
// will only return on error when setting a preferred location, not on a reset
if (uvm_va_policy_preferred_location_equal(uvm_va_range_get_policy(va_range), gpu->id, NUMA_NO_NODE))
(void)uvm_va_range_set_preferred_location(va_range, UVM_ID_INVALID, NUMA_NO_NODE, mm, NULL);
uvm_va_range_unset_accessed_by(va_range, gpu->id, NULL);
// Migrate and free any remaining resident allocations on this GPU
for_each_va_block_in_va_range(va_range, va_block)
uvm_va_block_unregister_gpu(va_block, gpu, mm);
}
// The GPU being unregistered can't have any remaining mappings, since those
// were removed when the corresponding GPU VA space was removed. However, other
// GPUs could still have mappings to memory resident on this GPU, so we have to
// unmap those.
static void va_range_unregister_gpu_external(uvm_va_range_t *va_range,
uvm_gpu_t *gpu,
struct list_head *deferred_free_list)
{
uvm_ext_gpu_map_t *ext_map, *ext_map_next;
uvm_gpu_t *other_gpu;
for_each_va_space_gpu_in_mask(other_gpu, va_range->va_space, &va_range->external.mapped_gpus) {
uvm_ext_gpu_range_tree_t *range_tree = uvm_ext_gpu_range_tree(va_range, other_gpu);
UVM_ASSERT(other_gpu != gpu);
uvm_mutex_lock(&range_tree->lock);
uvm_ext_gpu_map_for_each_safe(ext_map, ext_map_next, va_range, other_gpu) {
if (ext_map->owning_gpu == gpu) {
UVM_ASSERT(deferred_free_list);
uvm_ext_gpu_map_destroy(va_range, ext_map, deferred_free_list);
}
}
uvm_mutex_unlock(&range_tree->lock);
}
}
static void va_range_unregister_gpu_semaphore_pool(uvm_va_range_t *va_range, uvm_gpu_t *gpu)
{
NV_STATUS status;
// Ranges for this GPU should have been previously unmapped from the user VA
// space during GPU VA space unregister, which should have already happened.
UVM_ASSERT(!uvm_mem_mapped_on_gpu_user(va_range->semaphore_pool.mem, gpu));
UVM_ASSERT(uvm_mem_mapped_on_gpu_kernel(va_range->semaphore_pool.mem, gpu));
uvm_mutex_lock(&va_range->semaphore_pool.tracker_lock);
status = uvm_tracker_wait(&va_range->semaphore_pool.tracker);
uvm_mutex_unlock(&va_range->semaphore_pool.tracker_lock);
if (status != NV_OK)
UVM_ASSERT(status == uvm_global_get_status());
uvm_mem_unmap_gpu_phys(va_range->semaphore_pool.mem, gpu);
va_range->semaphore_pool.gpu_attrs[uvm_id_gpu_index(gpu->id)] = va_range->semaphore_pool.default_gpu_attrs;
if (va_range->semaphore_pool.owner == gpu)
va_range->semaphore_pool.owner = NULL;
}
void uvm_va_range_unregister_gpu(uvm_va_range_t *va_range,
uvm_gpu_t *gpu,
struct mm_struct *mm,
struct list_head *deferred_free_list)
{
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
va_range_unregister_gpu_managed(va_range, gpu, mm);
break;
case UVM_VA_RANGE_TYPE_EXTERNAL:
va_range_unregister_gpu_external(va_range, gpu, deferred_free_list);
break;
case UVM_VA_RANGE_TYPE_CHANNEL:
// All ranges should have been destroyed by GPU VA space unregister,
// which should have already happened.
UVM_ASSERT(va_range->channel.gpu_va_space->gpu != gpu);
break;
case UVM_VA_RANGE_TYPE_SKED_REFLECTED:
// All ranges for this GPU should have been unmapped by GPU VA space
// unregister (uvm_va_range_destroy_sked_reflected), which should
// have already happened.
if (va_range->sked_reflected.gpu_va_space != NULL)
UVM_ASSERT(va_range->sked_reflected.gpu_va_space->gpu != gpu);
break;
case UVM_VA_RANGE_TYPE_SEMAPHORE_POOL:
va_range_unregister_gpu_semaphore_pool(va_range, gpu);
break;
default:
UVM_ASSERT_MSG(0, "[0x%llx, 0x%llx] has type %d\n",
va_range->node.start, va_range->node.end, va_range->type);
}
}
// Split existing's blocks into new. new's blocks array has already been
// allocated. This is called before existing's range node is split, so it
// overlaps new. new is always in the upper region of existing.
//
// The caller will do the range tree split.
//
// If this fails it leaves existing unchanged.
static NV_STATUS uvm_va_range_split_blocks(uvm_va_range_t *existing, uvm_va_range_t *new)
{
uvm_va_block_t *old_block, *block = NULL;
size_t existing_blocks, split_index, new_index = 0;
NV_STATUS status;
UVM_ASSERT(new->node.start > existing->node.start);
UVM_ASSERT(new->node.end <= existing->node.end);
split_index = uvm_va_range_block_index(existing, new->node.start);
// Handle a block spanning the split point
if (block_calc_start(existing, split_index) != new->node.start) {
// If a populated block actually spans the split point, we have to split
// the block. Otherwise just account for the extra entry in the arrays.
old_block = uvm_va_range_block(existing, split_index);
if (old_block) {
UVM_ASSERT(old_block->start < new->node.start);
status = uvm_va_block_split(old_block, new->node.start - 1, &block, new);
if (status != NV_OK)
return status;
// No memory barrier is needed since we're holding the va_space lock in
// write mode, so no other thread can access the blocks array.
atomic_long_set(&new->blocks[0], (long)block);
}
new_index = 1;
}
// uvm_va_block_split gets first crack at injecting an error. If it did so,
// we wouldn't be here. However, not all va_range splits will call
// uvm_va_block_split so we need an extra check here. We can't push this
// injection later since all paths past this point assume success, so they
// modify the state of 'existing' range.
