File: uvm_conf_computing.c

package info (click to toggle)
nvidia-open-gpu-kernel-modules 555.58.02-2
  • links: PTS, VCS
  • area: contrib
  • in suites: experimental
  • size: 89,204 kB
  • sloc: ansic: 1,149,014; cpp: 23,369; sh: 3,639; makefile: 607; python: 315
file content (627 lines) | stat: -rw-r--r-- 23,286 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*******************************************************************************
    Copyright (c) 2021-2023 NVIDIA Corporation

    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to
    deal in the Software without restriction, including without limitation the
    rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
    sell copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

        The above copyright notice and this permission notice shall be
        included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.

*******************************************************************************/

#include "uvm_common.h"
#include "uvm_global.h"
#include "uvm_conf_computing.h"
#include "uvm_kvmalloc.h"
#include "uvm_gpu.h"
#include "uvm_hal.h"
#include "uvm_mem.h"
#include "uvm_processors.h"
#include "uvm_tracker.h"
#include "nv_uvm_interface.h"
#include "uvm_va_block.h"

// The maximum number of secure operations per push is:
// UVM_MAX_PUSH_SIZE / min(CE encryption size, CE decryption size)
// + 1 (tracking semaphore) =  128 * 1024 / 56 + 1 = 2342
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN 2342lu

// Channels use 32-bit counters so the value after rotation is 0xffffffff.
// setting the limit to this value (or higher) will result in rotation
// on every check. However, pre-emptive rotation when submitting control
// GPFIFO entries relies on the fact that multiple successive checks after
// rotation do not trigger more rotations if there was no IV used in between.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX 0xfffffffelu

// Attempt rotation when two billion IVs are left. IV rotation call can fail if
// the necessary locks are not available, so multiple attempts may be need for
// IV rotation to succeed.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT (1lu << 31)

// Start rotating after 500 encryption/decryptions when running tests.
#define UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_TESTS ((1lu << 32) - 500lu)
static ulong uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT;

module_param(uvm_conf_computing_channel_iv_rotation_limit, ulong, S_IRUGO);

static UvmGpuConfComputeMode uvm_conf_computing_get_mode(const uvm_parent_gpu_t *parent)
{
    return parent->rm_info.gpuConfComputeCaps.mode;
}

bool uvm_conf_computing_mode_is_hcc(const uvm_gpu_t *gpu)
{
    return uvm_conf_computing_get_mode(gpu->parent) == UVM_GPU_CONF_COMPUTE_MODE_HCC;
}

void uvm_conf_computing_check_parent_gpu(const uvm_parent_gpu_t *parent)
{
    uvm_parent_gpu_t *other_parent;
    UvmGpuConfComputeMode parent_mode = uvm_conf_computing_get_mode(parent);

    uvm_assert_mutex_locked(&g_uvm_global.global_lock);

    // The Confidential Computing state of the GPU should match that of the
    // system.
    UVM_ASSERT((parent_mode != UVM_GPU_CONF_COMPUTE_MODE_NONE) == g_uvm_global.conf_computing_enabled);

    // All GPUs derive Confidential Computing status from their parent. By
    // current policy all parent GPUs have identical Confidential Computing
    // status.
    for_each_parent_gpu(other_parent)
        UVM_ASSERT(parent_mode == uvm_conf_computing_get_mode(other_parent));
}

static void dma_buffer_destroy_locked(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
                                      uvm_conf_computing_dma_buffer_t *dma_buffer)
{
    uvm_assert_mutex_locked(&dma_buffer_pool->lock);

    list_del(&dma_buffer->node);
    uvm_tracker_wait_deinit(&dma_buffer->tracker);

    uvm_mem_free(dma_buffer->alloc);
    uvm_mem_free(dma_buffer->auth_tag);
    uvm_kvfree(dma_buffer);
}

static uvm_gpu_t *dma_buffer_pool_to_gpu(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
    return container_of(dma_buffer_pool, uvm_gpu_t, conf_computing.dma_buffer_pool);
}

