1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*******************************************************************************
Copyright (c) 2016 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#include "uvm_range_allocator.h"
#include "uvm_kvmalloc.h"
NV_STATUS uvm_range_allocator_init(NvU64 size, uvm_range_allocator_t *range_allocator)
{
NV_STATUS status;
uvm_range_tree_node_t *node;
uvm_spin_lock_init(&range_allocator->lock, UVM_LOCK_ORDER_LEAF);
uvm_range_tree_init(&range_allocator->range_tree);
UVM_ASSERT(size > 0);
node = uvm_kvmalloc(sizeof(*node));
if (!node)
return NV_ERR_NO_MEMORY;
node->start = 0;
node->end = size - 1;
status = uvm_range_tree_add(&range_allocator->range_tree, node);
UVM_ASSERT(status == NV_OK);
range_allocator->size = size;
return NV_OK;
}
void uvm_range_allocator_deinit(uvm_range_allocator_t *range_allocator)
{
uvm_range_tree_node_t *node;
node = uvm_range_tree_iter_first(&range_allocator->range_tree, 0, range_allocator->size - 1);
UVM_ASSERT(node);
UVM_ASSERT_MSG(node->start == 0 && node->end == range_allocator->size - 1, "start 0x%llx end 0x%llx\n", node->start, node->end);
// Remove the node for completeness even though after deinit the state of
// tree doesn't matter anyway.
uvm_range_tree_remove(&range_allocator->range_tree, node);
uvm_kvfree(node);
}
NV_STATUS uvm_range_allocator_alloc(uvm_range_allocator_t *range_allocator, NvU64 size, NvU64 alignment, uvm_range_allocation_t *range_alloc)
{
uvm_range_tree_node_t *node;
bool found = false;
UVM_ASSERT(size > 0);
if (alignment == 0)
alignment = 1;
UVM_ASSERT(is_power_of_2(alignment));
if (size > range_allocator->size)
return NV_ERR_UVM_ADDRESS_IN_USE;
// Pre-allocate a tree node as part of the allocation so that freeing the
// range won't require allocating memory and will always succeed.
range_alloc->node = uvm_kvmalloc(sizeof(*range_alloc->node));
if (!range_alloc->node)
return NV_ERR_NO_MEMORY;
uvm_spin_lock(&range_allocator->lock);
// This is a very simple brute force going over all the free ranges in
// address order and returning the first one that's big enough.
// This could be improved by e.g. also maintaining a binary tree of free
// ranges ordered by their size.
uvm_range_tree_for_each_in(node, &range_allocator->range_tree, 0, range_allocator->size - size) {
NvU64 aligned_start = UVM_ALIGN_UP(node->start, alignment);
NvU64 aligned_end = aligned_start + size - 1;
// Check for overflow of aligned_start and aligned_end
if (aligned_start < node->start || aligned_end < aligned_start)
continue;
// Check whether it fits
if (aligned_end > node->end)
continue;
// The allocation always wastes the [node->start, aligned_start) space,
// but it's expected that there will always be plenty of free space to
// allocate from and wasting that space should help avoid fragmentation.
range_alloc->aligned_start = aligned_start;
range_alloc->node->start = node->start;
range_alloc->node->end = aligned_end;
if (aligned_end < node->end) {
// Shrink the node if the claimed size is smaller than the node.
uvm_range_tree_shrink_node(&range_allocator->range_tree, node, aligned_end + 1, node->end);
}
else {
// Otherwise just remove it. The removal is safe to do in the loop
// over nodes as a break is following immediately.
UVM_ASSERT(node->end == aligned_end);
uvm_range_tree_remove(&range_allocator->range_tree, node);
uvm_kvfree(node);
}
found = true;
break;
}
uvm_spin_unlock(&range_allocator->lock);
if (!found) {
uvm_kvfree(range_alloc->node);
range_alloc->node = NULL;
return NV_ERR_UVM_ADDRESS_IN_USE;
}
return NV_OK;
}
void uvm_range_allocator_free(uvm_range_allocator_t *range_allocator, uvm_range_allocation_t *range_alloc)
{
NV_STATUS status;
uvm_range_tree_node_t *adjacent_node;
if (!range_alloc)
return;
UVM_ASSERT(range_alloc->node);
uvm_spin_lock(&range_allocator->lock);
// Add the pre-allocated free range to the tree
status = uvm_range_tree_add(&range_allocator->range_tree, range_alloc->node);
UVM_ASSERT(status == NV_OK);
// And try merging it with adjacent nodes
adjacent_node = uvm_range_tree_merge_prev(&range_allocator->range_tree, range_alloc->node);
if (adjacent_node)
uvm_kvfree(adjacent_node);
adjacent_node = uvm_range_tree_merge_next(&range_allocator->range_tree, range_alloc->node);
if (adjacent_node)
uvm_kvfree(adjacent_node);
uvm_spin_unlock(&range_allocator->lock);
range_alloc->node = NULL;
}
|