//
// Even if there was no block split above, there is no guarantee that one
// of our blocks doesn't have the 'inject_split_error' flag set. We clear
// that here to prevent multiple errors caused by one
// 'uvm_test_va_range_inject_split_error' call.
if (existing->inject_split_error) {
UVM_ASSERT(!block);
existing->inject_split_error = false;
for_each_va_block_in_va_range(existing, block) {
uvm_va_block_test_t *block_test = uvm_va_block_get_test(block);
if (block_test)
block_test->inject_split_error = false;
}
return NV_ERR_NO_MEMORY;
}
existing_blocks = split_index + new_index;
// Copy existing's blocks over to the new range, accounting for the explicit
// assignment above in case we did a block split. There are two general
// cases:
//
// No split:
// split_index
// v
// existing (before) [----- A ----][----- B ----][----- C ----]
// existing (after) [----- A ----]
// new [----- B ----][----- C ----]
//
// Split:
// split_index
// v
// existing (before) [----- A ----][----- B ----][----- C ----]
// existing (after [----- A ----][- B -]
// new [- N -][----- C ----]
// ^new->blocks[0]
// Note, if we split the last block of existing, this won't iterate at all.
for (; new_index < uvm_va_range_num_blocks(new); new_index++) {
block = uvm_va_range_block(existing, split_index + new_index);
if (!block) {
// new's array was cleared at allocation
UVM_ASSERT(uvm_va_range_block(new, new_index) == NULL);
continue;
}
// As soon as we make this assignment and drop the lock, the reverse
// mapping code can start looking at new, so new must be ready to go.
uvm_mutex_lock(&block->lock);
UVM_ASSERT(block->va_range == existing);
block->va_range = new;
uvm_mutex_unlock(&block->lock);
// No memory barrier is needed since we're holding the va_space lock in
// write mode, so no other thread can access the blocks array.
atomic_long_set(&new->blocks[new_index], (long)block);
atomic_long_set(&existing->blocks[split_index + new_index], (long)NULL);
}
blocks_array_shrink(existing, existing_blocks);
return NV_OK;
}
NV_STATUS uvm_va_range_split(uvm_va_range_t *existing_va_range,
NvU64 new_end,
uvm_va_range_t **new_va_range)
{
uvm_va_space_t *va_space = existing_va_range->va_space;
uvm_va_range_t *new = NULL;
uvm_perf_event_data_t event_data;
NV_STATUS status;
UVM_ASSERT(existing_va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
UVM_ASSERT(new_end > existing_va_range->node.start);
UVM_ASSERT(new_end < existing_va_range->node.end);
UVM_ASSERT(PAGE_ALIGNED(new_end + 1));
uvm_assert_rwsem_locked_write(&va_space->lock);
new = uvm_va_range_alloc_managed(va_space, new_end + 1, existing_va_range->node.end);
if (!new) {
status = NV_ERR_NO_MEMORY;
goto error;
}
// The new va_range is under the same vma. If this is a uvm_vm_open, the
// caller takes care of updating existing's vma_wrapper for us.
new->managed.vma_wrapper = existing_va_range->managed.vma_wrapper;
// Copy over state before splitting blocks so any block lookups happening
// concurrently on the eviction path will see the new range's data.