// Allocate and map a new DMA stage buffer to CPU and GPU (VA)
static NV_STATUS dma_buffer_create(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
                                   uvm_conf_computing_dma_buffer_t **dma_buffer_out)
{
    uvm_gpu_t *dma_owner;
    uvm_conf_computing_dma_buffer_t *dma_buffer;
    uvm_mem_t *alloc = NULL;
    NV_STATUS status = NV_OK;
    size_t auth_tags_size = (UVM_CONF_COMPUTING_DMA_BUFFER_SIZE / PAGE_SIZE) * UVM_CONF_COMPUTING_AUTH_TAG_SIZE;

    dma_buffer = uvm_kvmalloc_zero(sizeof(*dma_buffer));
    if (!dma_buffer)
        return NV_ERR_NO_MEMORY;

    dma_owner = dma_buffer_pool_to_gpu(dma_buffer_pool);
    uvm_tracker_init(&dma_buffer->tracker);
    INIT_LIST_HEAD(&dma_buffer->node);

    status = uvm_mem_alloc_sysmem_dma_and_map_cpu_kernel(UVM_CONF_COMPUTING_DMA_BUFFER_SIZE, dma_owner, NULL, &alloc);
    if (status != NV_OK)
        goto err;

    dma_buffer->alloc = alloc;

    status = uvm_mem_map_gpu_kernel(alloc, dma_owner);
    if (status != NV_OK)
        goto err;

    status = uvm_mem_alloc_sysmem_dma_and_map_cpu_kernel(auth_tags_size, dma_owner, NULL, &alloc);
    if (status != NV_OK)
        goto err;

    dma_buffer->auth_tag = alloc;

    status = uvm_mem_map_gpu_kernel(alloc, dma_owner);
    if (status != NV_OK)
        goto err;

    *dma_buffer_out = dma_buffer;

    return status;

err:
    dma_buffer_destroy_locked(dma_buffer_pool, dma_buffer);
    return status;
}

void uvm_conf_computing_dma_buffer_pool_sync(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
    uvm_conf_computing_dma_buffer_t *dma_buffer;

    if (dma_buffer_pool->num_dma_buffers == 0)
        return;

    uvm_mutex_lock(&dma_buffer_pool->lock);
    list_for_each_entry(dma_buffer, &dma_buffer_pool->free_dma_buffers, node)
        uvm_tracker_wait(&dma_buffer->tracker);
    uvm_mutex_unlock(&dma_buffer_pool->lock);
}

static void conf_computing_dma_buffer_pool_deinit(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
    uvm_conf_computing_dma_buffer_t *dma_buffer;
    uvm_conf_computing_dma_buffer_t *next_buff;

    if (dma_buffer_pool->num_dma_buffers == 0)
        return;

    // Because the pool is teared down at the same time the GPU is unregistered
    // the lock is required only to quiet assertions not for functional reasons
    // see dma_buffer_destroy_locked()).
    uvm_mutex_lock(&dma_buffer_pool->lock);

    list_for_each_entry_safe(dma_buffer, next_buff, &dma_buffer_pool->free_dma_buffers, node) {
        dma_buffer_destroy_locked(dma_buffer_pool, dma_buffer);
        dma_buffer_pool->num_dma_buffers--;
    }

    UVM_ASSERT(dma_buffer_pool->num_dma_buffers == 0);
    UVM_ASSERT(list_empty(&dma_buffer_pool->free_dma_buffers));
    uvm_mutex_unlock(&dma_buffer_pool->lock);
}

static void dma_buffer_pool_add(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
                               uvm_conf_computing_dma_buffer_t *dma_buffer)
{
    uvm_assert_mutex_locked(&dma_buffer_pool->lock);
    list_add_tail(&dma_buffer->node, &dma_buffer_pool->free_dma_buffers);
}

static NV_STATUS conf_computing_dma_buffer_pool_init(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
    size_t i;
    size_t num_dma_buffers = 32;
    NV_STATUS status = NV_OK;

    UVM_ASSERT(dma_buffer_pool->num_dma_buffers == 0);
    UVM_ASSERT(g_uvm_global.conf_computing_enabled);

