1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_SPHERICALHARMONIC_H
#define NV_MATH_SPHERICALHARMONIC_H
#include "nvmath.h"
#include "Vector.h"
#include <string.h> // memcpy
namespace nv
{
class Vector3;
class Matrix;
NVMATH_API float legendrePolynomial( int l, int m, float x ) NV_CONST;
NVMATH_API float shBasis( int l, int m, float theta, float phi ) NV_CONST;
NVMATH_API float shBasis( int l, int m, const Vector3 & v ) NV_CONST;
NVMATH_API float hshBasis( int l, int m, float theta, float phi ) NV_CONST;
NVMATH_API float hshBasis( int l, int m, const Vector3 & v ) NV_CONST;
class Sh;
float dot(const Sh & a, const Sh & b) NV_CONST;
/// Spherical harmonic class.
class Sh
{
friend class Sh2;
friend class ShMatrix;
public:
/// Construct a spherical harmonic of the given order.
Sh(int o) : order(o)
{
coef = new float[basisNum()];
}
/// Copy constructor.
Sh(const Sh & sh) : order(sh.order)
{
coef = new float[basisNum()];
memcpy(coef, sh.coef, sizeof(float) * basisNum());
}
/// Destructor.
~Sh()
{
delete [] coef;
coef = NULL;
}
/// Get number of bands.
static int bandNum(int order) {
return order + 1;
}
/// Get number of sh basis.
static int basisNum(int order) {
return (order + 1) * (order + 1);
}
/// Get the index for the given coefficients.
static int index( int l, int m ) {
return l * l + l + m;
}
/// Get sh order.
int bandNum() const
{
return bandNum(order);
}
/// Get sh order.
int basisNum() const
{
return basisNum(order);
}
/// Get sh coefficient indexed by l,m.
float elem( int l, int m ) const
{
return coef[index(l, m)];
}
/// Get sh coefficient indexed by l,m.
float & elem( int l, int m )
{
return coef[index(l, m)];
}
/// Get sh coefficient indexed by i.
float elemAt( int i ) const {
return coef[i];
}
/// Get sh coefficient indexed by i.
float & elemAt( int i )
{
return coef[i];
}
/// Reset the sh coefficients.
void reset()
{
for( int i = 0; i < basisNum(); i++ ) {
coef[i] = 0.0f;
}
}
/// Copy spherical harmonic.
void operator= ( const Sh & sh )
{
nvDebugCheck(order <= sh.order);
for(int i = 0; i < basisNum(); i++) {
coef[i] = sh.coef[i];
}
}
/// Add spherical harmonics.
void operator+= ( const Sh & sh )
{
nvDebugCheck(order == sh.order);
for(int i = 0; i < basisNum(); i++) {
coef[i] += sh.coef[i];
}
}
/// Substract spherical harmonics.
void operator-= ( const Sh & sh )
{
nvDebugCheck(order == sh.order);
for(int i = 0; i < basisNum(); i++) {
coef[i] -= sh.coef[i];
}
}
// Not exactly convolution, nor product.
void operator*= ( const Sh & sh )
{
nvDebugCheck(order == sh.order);
for(int i = 0; i < basisNum(); i++) {
coef[i] *= sh.coef[i];
}
}
/// Scale spherical harmonics.
void operator*= ( float f )
{
for(int i = 0; i < basisNum(); i++) {
coef[i] *= f;
}
}
/// Add scaled spherical harmonics.
void addScaled( const Sh & sh, float f )
{
nvDebugCheck(order == sh.order);
for(int i = 0; i < basisNum(); i++) {
coef[i] += sh.coef[i] * f;
}
}
/*/// Add a weighted sample to the sh coefficients.
void AddSample( const Vec3 & dir, const Color3f & color, float w=1.0f ) {
for(int l = 0; l <= order; l++) {
for(int m = -l; m <= l; m++) {
Color3f & elem = GetElem(l, m);
elem.Mad( elem, color, w * shBasis(l, m, dir) );
}
}
}*/
/// Evaluate
void eval(const Vector3 & dir)
{
for(int l = 0; l <= order; l++) {
for(int m = -l; m <= l; m++) {
elem(l, m) = shBasis(l, m, dir);
}
}
}
/// Evaluate the spherical harmonic function.
float sample(const Vector3 & dir) const
{
Sh sh(order);
sh.eval(dir);
return dot(sh, *this);
}
const int order;
float * coef;
};
/// Compute dot product of the spherical harmonics.
inline float dot(const Sh & a, const Sh & b)
{
nvDebugCheck(a.order == b.order);
float sum = 0;
for( int i = 0; i < Sh::basisNum(a.order); i++ ) {
sum += a.elemAt(i) * b.elemAt(i);
}
return sum;
}
/// Second order spherical harmonic.
class Sh2 : public Sh
{
public:
/// Constructor.
Sh2() : Sh(2) {}
/// Copy constructor.