uvm_va_range_get_policy(new)->read_duplication = uvm_va_range_get_policy(existing_va_range)->read_duplication;
uvm_va_range_get_policy(new)->preferred_location = uvm_va_range_get_policy(existing_va_range)->preferred_location;
uvm_va_range_get_policy(new)->preferred_nid = uvm_va_range_get_policy(existing_va_range)->preferred_nid;
uvm_processor_mask_copy(&uvm_va_range_get_policy(new)->accessed_by,
&uvm_va_range_get_policy(existing_va_range)->accessed_by);
uvm_processor_mask_copy(&new->uvm_lite_gpus, &existing_va_range->uvm_lite_gpus);
status = uvm_va_range_split_blocks(existing_va_range, new);
if (status != NV_OK)
goto error;
// Finally, update the VA range tree
uvm_range_tree_split(&va_space->va_range_tree, &existing_va_range->node, &new->node);
if (new->type == UVM_VA_RANGE_TYPE_MANAGED) {
event_data.range_shrink.range = new;
uvm_perf_event_notify(&va_space->perf_events, UVM_PERF_EVENT_RANGE_SHRINK, &event_data);
}
if (new_va_range)
*new_va_range = new;
return NV_OK;
error:
uvm_va_range_destroy(new, NULL);
return status;
}
uvm_va_range_t *uvm_va_range_find(uvm_va_space_t *va_space, NvU64 addr)
{
uvm_assert_rwsem_locked(&va_space->lock);
return uvm_va_range_container(uvm_range_tree_find(&va_space->va_range_tree, addr));
}
uvm_va_range_t *uvm_va_space_iter_first(uvm_va_space_t *va_space, NvU64 start, NvU64 end)
{
uvm_range_tree_node_t *node = uvm_range_tree_iter_first(&va_space->va_range_tree, start, end);
return uvm_va_range_container(node);
}
uvm_va_range_t *uvm_va_space_iter_next(uvm_va_range_t *va_range, NvU64 end)
{
uvm_range_tree_node_t *node;
// Handling a NULL va_range here makes uvm_for_each_va_range_in_safe much
// less messy
if (!va_range)
return NULL;
node = uvm_range_tree_iter_next(&va_range->va_space->va_range_tree, &va_range->node, end);
return uvm_va_range_container(node);
}
size_t uvm_va_range_num_blocks(uvm_va_range_t *va_range)
{
NvU64 start = UVM_VA_BLOCK_ALIGN_DOWN(va_range->node.start);
NvU64 end = UVM_VA_BLOCK_ALIGN_UP(va_range->node.end); // End is inclusive
return (end - start) / UVM_VA_BLOCK_SIZE;
}
size_t uvm_va_range_block_index(uvm_va_range_t *va_range, NvU64 addr)
{
size_t addr_index, start_index, index;
UVM_ASSERT(addr >= va_range->node.start);
UVM_ASSERT(addr <= va_range->node.end);
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
// Each block will cover as much space as possible within the aligned
// UVM_VA_BLOCK_SIZE, up to the parent VA range boundaries. In other words,
// the entire VA space can be broken into UVM_VA_BLOCK_SIZE chunks. Even if
// there are multiple ranges (and thus multiple blocks) per actual
// UVM_VA_BLOCK_SIZE chunk, none of those will have more than 1 block unless
// they span a UVM_VA_BLOCK_SIZE alignment boundary.
addr_index = (size_t)(addr / UVM_VA_BLOCK_SIZE);
start_index = (size_t)(va_range->node.start / UVM_VA_BLOCK_SIZE);
index = addr_index - start_index;
UVM_ASSERT(index < uvm_va_range_num_blocks(va_range));
return index;
}
NV_STATUS uvm_va_range_block_create(uvm_va_range_t *va_range, size_t index, uvm_va_block_t **out_block)
{
uvm_va_block_t *block, *old;
NV_STATUS status;
block = uvm_va_range_block(va_range, index);
if (!block) {
// No block has been created here yet, so allocate one and attempt to
// insert it. Note that this runs the risk of an out-of-memory error
// when multiple threads race and all concurrently allocate a block for
// the same address. This should be extremely rare. There is also
// precedent in the Linux kernel, which does the same thing for demand-
// allocation of anonymous pages.
status = uvm_va_block_create(va_range,
block_calc_start(va_range, index),
block_calc_end(va_range, index),
&block);
if (status != NV_OK)
return status;
// Try to insert it
old = (uvm_va_block_t *)atomic_long_cmpxchg(&va_range->blocks[index],
(long)NULL,
(long)block);
if (old) {
// Someone else beat us on the insert
uvm_va_block_release(block);
block = old;
}
}
*out_block = block;
return NV_OK;
}
uvm_va_block_t *uvm_va_range_block_next(uvm_va_range_t *va_range, uvm_va_block_t *va_block)
{
uvm_va_space_t *va_space = va_range->va_space;
size_t i = 0;
uvm_assert_rwsem_locked(&va_space->lock);
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
if (va_block)
i = uvm_va_range_block_index(va_range, va_block->start) + 1;
for (; i < uvm_va_range_num_blocks(va_range); i++) {
va_block = uvm_va_range_block(va_range, i);
if (va_block) {
UVM_ASSERT(va_block->va_range == va_range);
UVM_ASSERT(uvm_va_range_block_index(va_range, va_block->start) == i);
return va_block;
}
}
return NULL;
}
static NV_STATUS range_unmap_mask(uvm_va_range_t *va_range,
const uvm_processor_mask_t *mask,
uvm_tracker_t *out_tracker)
{
uvm_va_space_t *va_space = va_range->va_space;
uvm_va_block_context_t *block_context = uvm_va_space_block_context(va_space, NULL);
uvm_va_block_t *block;
UVM_ASSERT_MSG(va_range->type == UVM_VA_RANGE_TYPE_MANAGED, "type 0x%x\n", va_range->type);
if (uvm_processor_mask_empty(mask))
return NV_OK;
for_each_va_block_in_va_range(va_range, block) {
NV_STATUS status;
uvm_va_block_region_t region = uvm_va_block_region_from_block(block);