    INIT_LIST_HEAD(&dma_buffer_pool->free_dma_buffers);
    uvm_mutex_init(&dma_buffer_pool->lock, UVM_LOCK_ORDER_CONF_COMPUTING_DMA_BUFFER_POOL);
    dma_buffer_pool->num_dma_buffers = num_dma_buffers;

    uvm_mutex_lock(&dma_buffer_pool->lock);
    for (i = 0; i < num_dma_buffers; i++) {
        uvm_conf_computing_dma_buffer_t *dma_buffer;

        status = dma_buffer_create(dma_buffer_pool, &dma_buffer);
        if (status != NV_OK)
            break;

        dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
    }
    uvm_mutex_unlock(&dma_buffer_pool->lock);

    if (i < num_dma_buffers)
        conf_computing_dma_buffer_pool_deinit(dma_buffer_pool);

    return status;
}

static NV_STATUS dma_buffer_pool_expand_locked(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool)
{
    size_t i;
    uvm_gpu_t *gpu;
    size_t nb_to_alloc;
    NV_STATUS status = NV_OK;
    UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);

    gpu = dma_buffer_pool_to_gpu(dma_buffer_pool);
    nb_to_alloc = dma_buffer_pool->num_dma_buffers;
    for (i = 0; i < nb_to_alloc; ++i) {
        uvm_conf_computing_dma_buffer_t *dma_buffer;

        status = dma_buffer_create(dma_buffer_pool, &dma_buffer);
        if (status != NV_OK)
            break;

        dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
    }

    dma_buffer_pool->num_dma_buffers += i;

    if (i == 0)
        return status;

    return NV_OK;
}

NV_STATUS uvm_conf_computing_dma_buffer_alloc(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
                                              uvm_conf_computing_dma_buffer_t **dma_buffer_out,
                                              uvm_tracker_t *out_tracker)
{
    uvm_conf_computing_dma_buffer_t *dma_buffer = NULL;
    NV_STATUS status;

    UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);

    // TODO: Bug 3385623: Heuristically expand DMA memory pool
    uvm_mutex_lock(&dma_buffer_pool->lock);
    if (list_empty(&dma_buffer_pool->free_dma_buffers)) {
        status = dma_buffer_pool_expand_locked(dma_buffer_pool);

        if (status != NV_OK) {
            uvm_mutex_unlock(&dma_buffer_pool->lock);
            return status;
        }
    }

    // We're guaranteed that at least one DMA stage buffer is available at this
    // point.
    dma_buffer = list_first_entry(&dma_buffer_pool->free_dma_buffers, uvm_conf_computing_dma_buffer_t, node);
    list_del_init(&dma_buffer->node);
    uvm_mutex_unlock(&dma_buffer_pool->lock);

    status = uvm_tracker_wait_for_other_gpus(&dma_buffer->tracker, dma_buffer->alloc->dma_owner);
    if (status != NV_OK)
        goto error;

    if (out_tracker)
        status = uvm_tracker_add_tracker_safe(out_tracker, &dma_buffer->tracker);
    else
        status = uvm_tracker_wait(&dma_buffer->tracker);

    if (status != NV_OK)
        goto error;

    uvm_page_mask_zero(&dma_buffer->encrypted_page_mask);
    *dma_buffer_out = dma_buffer;

    return status;

error:
    uvm_tracker_deinit(&dma_buffer->tracker);
    uvm_conf_computing_dma_buffer_free(dma_buffer_pool, dma_buffer, NULL);
    return status;
}

void uvm_conf_computing_dma_buffer_free(uvm_conf_computing_dma_buffer_pool_t *dma_buffer_pool,
                                        uvm_conf_computing_dma_buffer_t *dma_buffer,
                                        uvm_tracker_t *tracker)
{

    NV_STATUS status;

    if (!dma_buffer)
        return;