Sh2(const Sh2 & sh) : Sh(sh) {}
// Fast evaluation from: PPS' Efficient Spherical Harmonic Evaluation http://jcgt.org/published/0002/02/06/
void eval(const Vector3 & dir) {
float fZ2 = dir.z * dir.z;
coef[0] = 0.2820947917738781f;
coef[2] = 0.4886025119029199f * dir.z;
coef[6] = 0.9461746957575601f * fZ2 + -0.3153915652525201f;
float fC0 = dir.x;
float fS0 = dir.y;
float fTmpA = -0.48860251190292f;
coef[3] = fTmpA * fC0;
coef[1] = fTmpA * fS0;
float fTmpB = -1.092548430592079f * dir.z;
coef[7] = fTmpB * fC0;
coef[5] = fTmpB * fS0;
float fC1 = dir.x * fC0 - dir.y * fS0;
float fS1 = dir.x * fS0 + dir.y * fC0;
float fTmpC = 0.5462742152960395f;
coef[8] = fTmpC * fC1;
coef[4] = fTmpC * fS1;
}
/// Spherical harmonic resulting from projecting the clamped cosine transfer function to the SH basis.
void cosineTransfer() {
const float c1 = 0.282095f; // K(0, 0)
const float c2 = 0.488603f; // K(1, 0)
const float c3 = 1.092548f; // sqrt(15.0f / PI) / 2.0f = K(2, -2)
const float c4 = 0.315392f; // sqrt(5.0f / PI) / 4.0f) = K(2, 0)
const float c5 = 0.546274f; // sqrt(15.0f / PI) / 4.0f) = K(2, 2)
const float normalization = PI * 16.0f / 17.0f;
const float const1 = c1 * normalization * 1.0f;
const float const2 = c2 * normalization * (2.0f / 3.0f);
const float const3 = c3 * normalization * (1.0f / 4.0f);
const float const4 = c4 * normalization * (1.0f / 4.0f);
const float const5 = c5 * normalization * (1.0f / 4.0f);
coef[0] = const1;
coef[1] = -const2;
coef[2] = const2;
coef[3] = -const2;
coef[4] = const3;
coef[5] = -const3;
coef[6] = const4;
coef[7] = -const3;
coef[8] = const5;
}
};
/// Spherical harmonic matrix.
class ShMatrix
{
public:
/// Create an identity matrix of the given order.
ShMatrix(int o = 2) : m_order(o), m_identity(true)
{
nvCheck(m_order > 0);
m_e = new float[size()];
m_band = new float *[bandNum()];
setupBands();
}
/// Destroy and free matrix elements.
~ShMatrix()
{
delete m_e;
delete m_band;
}
/// Set identity matrix.
void setIdentity()
{
m_identity = true;
}
/// Return true if this is an identity matrix, false in other case.
bool isIdentity() const {
return m_identity;
}
/// Get number of bands of this matrix.
int bandNum() const
{
return m_order+1;
}
/// Get total number of elements in the matrix.
int size() const
{
int size = 0;
for (int i = 0; i < bandNum(); i++) {
size += square(i * 2 + 1);
}
return size;
}
/// Get element at the given raw index.
float element(int idx) const
{
return m_e[idx];
}
/// Get element at the given with the given indices.
float & element(int b, int x, int y)
{
nvDebugCheck(b >= 0);
nvDebugCheck(b < bandNum());
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
}
/// Get element at the given with the given indices.
float element(int b, int x, int y) const
{
nvDebugCheck(b >= 0);
nvDebugCheck(b < bandNum());
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
}
/// Copy matrix.
void copy(const ShMatrix & m)
{
nvDebugCheck(m_order == m.m_order);
memcpy(m_e, m.m_e, size() * sizeof(float));
}
/// Rotate the given coefficients.
/*void transform( const Sh & restrict source, Sh * restrict dest ) const {
nvCheck( &source != dest ); // Make sure there's no aliasing.
nvCheck( dest->order <= order );
nvCheck( order <= source.order );
if (m_identity) {
*dest = source;
return;
}
// Loop through each band.
for (int l = 0; l <= dest->order; l++) {
for (int mo = -l; mo <= l; mo++) {
Color3f rgb = Color3f::Black;
for( int mi = -l; mi <= l; mi++ ) {
rgb.Mad( rgb, source.elem(l, mi), elem(l, mo, mi) );
}
dest->elem(l, mo) = rgb;
}
}
}*/
NVMATH_API void multiply( const ShMatrix &A, const ShMatrix &B );
NVMATH_API void rotation( const Matrix & m );
NVMATH_API void rotation( int axis, float angles );
NVMATH_API void print();
private:
// @@ These could be static indices precomputed only once.
/// Setup the band pointers.
void setupBands()
{
int size = 0;
for( int i = 0; i < bandNum(); i++ ) {
m_band[i] = &m_e[size];
size += square(i * 2 + 1);
}
}
private:
// Matrix order.
const int m_order;
// Identity flag for quick transform.
bool m_identity;
// Array of elements.
float * m_e;
// Band pointers.
float ** m_band;
};
} // nv namespace
#endif // NV_MATH_SPHERICALHARMONIC_H
|