uvm_mutex_lock(&block->lock);
status = uvm_va_block_unmap_mask(block, block_context, mask, region, NULL);
if (out_tracker)
uvm_tracker_add_tracker_safe(out_tracker, &block->tracker);
uvm_mutex_unlock(&block->lock);
if (status != NV_OK)
return status;
}
return NV_OK;
}
static NV_STATUS range_unmap(uvm_va_range_t *va_range, uvm_processor_id_t processor, uvm_tracker_t *out_tracker)
{
uvm_processor_mask_t *mask;
uvm_va_space_t *va_space = va_range->va_space;
uvm_assert_rwsem_locked_write(&va_space->lock);
mask = &va_space->unmap_mask;
UVM_ASSERT_MSG(va_range->type == UVM_VA_RANGE_TYPE_MANAGED, "type 0x%x\n", va_range->type);
uvm_processor_mask_zero(mask);
uvm_processor_mask_set(mask, processor);
return range_unmap_mask(va_range, mask, out_tracker);
}
static NV_STATUS range_map_uvm_lite_gpus(uvm_va_range_t *va_range, uvm_tracker_t *out_tracker)
{
NV_STATUS status = NV_OK;
uvm_va_block_t *va_block;
uvm_va_block_context_t *va_block_context = uvm_va_space_block_context(va_range->va_space, NULL);
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
if (uvm_processor_mask_empty(&va_range->uvm_lite_gpus))
return NV_OK;
for_each_va_block_in_va_range(va_range, va_block) {
// UVM-Lite GPUs always map with RWA
uvm_mutex_lock(&va_block->lock);
status = UVM_VA_BLOCK_RETRY_LOCKED(va_block, NULL,
uvm_va_block_map_mask(va_block,
va_block_context,
&va_range->uvm_lite_gpus,
uvm_va_block_region_from_block(va_block),
NULL,
UVM_PROT_READ_WRITE_ATOMIC,
UvmEventMapRemoteCauseCoherence));
if (status == NV_OK && out_tracker)
status = uvm_tracker_add_tracker(out_tracker, &va_block->tracker);
uvm_mutex_unlock(&va_block->lock);
if (status != NV_OK)
break;
}
return status;
}
// Calculate the mask of GPUs that should follow the UVM-Lite behaviour
static void calc_uvm_lite_gpus_mask(uvm_va_space_t *va_space,
uvm_processor_id_t preferred_location,
const uvm_processor_mask_t *accessed_by_mask,
uvm_processor_mask_t *uvm_lite_gpus)
{
uvm_gpu_id_t gpu_id;
uvm_assert_rwsem_locked_write(&va_space->lock);
// Zero out the mask first
uvm_processor_mask_zero(uvm_lite_gpus);
// If no preferred location is set then there are no GPUs following the UVM-Lite behavior
if (UVM_ID_IS_INVALID(preferred_location))
return;
// If the preferred location is a faultable GPU, then no GPUs should follow
// the UVM-Lite behaviour.
if (UVM_ID_IS_GPU(preferred_location) &&
uvm_processor_mask_test(&va_space->faultable_processors, preferred_location)) {
return;
}
// Otherwise add all non-faultable GPUs to the UVM-Lite mask that have
// accessed by set.
for_each_gpu_id_in_mask(gpu_id, accessed_by_mask) {
if (!uvm_processor_mask_test(&va_space->faultable_processors, gpu_id))
uvm_processor_mask_set(uvm_lite_gpus, gpu_id);
}
// And the preferred location if it's a GPU
if (UVM_ID_IS_GPU(preferred_location))
uvm_processor_mask_set(uvm_lite_gpus, preferred_location);
}
// Update the mask of GPUs that follow the UVM-Lite behaviour
static void range_update_uvm_lite_gpus_mask(uvm_va_range_t *va_range)
{
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
calc_uvm_lite_gpus_mask(va_range->va_space,
uvm_va_range_get_policy(va_range)->preferred_location,
&uvm_va_range_get_policy(va_range)->accessed_by,
&va_range->uvm_lite_gpus);
}
NV_STATUS uvm_va_range_set_preferred_location(uvm_va_range_t *va_range,
uvm_processor_id_t preferred_location,
int preferred_cpu_nid,
struct mm_struct *mm,
uvm_tracker_t *out_tracker)
{
NV_STATUS status = NV_OK;
uvm_processor_mask_t *all_uvm_lite_gpus = NULL;
uvm_processor_mask_t *new_uvm_lite_gpus = NULL;
uvm_processor_mask_t *set_accessed_by_processors = NULL;
uvm_range_group_range_iter_t iter;
uvm_range_group_range_t *rgr = NULL;
uvm_va_space_t *va_space = va_range->va_space;
uvm_va_block_t *va_block;
uvm_va_block_context_t *va_block_context;
uvm_va_policy_t *va_range_policy;
uvm_assert_rwsem_locked_write(&va_space->lock);
UVM_ASSERT(va_range->type == UVM_VA_RANGE_TYPE_MANAGED);
all_uvm_lite_gpus = uvm_processor_mask_cache_alloc();
if (!all_uvm_lite_gpus) {
status = NV_ERR_NO_MEMORY;
goto out;
}
new_uvm_lite_gpus = uvm_processor_mask_cache_alloc();
if (!new_uvm_lite_gpus) {
status = NV_ERR_NO_MEMORY;
goto out;
}
set_accessed_by_processors = uvm_processor_mask_cache_alloc();
if (!set_accessed_by_processors) {
status = NV_ERR_NO_MEMORY;
goto out;
}
va_range_policy = uvm_va_range_get_policy(va_range);
if (uvm_va_policy_preferred_location_equal(va_range_policy, preferred_location, preferred_cpu_nid))
goto out;
// Mark all range group ranges within this VA range as migrated since the preferred location has changed.
uvm_range_group_for_each_range_in(rgr, va_space, va_range->node.start, va_range->node.end) {
uvm_spin_lock(&rgr->range_group->migrated_ranges_lock);
if (list_empty(&rgr->range_group_migrated_list_node))
list_move_tail(&rgr->range_group_migrated_list_node, &rgr->range_group->migrated_ranges);
uvm_spin_unlock(&rgr->range_group->migrated_ranges_lock);
}
// Calculate the new UVM-Lite GPUs mask, but don't update va_range state so
// that we can keep block_page_check_mappings() happy while updating the
// mappings.