    UVM_ASSERT(dma_buffer_pool->num_dma_buffers > 0);

    uvm_tracker_remove_completed(&dma_buffer->tracker);
    if (tracker) {
        uvm_tracker_remove_completed(tracker);
        status = uvm_tracker_add_tracker_safe(&dma_buffer->tracker, tracker);
        if (status != NV_OK)
            UVM_ASSERT(status == uvm_global_get_status());
    }

    uvm_mutex_lock(&dma_buffer_pool->lock);
    dma_buffer_pool_add(dma_buffer_pool, dma_buffer);
    uvm_mutex_unlock(&dma_buffer_pool->lock);
}

static void dummy_iv_mem_deinit(uvm_gpu_t *gpu)
{
    uvm_mem_free(gpu->conf_computing.iv_mem);
}

static NV_STATUS dummy_iv_mem_init(uvm_gpu_t *gpu)
{
    NV_STATUS status;

    if (!uvm_conf_computing_mode_is_hcc(gpu))
        return NV_OK;

    status = uvm_mem_alloc_sysmem_dma(sizeof(UvmCslIv), gpu, NULL, &gpu->conf_computing.iv_mem);
    if (status != NV_OK)
        return status;

    status = uvm_mem_map_gpu_kernel(gpu->conf_computing.iv_mem, gpu);
    if (status != NV_OK)
        goto error;

    return NV_OK;

error:
    dummy_iv_mem_deinit(gpu);
    return status;
}

NV_STATUS uvm_conf_computing_gpu_init(uvm_gpu_t *gpu)
{
    NV_STATUS status;

    if (!g_uvm_global.conf_computing_enabled)
        return NV_OK;

    status = conf_computing_dma_buffer_pool_init(&gpu->conf_computing.dma_buffer_pool);
    if (status != NV_OK)
        return status;

    status = dummy_iv_mem_init(gpu);
    if (status != NV_OK)
        goto error;

    if (uvm_enable_builtin_tests && uvm_conf_computing_channel_iv_rotation_limit == UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT)
        uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_TESTS;

    if (uvm_conf_computing_channel_iv_rotation_limit < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN ||
        uvm_conf_computing_channel_iv_rotation_limit > UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX) {
        UVM_ERR_PRINT("Value of uvm_conf_computing_channel_iv_rotation_limit: %lu is outside of the safe "
                      "range: <%lu, %lu>. Using the default value instead (%lu)\n",
                      uvm_conf_computing_channel_iv_rotation_limit,
                      UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN,
                      UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MAX,
                      UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT);
        uvm_conf_computing_channel_iv_rotation_limit = UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_DEFAULT;
    }

    return NV_OK;

error:
    uvm_conf_computing_gpu_deinit(gpu);
    return status;
}

void uvm_conf_computing_gpu_deinit(uvm_gpu_t *gpu)
{
    dummy_iv_mem_deinit(gpu);
    conf_computing_dma_buffer_pool_deinit(&gpu->conf_computing.dma_buffer_pool);
}

void uvm_conf_computing_log_gpu_encryption(uvm_channel_t *channel, UvmCslIv *iv)
{
    NV_STATUS status;

    uvm_mutex_lock(&channel->csl.ctx_lock);
    status = nvUvmInterfaceCslIncrementIv(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT, 1, iv);
    uvm_mutex_unlock(&channel->csl.ctx_lock);

    // IV rotation is done preemptively as needed, so the above
    // call cannot return failure.
    UVM_ASSERT(status == NV_OK);
}

void uvm_conf_computing_acquire_encryption_iv(uvm_channel_t *channel, UvmCslIv *iv)
{
    NV_STATUS status;

    uvm_mutex_lock(&channel->csl.ctx_lock);
    status = nvUvmInterfaceCslIncrementIv(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT, 1, iv);
    uvm_mutex_unlock(&channel->csl.ctx_lock);

    // IV rotation is done preemptively as needed, so the above
    // call cannot return failure.
    UVM_ASSERT(status == NV_OK);
}

void uvm_conf_computing_cpu_encrypt(uvm_channel_t *channel,
                                    void *dst_cipher,
                                    const void *src_plain,
                                    UvmCslIv *encrypt_iv,
                                    size_t size,
                                    void *auth_tag_buffer)
{
    NV_STATUS status;

