1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/*******************************************************************************
Copyright (c) 2020-2022 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_global.h"
#include "uvm_common.h"
#include "uvm_hal.h"
#include "uvm_push.h"
#include "uvm_test.h"
#include "uvm_va_space.h"
#include "uvm_mem.h"
#include "uvm_rm_mem.h"
typedef struct test_sem_mem_t {
void *cpu_va;
NvU64 gpu_va;
union {
uvm_mem_t *uvm_mem;
uvm_rm_mem_t *rm_mem;
};
} test_sem_mem;
static NV_STATUS test_semaphore_alloc_uvm_rm_mem(uvm_gpu_t *gpu, const size_t size, test_sem_mem *mem_out)
{
NV_STATUS status;
uvm_rm_mem_t *mem = NULL;
NvU64 gpu_va;
status = uvm_rm_mem_alloc_and_map_cpu(gpu, UVM_RM_MEM_TYPE_SYS, size, 0, &mem);
TEST_NV_CHECK_RET(status);
gpu_va = uvm_rm_mem_get_gpu_uvm_va(mem, gpu);
TEST_CHECK_GOTO(gpu_va < gpu->parent->max_host_va, error);
mem_out->cpu_va = uvm_rm_mem_get_cpu_va(mem);
mem_out->gpu_va = gpu_va;
mem_out->rm_mem = mem;
return NV_OK;
error:
uvm_rm_mem_free(mem);
return status;
}
static NV_STATUS test_semaphore_alloc_sem(uvm_gpu_t *gpu, const size_t size, test_sem_mem *mem_out)
{
NV_STATUS status = NV_OK;
uvm_mem_t *mem = NULL;
NvU64 gpu_va;
TEST_NV_CHECK_RET(uvm_mem_alloc_sysmem(size, current->mm, &mem));
TEST_NV_CHECK_GOTO(uvm_mem_map_gpu_kernel(mem, gpu), error);
gpu_va = uvm_mem_get_gpu_va_kernel(mem, gpu);
// Use an RM allocation when Host cannot address the semaphore.
if (gpu_va >= gpu->parent->max_host_va) {
uvm_mem_free(mem);
return test_semaphore_alloc_uvm_rm_mem(gpu, size, mem_out);
}
// This semaphore resides in the uvm_mem region, i.e., it has the GPU VA
// MSbit set. The intent is to validate semaphore operations when the
// semaphore's VA is in the high-end of the GPU effective virtual address
// space spectrum, i.e., its VA upper-bit is set.
TEST_CHECK_GOTO(gpu_va & (1ULL << (gpu->address_space_tree.hal->num_va_bits() - 1)), error);
TEST_NV_CHECK_GOTO(uvm_mem_map_cpu_kernel(mem), error);
mem_out->cpu_va = uvm_mem_get_cpu_addr_kernel(mem);
mem_out->gpu_va = gpu_va;
mem_out->uvm_mem = mem;
return NV_OK;
error:
uvm_mem_free(mem);
return status;
}
static void test_semaphore_free_sem(uvm_gpu_t *gpu, test_sem_mem *mem)
{
if (mem->gpu_va >= gpu->parent->uvm_mem_va_base)
uvm_mem_free(mem->uvm_mem);
else
uvm_rm_mem_free(mem->rm_mem);
}
// This test is similar to the test_semaphore_release() test in uvm_ce_test.c,
// except that this one uses host_hal->semaphore_release();
static NV_STATUS test_semaphore_release(uvm_gpu_t *gpu)
{
NV_STATUS status;
test_sem_mem mem = { 0 };
uvm_push_t push;
NvU32 value;
NvU32 payload = 0xA5A55A5A;
NvU32 *cpu_ptr;
// Semaphore release needs 1 word (4 bytes).
const size_t size = sizeof(NvU32);
status = test_semaphore_alloc_sem(gpu, size, &mem);
TEST_NV_CHECK_RET(status);
// Initialize the payload.
cpu_ptr = (NvU32 *)mem.cpu_va;
*cpu_ptr = 0;
status = uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_GPU_INTERNAL, &push, "semaphore_release test");
TEST_NV_CHECK_GOTO(status, done);
gpu->parent->host_hal->semaphore_release(&push, mem.gpu_va, payload);
status = uvm_push_end_and_wait(&push);
TEST_NV_CHECK_GOTO(status, done);
value = *cpu_ptr;
if (value != payload) {
UVM_TEST_PRINT("Semaphore payload = %u instead of %u, GPU %s\n", value, payload, uvm_gpu_name(gpu));
status = NV_ERR_INVALID_STATE;
goto done;
}
done:
test_semaphore_free_sem(gpu, &mem);
return status;
}
static NV_STATUS test_semaphore_acquire(uvm_gpu_t *gpu)
{
NV_STATUS status;
test_sem_mem mem = { 0 };
uvm_push_t push;
uvm_spin_loop_t spin;
NvU32 *cpu_ptr, *cpu_sema_A, *cpu_sema_B, *cpu_sema_C;
NvU64 gpu_sema_va_A, gpu_sema_va_B, gpu_sema_va_C;
bool check_sema_C;
// The semaphore is one word long(4 bytes), we use three semaphores.