calc_uvm_lite_gpus_mask(va_space, preferred_location, &va_range_policy->accessed_by, new_uvm_lite_gpus);
// If the range contains non-migratable range groups, check that new UVM-Lite GPUs
// can all map the new preferred location.
if (!uvm_range_group_all_migratable(va_space, va_range->node.start, va_range->node.end) &&
UVM_ID_IS_VALID(preferred_location) &&
!uvm_processor_mask_subset(new_uvm_lite_gpus, &va_space->accessible_from[uvm_id_value(preferred_location)])) {
status = NV_ERR_INVALID_DEVICE;
goto out;
}
if (UVM_ID_IS_INVALID(preferred_location)) {
uvm_range_group_for_each_migratability_in_safe(&iter, va_space, va_range->node.start, va_range->node.end) {
if (!iter.migratable) {
// Clear the range group assocation for any unmigratable ranges if there is no preferred location
status = uvm_range_group_assign_range(va_space, NULL, iter.start, iter.end);
if (status != NV_OK)
goto out;
}
}
}
// Unmap all old and new UVM-Lite GPUs
// - GPUs that stop being UVM-Lite need to be unmapped so that they don't
// have stale mappings to the old preferred location.
// - GPUs that will continue to be UVM-Lite GPUs or are new UVM-Lite GPUs
// need to be unmapped so that the new preferred location can be mapped.
uvm_processor_mask_or(all_uvm_lite_gpus, &va_range->uvm_lite_gpus, new_uvm_lite_gpus);
status = range_unmap_mask(va_range, all_uvm_lite_gpus, out_tracker);
if (status != NV_OK)
goto out;
// GPUs that stop being UVM-Lite, but are in the accessed_by mask need to
// have any possible mappings established.
uvm_processor_mask_andnot(set_accessed_by_processors, &va_range->uvm_lite_gpus, new_uvm_lite_gpus);
// A GPU which had been in UVM-Lite mode before must still be in UVM-Lite
// mode if it is the new preferred location. Otherwise we'd have to be more
// careful below to not establish remote mappings to the new preferred
// location.
if (UVM_ID_IS_GPU(preferred_location))
UVM_ASSERT(!uvm_processor_mask_test(set_accessed_by_processors, preferred_location));
// The old preferred location should establish new remote mappings if it has
// accessed-by set.
if (UVM_ID_IS_VALID(va_range_policy->preferred_location))
uvm_processor_mask_set(set_accessed_by_processors, va_range_policy->preferred_location);
uvm_processor_mask_and(set_accessed_by_processors, set_accessed_by_processors, &va_range_policy->accessed_by);
// Now update the va_range state
va_range_policy->preferred_location = preferred_location;
va_range_policy->preferred_nid = preferred_cpu_nid;
uvm_processor_mask_copy(&va_range->uvm_lite_gpus, new_uvm_lite_gpus);
va_block_context = uvm_va_space_block_context(va_space, mm);
for_each_va_block_in_va_range(va_range, va_block) {
uvm_processor_id_t id;
uvm_va_block_region_t region = uvm_va_block_region_from_block(va_block);
for_each_id_in_mask(id, set_accessed_by_processors) {
status = uvm_va_block_set_accessed_by(va_block, va_block_context, id);
if (status != NV_OK)
goto out;
}
// Also, mark CPU pages as dirty and remove remote mappings from the new
// preferred location
uvm_mutex_lock(&va_block->lock);
status = UVM_VA_BLOCK_RETRY_LOCKED(va_block,
NULL,
uvm_va_block_set_preferred_location_locked(va_block,
va_block_context,
region));
if (out_tracker) {
NV_STATUS tracker_status;
tracker_status = uvm_tracker_add_tracker_safe(out_tracker, &va_block->tracker);
if (status == NV_OK)
status = tracker_status;
}
uvm_mutex_unlock(&va_block->lock);
if (status != NV_OK)
goto out;
}
// And lastly map all of the current UVM-Lite GPUs to the resident pages on
// the new preferred location. Anything that's not resident right now will
// get mapped on the next PreventMigration().
status = range_map_uvm_lite_gpus(va_range, out_tracker);
out:
uvm_processor_mask_cache_free(set_accessed_by_processors);
uvm_processor_mask_cache_free(new_uvm_lite_gpus);
uvm_processor_mask_cache_free(all_uvm_lite_gpus);
return status;
}
NV_STATUS uvm_va_range_set_accessed_by(uvm_va_range_t *va_range,
uvm_processor_id_t processor_id,
struct mm_struct *mm,
uvm_tracker_t *out_tracker)
{
NV_STATUS status = NV_OK;
uvm_va_block_t *va_block;
uvm_va_space_t *va_space = va_range->va_space;
uvm_va_policy_t *policy = uvm_va_range_get_policy(va_range);
uvm_va_block_context_t *va_block_context = uvm_va_space_block_context(va_space, mm);
uvm_processor_mask_t *new_uvm_lite_gpus;
// va_block_context->scratch_processor_mask cannot be used since
// range_unmap() calls uvm_va_space_block_context(), which re-
// initializes the VA block context structure.