    UVM_ASSERT(size);

    uvm_mutex_lock(&channel->csl.ctx_lock);
    status = nvUvmInterfaceCslEncrypt(&channel->csl.ctx,
                                      size,
                                      (NvU8 const *) src_plain,
                                      encrypt_iv,
                                      (NvU8 *) dst_cipher,
                                      (NvU8 *) auth_tag_buffer);
    uvm_mutex_unlock(&channel->csl.ctx_lock);

    // IV rotation is done preemptively as needed, so the above
    // call cannot return failure.
    UVM_ASSERT(status == NV_OK);
}

NV_STATUS uvm_conf_computing_cpu_decrypt(uvm_channel_t *channel,
                                         void *dst_plain,
                                         const void *src_cipher,
                                         const UvmCslIv *src_iv,
                                         size_t size,
                                         const void *auth_tag_buffer)
{
    NV_STATUS status;

    // The CSL context associated with a channel can be used by multiple
    // threads. The IV sequence is thus guaranteed only while the channel is
    // "locked for push". The channel/push lock is released in
    // "uvm_channel_end_push", and at that time the GPU encryption operations
    // have not executed, yet. Therefore the caller has to use
    // "uvm_conf_computing_log_gpu_encryption" to explicitly store IVs needed
    // to perform CPU decryption and pass those IVs to this function after the
    // push that did the encryption completes.
    UVM_ASSERT(src_iv);

    uvm_mutex_lock(&channel->csl.ctx_lock);
    status = nvUvmInterfaceCslDecrypt(&channel->csl.ctx,
                                      size,
                                      (const NvU8 *) src_cipher,
                                      src_iv,
                                      (NvU8 *) dst_plain,
                                      NULL,
                                      0,
                                      (const NvU8 *) auth_tag_buffer);
    uvm_mutex_unlock(&channel->csl.ctx_lock);

    return status;
}

NV_STATUS uvm_conf_computing_fault_decrypt(uvm_parent_gpu_t *parent_gpu,
                                           void *dst_plain,
                                           const void *src_cipher,
                                           const void *auth_tag_buffer,
                                           NvU8 valid)
{
    NV_STATUS status;

    // There is no dedicated lock for the CSL context associated with replayable
    // faults. The mutual exclusion required by the RM CSL API is enforced by
    // relying on the GPU replayable service lock (ISR lock), since fault
    // decryption is invoked as part of fault servicing.
    UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.replayable_faults.service_lock));

    UVM_ASSERT(g_uvm_global.conf_computing_enabled);

    status = nvUvmInterfaceCslDecrypt(&parent_gpu->fault_buffer_info.rm_info.replayable.cslCtx,
                                      parent_gpu->fault_buffer_hal->entry_size(parent_gpu),
                                      (const NvU8 *) src_cipher,
                                      NULL,
                                      (NvU8 *) dst_plain,
                                      &valid,
                                      sizeof(valid),
                                      (const NvU8 *) auth_tag_buffer);

    if (status != NV_OK)
        UVM_ERR_PRINT("nvUvmInterfaceCslDecrypt() failed: %s, GPU %s\n",
                      nvstatusToString(status),
                      uvm_parent_gpu_name(parent_gpu));

    return status;
}

void uvm_conf_computing_fault_increment_decrypt_iv(uvm_parent_gpu_t *parent_gpu, NvU64 increment)
{
    NV_STATUS status;

    // See comment in uvm_conf_computing_fault_decrypt
    UVM_ASSERT(uvm_sem_is_locked(&parent_gpu->isr.replayable_faults.service_lock));

    UVM_ASSERT(g_uvm_global.conf_computing_enabled);

    status = nvUvmInterfaceCslIncrementIv(&parent_gpu->fault_buffer_info.rm_info.replayable.cslCtx,
                                          UVM_CSL_OPERATION_DECRYPT,
                                          increment,
                                          NULL);

    UVM_ASSERT(status == NV_OK);
}

void uvm_conf_computing_query_message_pools(uvm_channel_t *channel,
                                            NvU64 *remaining_encryptions,
                                            NvU64 *remaining_decryptions)
{
    NV_STATUS status;