const size_t sema_size = 4;
const size_t size = sema_size * 3;
status = test_semaphore_alloc_sem(gpu, size, &mem);
TEST_NV_CHECK_RET(status);
gpu_sema_va_A = mem.gpu_va;
gpu_sema_va_B = mem.gpu_va + sema_size;
gpu_sema_va_C = mem.gpu_va + 2 * sema_size;
cpu_ptr = (NvU32 *)mem.cpu_va;
memset(cpu_ptr, 0, size);
cpu_sema_A = cpu_ptr;
cpu_sema_B = cpu_ptr + 1;
cpu_sema_C = cpu_ptr + 2;
status = uvm_push_begin(gpu->channel_manager, UVM_CHANNEL_TYPE_GPU_INTERNAL, &push, "semaphore_acquire test");
TEST_NV_CHECK_GOTO(status, done);
gpu->parent->host_hal->semaphore_release(&push, gpu_sema_va_A, 1);
gpu->parent->host_hal->semaphore_acquire(&push, gpu_sema_va_B, 1);
gpu->parent->host_hal->semaphore_release(&push, gpu_sema_va_C, 1);
uvm_push_end(&push);
// Wait for sema_A release.
UVM_SPIN_WHILE(UVM_READ_ONCE(*cpu_sema_A) != 1, &spin);
// Sleep for 10ms, the GPU waits while sema_B is held by us.
msleep(10);
check_sema_C = UVM_READ_ONCE(*cpu_sema_C) == 0;
// memory fence/barrier, check comment in
// uvm_gpu_semaphore.c:uvm_gpu_semaphore_set_payload() for details.
mb();
// Release sema_B.
UVM_WRITE_ONCE(*cpu_sema_B, 1);
// Wait for the GPU to release sema_C, i.e., the end of the push.
status = uvm_push_wait(&push);
TEST_CHECK_GOTO(status == NV_OK, done);
// check_sema_C is validated here to ensure the push has ended and was not
// interrupted in the middle, had the check failed.
TEST_CHECK_GOTO(check_sema_C, done);
TEST_CHECK_GOTO(UVM_READ_ONCE(*cpu_sema_C) == 1, done);
done:
test_semaphore_free_sem(gpu, &mem);
return status;
}
// This test is similar to the test_semaphore_timestamp() test in
// uvm_ce_test.c, except that this one uses host_hal->semaphore_timestamp();
static NV_STATUS test_semaphore_timestamp(uvm_gpu_t *gpu)
{
NV_STATUS status;
test_sem_mem mem = { 0 };
uvm_push_t push;
NvU32 i;
NvU64 *timestamp;
NvU64 last_timestamp = 0;
// 2 iterations:
// 1: compare retrieved timestamp with 0;
// 2: compare retrieved timestamp with previous timestamp (obtained in 1).
const NvU32 iterations = 2;
// The semaphore is 4 words long (16 bytes).
const size_t size = 16;
status = test_semaphore_alloc_sem(gpu, size, &mem);
TEST_NV_CHECK_RET(status);
timestamp = (NvU64 *)mem.cpu_va;
TEST_CHECK_GOTO(timestamp != NULL, done);
memset(timestamp, 0, size);
// Shift the timestamp pointer to where the semaphore timestamp info is.
timestamp += 1;
for (i = 0; i < iterations; i++) {
status = uvm_push_begin(gpu->channel_manager,
UVM_CHANNEL_TYPE_GPU_INTERNAL,
&push,
"semaphore_timestamp test, iter: %u",
i);
TEST_NV_CHECK_GOTO(status, done);
gpu->parent->host_hal->semaphore_timestamp(&push, mem.gpu_va);
status = uvm_push_end_and_wait(&push);
TEST_NV_CHECK_GOTO(status, done);
TEST_CHECK_GOTO(*timestamp != 0, done);
TEST_CHECK_GOTO(*timestamp >= last_timestamp, done);
last_timestamp = *timestamp;
}
done:
test_semaphore_free_sem(gpu, &mem);
return status;
}
static NV_STATUS test_host(uvm_va_space_t *va_space)
{
uvm_gpu_t *gpu;
for_each_va_space_gpu(gpu, va_space) {
TEST_NV_CHECK_RET(test_semaphore_release(gpu));
TEST_NV_CHECK_RET(test_semaphore_acquire(gpu));
TEST_NV_CHECK_RET(test_semaphore_timestamp(gpu));
}
return NV_OK;
}
NV_STATUS uvm_test_host_sanity(UVM_TEST_HOST_SANITY_PARAMS *params, struct file *filp)
{
NV_STATUS status;
uvm_va_space_t *va_space = uvm_va_space_get(filp);
uvm_va_space_down_read_rm(va_space);
status = test_host(va_space);
uvm_va_space_up_read_rm(va_space);
return status;
}
|