new_uvm_lite_gpus = uvm_processor_mask_cache_alloc();
if (!new_uvm_lite_gpus)
return NV_ERR_NO_MEMORY;
// If the range belongs to a non-migratable range group and that processor_id is a non-faultable GPU,
// check it can map the preferred location
if (!uvm_range_group_all_migratable(va_space, va_range->node.start, va_range->node.end) &&
UVM_ID_IS_GPU(processor_id) &&
!uvm_processor_mask_test(&va_space->faultable_processors, processor_id) &&
!uvm_processor_mask_test(&va_space->accessible_from[uvm_id_value(policy->preferred_location)], processor_id)) {
status = NV_ERR_INVALID_DEVICE;
goto out;
}
uvm_processor_mask_set(&policy->accessed_by, processor_id);
// If a GPU is already a UVM-Lite GPU then there is nothing else to do.
if (uvm_processor_mask_test(&va_range->uvm_lite_gpus, processor_id))
goto out;
// Calculate the new UVM-Lite GPUs mask, but don't update it in the va range
// yet so that we can keep block_page_check_mappings() happy while updating
// the mappings.
calc_uvm_lite_gpus_mask(va_space, policy->preferred_location, &policy->accessed_by, new_uvm_lite_gpus);
if (uvm_processor_mask_test(new_uvm_lite_gpus, processor_id)) {
// GPUs that become UVM-Lite GPUs need to unmap everything so that they
// can map the preferred location.
status = range_unmap(va_range, processor_id, out_tracker);
if (status != NV_OK)
goto out;
}
uvm_processor_mask_copy(&va_range->uvm_lite_gpus, new_uvm_lite_gpus);
for_each_va_block_in_va_range(va_range, va_block) {
status = uvm_va_block_set_accessed_by(va_block, va_block_context, processor_id);
if (status != NV_OK)
goto out;
}
out:
uvm_processor_mask_cache_free(new_uvm_lite_gpus);
return status;
}
void uvm_va_range_unset_accessed_by(uvm_va_range_t *va_range,
uvm_processor_id_t processor_id,
uvm_tracker_t *out_tracker)
{
uvm_range_group_range_t *rgr = NULL;
// Mark all range group ranges within this VA range as migrated. We do this to force
// uvm_range_group_set_migration_policy to re-check the policy state since we're changing it here.
uvm_range_group_for_each_range_in(rgr, va_range->va_space, va_range->node.start, va_range->node.end) {
uvm_spin_lock(&rgr->range_group->migrated_ranges_lock);
if (list_empty(&rgr->range_group_migrated_list_node))
list_move_tail(&rgr->range_group_migrated_list_node, &rgr->range_group->migrated_ranges);
uvm_spin_unlock(&rgr->range_group->migrated_ranges_lock);
}
uvm_processor_mask_clear(&uvm_va_range_get_policy(va_range)->accessed_by, processor_id);
// If a UVM-Lite GPU is being removed from the accessed_by mask, it will
// also stop being a UVM-Lite GPU unless it's also the preferred location.
if (uvm_processor_mask_test(&va_range->uvm_lite_gpus, processor_id) &&
!uvm_va_policy_preferred_location_equal(uvm_va_range_get_policy(va_range), processor_id, NUMA_NO_NODE)) {
range_unmap(va_range, processor_id, out_tracker);
}
range_update_uvm_lite_gpus_mask(va_range);
}
NV_STATUS uvm_va_range_set_read_duplication(uvm_va_range_t *va_range, struct mm_struct *mm)
{
uvm_va_block_t *va_block;
uvm_va_block_context_t *va_block_context;
if (uvm_va_range_get_policy(va_range)->read_duplication == UVM_READ_DUPLICATION_ENABLED)
return NV_OK;
va_block_context = uvm_va_space_block_context(va_range->va_space, mm);
for_each_va_block_in_va_range(va_range, va_block) {
NV_STATUS status = uvm_va_block_set_read_duplication(va_block, va_block_context);
if (status != NV_OK)
return status;
}
return NV_OK;
}
NV_STATUS uvm_va_range_unset_read_duplication(uvm_va_range_t *va_range, struct mm_struct *mm)
{
uvm_va_block_t *va_block;
uvm_va_block_context_t *va_block_context;
NV_STATUS status;
if (uvm_va_range_get_policy(va_range)->read_duplication == UVM_READ_DUPLICATION_DISABLED)
return NV_OK;
va_block_context = uvm_va_space_block_context(va_range->va_space, mm);
for_each_va_block_in_va_range(va_range, va_block) {
status = uvm_va_block_unset_read_duplication(va_block, va_block_context);
if (status != NV_OK)
return status;
}
return NV_OK;
}
uvm_vma_wrapper_t *uvm_vma_wrapper_alloc(struct vm_area_struct *vma)
{
uvm_vma_wrapper_t *vma_wrapper = nv_kmem_cache_zalloc(g_uvm_vma_wrapper_cache, NV_UVM_GFP_FLAGS);
if (!vma_wrapper)
return NULL;
vma_wrapper->vma = vma;
uvm_init_rwsem(&vma_wrapper->lock, UVM_LOCK_ORDER_LEAF);
return vma_wrapper;
}
void uvm_vma_wrapper_destroy(uvm_vma_wrapper_t *vma_wrapper)
{
if (!vma_wrapper)
return;
uvm_assert_rwsem_unlocked(&vma_wrapper->lock);
kmem_cache_free(g_uvm_vma_wrapper_cache, vma_wrapper);
}
static NvU64 sked_reflected_pte_maker(uvm_page_table_range_vec_t *range_vec, NvU64 offset, void *caller_data)
{
(void)caller_data;
return range_vec->tree->hal->make_sked_reflected_pte();
}
static NV_STATUS uvm_map_sked_reflected_range(uvm_va_space_t *va_space, UVM_MAP_DYNAMIC_PARALLELISM_REGION_PARAMS *params)
{
NV_STATUS status;
uvm_va_range_t *va_range = NULL;
uvm_gpu_t *gpu;
uvm_gpu_va_space_t *gpu_va_space;
uvm_page_tree_t *page_tables;
struct mm_struct *mm;
if (uvm_api_range_invalid_4k(params->base, params->length))
return NV_ERR_INVALID_ADDRESS;
// The mm needs to be locked in order to remove stale HMM va_blocks.