    UVM_ASSERT(channel);
    UVM_ASSERT(remaining_encryptions);
    UVM_ASSERT(remaining_decryptions);

    uvm_mutex_lock(&channel->csl.ctx_lock);
    status = nvUvmInterfaceCslQueryMessagePool(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT, remaining_encryptions);
    UVM_ASSERT(status == NV_OK);
    UVM_ASSERT(*remaining_encryptions <= NV_U32_MAX);

    status = nvUvmInterfaceCslQueryMessagePool(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT, remaining_decryptions);
    UVM_ASSERT(status == NV_OK);
    UVM_ASSERT(*remaining_decryptions <= NV_U32_MAX);

    // LCIC channels never use CPU encrypt/GPU decrypt
    if (uvm_channel_is_lcic(channel))
        UVM_ASSERT(*remaining_encryptions == NV_U32_MAX);

    uvm_mutex_unlock(&channel->csl.ctx_lock);
}

static NV_STATUS uvm_conf_computing_rotate_channel_ivs_below_limit_internal(uvm_channel_t *channel, NvU64 limit)
{
    NV_STATUS status = NV_OK;
    NvU64 remaining_encryptions, remaining_decryptions;
    bool rotate_encryption_iv, rotate_decryption_iv;

    UVM_ASSERT(uvm_channel_is_locked_for_push(channel) ||
               (uvm_channel_is_lcic(channel) && uvm_channel_manager_is_wlc_ready(channel->pool->manager)));

    uvm_conf_computing_query_message_pools(channel, &remaining_encryptions, &remaining_decryptions);

    // Ignore decryption limit for SEC2, only CE channels support
    // GPU encrypt/CPU decrypt. However, RM reports _some_ decrementing
    // value for SEC2 decryption counter.
    rotate_decryption_iv = (remaining_decryptions <= limit) && uvm_channel_is_ce(channel);
    rotate_encryption_iv = remaining_encryptions <= limit;

    if (!rotate_encryption_iv && !rotate_decryption_iv)
        return NV_OK;

    // Wait for all in-flight pushes. The caller needs to guarantee that there
    // are no concurrent pushes created, e.g. by only calling rotate after
    // a channel is locked_for_push.
    status = uvm_channel_wait(channel);
    if (status != NV_OK)
        return status;

    uvm_mutex_lock(&channel->csl.ctx_lock);

    if (rotate_encryption_iv)
        status = nvUvmInterfaceCslRotateIv(&channel->csl.ctx, UVM_CSL_OPERATION_ENCRYPT);

    if (status == NV_OK && rotate_decryption_iv)
        status = nvUvmInterfaceCslRotateIv(&channel->csl.ctx, UVM_CSL_OPERATION_DECRYPT);

    uvm_mutex_unlock(&channel->csl.ctx_lock);

    // Change the error to out of resources if the available IVs are running
    // too low
    if (status == NV_ERR_STATE_IN_USE &&
        (remaining_encryptions < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN ||
         remaining_decryptions < UVM_CONF_COMPUTING_IV_REMAINING_LIMIT_MIN))
        return NV_ERR_INSUFFICIENT_RESOURCES;

    return status;
}

NV_STATUS uvm_conf_computing_rotate_channel_ivs_below_limit(uvm_channel_t *channel, NvU64 limit, bool retry_if_busy)
{
    NV_STATUS status;

    do {
        status = uvm_conf_computing_rotate_channel_ivs_below_limit_internal(channel, limit);
    } while (retry_if_busy && status == NV_ERR_STATE_IN_USE);

    // Hide "busy" error. The rotation will be retried at the next opportunity.
    if (!retry_if_busy && status == NV_ERR_STATE_IN_USE)
        status = NV_OK;

    return status;
}

NV_STATUS uvm_conf_computing_maybe_rotate_channel_ivs(uvm_channel_t *channel)
{
    return uvm_conf_computing_rotate_channel_ivs_below_limit(channel, uvm_conf_computing_channel_iv_rotation_limit, false);
}

NV_STATUS uvm_conf_computing_maybe_rotate_channel_ivs_retry_busy(uvm_channel_t *channel)
{
    return uvm_conf_computing_rotate_channel_ivs_below_limit(channel, uvm_conf_computing_channel_iv_rotation_limit, true);
}