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_write(va_space);
gpu = uvm_va_space_get_gpu_by_uuid_with_gpu_va_space(va_space, ¶ms->gpuUuid);
if (!gpu) {
status = NV_ERR_INVALID_DEVICE;
goto done;
}
// Check if the GPU can access the VA
if (!uvm_gpu_can_address(gpu, params->base, params->length)) {
status = NV_ERR_OUT_OF_RANGE;
goto done;
}
gpu_va_space = va_space->gpu_va_spaces[uvm_id_gpu_index(gpu->id)];
page_tables = &gpu_va_space->page_tables;
// The VA range must exactly cover one supported GPU page
if (!is_power_of_2(params->length) ||
!IS_ALIGNED(params->base, params->length) ||
!uvm_mmu_page_size_supported(page_tables, params->length)) {
status = NV_ERR_INVALID_ADDRESS;
goto done;
}
status = uvm_va_range_create_sked_reflected(va_space, mm, params->base, params->length, &va_range);
if (status != NV_OK) {
UVM_DBG_PRINT_RL("Failed to create sked reflected VA range [0x%llx, 0x%llx)\n",
params->base, params->base + params->length);
goto done;
}
va_range->sked_reflected.gpu_va_space = gpu_va_space;
status = uvm_page_table_range_vec_init(page_tables,
va_range->node.start,
uvm_va_range_size(va_range),
params->length,
UVM_PMM_ALLOC_FLAGS_EVICT,
&va_range->sked_reflected.pt_range_vec);
if (status != NV_OK)
goto done;
status = uvm_page_table_range_vec_write_ptes(&va_range->sked_reflected.pt_range_vec,
UVM_MEMBAR_NONE, sked_reflected_pte_maker, NULL);
if (status != NV_OK)
goto done;
done:
if (status != NV_OK && va_range != NULL)
uvm_va_range_destroy(va_range, NULL);
uvm_va_space_up_write(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return status;
}
NV_STATUS uvm_api_map_dynamic_parallelism_region(UVM_MAP_DYNAMIC_PARALLELISM_REGION_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
// Notably the ranges created by the UvmMapDynamicParallelismRegion() API
// are referred to as "SKED reflected ranges" internally as it's more
// descriptive.
return uvm_map_sked_reflected_range(va_space, params);
}
NV_STATUS uvm_api_alloc_semaphore_pool(UVM_ALLOC_SEMAPHORE_POOL_PARAMS *params, struct file *filp)
{
NV_STATUS status;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range = NULL;
uvm_gpu_t *gpu;
struct mm_struct *mm;
if (uvm_api_range_invalid(params->base, params->length))
return NV_ERR_INVALID_ADDRESS;
if (params->gpuAttributesCount > UVM_MAX_GPUS_V2)
return NV_ERR_INVALID_ARGUMENT;
if (g_uvm_global.conf_computing_enabled && params->gpuAttributesCount == 0)
return NV_ERR_INVALID_ARGUMENT;
// The mm needs to be locked in order to remove stale HMM va_blocks.
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_write(va_space);
status = uvm_va_range_create_semaphore_pool(va_space,
mm,
params->base,
params->length,
params->perGpuAttributes,
params->gpuAttributesCount,
&va_range);
if (status != NV_OK)
goto unlock;
for_each_va_space_gpu(gpu, va_space) {
status = va_range_register_gpu_semaphore_pool(va_range, gpu);
if (status != NV_OK)
goto done;
if (!uvm_processor_mask_test(&va_space->registered_gpu_va_spaces, gpu->id))
continue;
status = va_range_add_gpu_va_space_semaphore_pool(va_range, gpu);
if (status != NV_OK)
goto done;
}
done:
if (status != NV_OK)
uvm_va_range_destroy(va_range, NULL);
unlock:
uvm_va_space_up_write(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return status;
}
NV_STATUS uvm_test_va_range_info(UVM_TEST_VA_RANGE_INFO_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space;
uvm_va_range_t *va_range;
uvm_processor_id_t processor_id;
uvm_va_policy_t *policy;
struct vm_area_struct *vma;
NV_STATUS status = NV_OK;
struct mm_struct *mm;
va_space = uvm_va_space_get(filp);
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_read(va_space);
va_range = uvm_va_range_find(va_space, params->lookup_address);
if (!va_range) {
status = uvm_hmm_va_range_info(va_space, mm, params);
goto out;
}
policy = uvm_va_range_get_policy(va_range);
params->va_range_start = va_range->node.start;
params->va_range_end = va_range->node.end;
// -Wall implies -Wenum-compare, so cast through int to avoid warnings
BUILD_BUG_ON((int)UVM_READ_DUPLICATION_UNSET != (int)UVM_TEST_READ_DUPLICATION_UNSET);
BUILD_BUG_ON((int)UVM_READ_DUPLICATION_ENABLED != (int)UVM_TEST_READ_DUPLICATION_ENABLED);
BUILD_BUG_ON((int)UVM_READ_DUPLICATION_DISABLED != (int)UVM_TEST_READ_DUPLICATION_DISABLED);
BUILD_BUG_ON((int)UVM_READ_DUPLICATION_MAX != (int)UVM_TEST_READ_DUPLICATION_MAX);
params->read_duplication = policy->read_duplication;
if (UVM_ID_IS_INVALID(policy->preferred_location)) {
memset(¶ms->preferred_location, 0, sizeof(params->preferred_location));
params->preferred_cpu_nid = NUMA_NO_NODE;
}
else {
uvm_va_space_processor_uuid(va_space, ¶ms->preferred_location, policy->preferred_location);
params->preferred_cpu_nid = policy->preferred_nid;
}
params->accessed_by_count = 0;
for_each_id_in_mask(processor_id, &policy->accessed_by)
uvm_va_space_processor_uuid(va_space, ¶ms->accessed_by[params->accessed_by_count++], processor_id);
// -Wall implies -Wenum-compare, so cast through int to avoid warnings
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_INVALID != (int)UVM_VA_RANGE_TYPE_INVALID);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_MANAGED != (int)UVM_VA_RANGE_TYPE_MANAGED);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_EXTERNAL != (int)UVM_VA_RANGE_TYPE_EXTERNAL);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_CHANNEL != (int)UVM_VA_RANGE_TYPE_CHANNEL);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_SKED_REFLECTED != (int)UVM_VA_RANGE_TYPE_SKED_REFLECTED);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_SEMAPHORE_POOL != (int)UVM_VA_RANGE_TYPE_SEMAPHORE_POOL);
BUILD_BUG_ON((int)UVM_TEST_VA_RANGE_TYPE_MAX != (int)UVM_VA_RANGE_TYPE_MAX);
params->type = va_range->type;
switch (va_range->type) {
case UVM_VA_RANGE_TYPE_MANAGED:
params->managed.subtype = UVM_TEST_RANGE_SUBTYPE_UVM;
if (!va_range->managed.vma_wrapper) {
params->managed.is_zombie = NV_TRUE;
goto out;
}
params->managed.is_zombie = NV_FALSE;
vma = uvm_va_range_vma_check(va_range, mm);
if (!vma) {
// We aren't in the same mm as the one which owns the vma, and
// we don't have that mm locked.
params->managed.owned_by_calling_process = NV_FALSE;
goto out;
}
params->managed.owned_by_calling_process = (mm == current->mm ? NV_TRUE : NV_FALSE);
params->managed.vma_start = vma->vm_start;
params->managed.vma_end = vma->vm_end - 1;
break;
default:
break;
}
out:
uvm_va_space_up_read(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return status;
}
NV_STATUS uvm_test_va_range_split(UVM_TEST_VA_RANGE_SPLIT_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range;
NV_STATUS status = NV_OK;
if (!PAGE_ALIGNED(params->split_address + 1))
return NV_ERR_INVALID_ADDRESS;
uvm_va_space_down_write(va_space);
va_range = uvm_va_range_find(va_space, params->split_address);
if (!va_range ||
va_range->node.end == params->split_address ||
va_range->type != UVM_VA_RANGE_TYPE_MANAGED) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
status = uvm_va_range_split(va_range, params->split_address, NULL);
out:
uvm_va_space_up_write(va_space);
return status;
}
NV_STATUS uvm_test_va_range_inject_split_error(UVM_TEST_VA_RANGE_INJECT_SPLIT_ERROR_PARAMS *params, struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range;
struct mm_struct *mm;
NV_STATUS status = NV_OK;
mm = uvm_va_space_mm_or_current_retain_lock(va_space);
uvm_va_space_down_write(va_space);
va_range = uvm_va_range_find(va_space, params->lookup_address);
if (!va_range) {
if (!mm)
status = NV_ERR_INVALID_ADDRESS;
else
status = uvm_hmm_test_va_block_inject_split_error(va_space, params->lookup_address);
}
else if (va_range->type != UVM_VA_RANGE_TYPE_MANAGED) {
status = NV_ERR_INVALID_ADDRESS;
}
else {
uvm_va_block_t *va_block;
size_t split_index;
va_range->inject_split_error = true;
split_index = uvm_va_range_block_index(va_range, params->lookup_address);
va_block = uvm_va_range_block(va_range, split_index);
if (va_block) {
uvm_va_block_test_t *block_test = uvm_va_block_get_test(va_block);
if (block_test)
block_test->inject_split_error = true;
}
}
uvm_va_space_up_write(va_space);
uvm_va_space_mm_or_current_release_unlock(va_space, mm);
return status;
}
NV_STATUS uvm_test_va_range_inject_add_gpu_va_space_error(UVM_TEST_VA_RANGE_INJECT_ADD_GPU_VA_SPACE_ERROR_PARAMS *params,
struct file *filp)
{
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_range_t *va_range;
NV_STATUS status = NV_OK;
uvm_va_space_down_write(va_space);
va_range = uvm_va_range_find(va_space, params->lookup_address);
if (!va_range) {
status = NV_ERR_INVALID_ADDRESS;
goto out;
}
va_range->inject_add_gpu_va_space_error = true;
out:
uvm_va_space_up_write(va_space);
return status;
}
|