1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
|
# nvitop
<!-- markdownlint-disable html -->

[](https://pypi.org/project/nvitop)
[](https://anaconda.org/conda-forge/nvitop)
[](https://nvitop.readthedocs.io)
[](https://pepy.tech/project/nvitop)
[](https://github.com/XuehaiPan/nvitop/stargazers)
[](#license)
An interactive NVIDIA-GPU process viewer and beyond, the one-stop solution for GPU process management. The full API references host at <https://nvitop.readthedocs.io>.
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/171005261-1aad126e-dc27-4ed3-a89b-7f9c1c998bf7.png" alt="Monitor">
<br/>
Monitor mode of <code>nvitop</code>.
<br/>
(TERM: GNOME Terminal / OS: Ubuntu 16.04 LTS (over SSH) / Locale: <code>en_US.UTF-8</code>)
</p>
<p align="center">
<a href="./nvitop-exporter">
<img width="100%" src="https://github.com/user-attachments/assets/e4867e64-2ca9-45bc-b524-929053f9673d" alt="Grafana Dashboard">
</a>
<br/>
A Grafana dashboard built on top of <code>nvitop-exporter</code>.
</p>
### Table of Contents <!-- omit in toc --> <!-- markdownlint-disable heading-increment -->
- [Features](#features)
- [Requirements](#requirements)
- [Installation](#installation)
- [Usage](#usage)
- [Device and Process Status](#device-and-process-status)
- [Resource Monitor](#resource-monitor)
- [For Docker Users](#for-docker-users)
- [For SSH Users](#for-ssh-users)
- [Command Line Options and Environment Variables](#command-line-options-and-environment-variables)
- [Keybindings for Monitor Mode](#keybindings-for-monitor-mode)
- [CUDA Visible Devices Selection Tool](#cuda-visible-devices-selection-tool)
- [Callback Functions for Machine Learning Frameworks (DEPRECATED)](#callback-functions-for-machine-learning-frameworks-deprecated)
- [Callback for TensorFlow (Keras)](#callback-for-tensorflow-keras)
- [Callback for PyTorch Lightning](#callback-for-pytorch-lightning)
- [TensorBoard Integration](#tensorboard-integration)
- [More than a Monitor](#more-than-a-monitor)
- [Quick Start](#quick-start)
- [Status Snapshot](#status-snapshot)
- [Resource Metric Collector](#resource-metric-collector)
- [Low-level APIs](#low-level-apis)
- [Device](#device)
- [Process](#process)
- [Host (inherited from psutil)](#host-inherited-from-psutil)
- [Screenshots](#screenshots)
- [Changelog](#changelog)
- [License](#license)
- [Copyright Notice](#copyright-notice)
------
`nvitop` is an interactive NVIDIA device and process monitoring tool. It has a colorful and informative interface that continuously updates the status of the devices and processes. As a resource monitor, it includes many features and options, such as tree-view, environment variable viewing, process filtering, process metrics monitoring, etc. Beyond that, the package also ships a [CUDA device selection tool `nvisel`](#cuda-visible-devices-selection-tool) for deep learning researchers. It also provides handy APIs that allow developers to write their own monitoring tools. Please refer to section [More than a Monitor](#more-than-a-monitor) and the full API references at <https://nvitop.readthedocs.io> for more information.
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/202362811-34f2c01d-97c8-49d2-b19b-0d7da648f2d5.png" alt="Filter">
<br/>
Process filtering and a more colorful interface.
</p>
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/202362686-859bf4ad-6237-46ca-b2f7-f547d2f63213.png" alt="Comparison">
<br/>
Compare to <code>nvidia-smi</code>.
</p>
------
## Features
- **Informative and fancy output**: show more information than `nvidia-smi` with colorized fancy box drawing.
- **Monitor mode**: can run as a resource monitor, rather than print the results only once.
- bar charts and history graphs
- process sorting
- process filtering
- send signals to processes with a keystroke
- tree-view screen for GPU processes and their parent processes
- environment variable screen
- help screen
- mouse support
- **Interactive**: responsive for user input (from keyboard and/or mouse) in monitor mode. (vs. [gpustat](https://github.com/wookayin/gpustat) & [py3nvml](https://github.com/fbcotter/py3nvml))
- **Efficient**:
- query device status using [*NVML Python bindings*](https://pypi.org/project/nvidia-ml-py) directly, instead of parsing the output of `nvidia-smi`. (vs. [nvidia-htop](https://github.com/peci1/nvidia-htop))
- support sparse query and cache results with `TTLCache` from [cachetools](https://github.com/tkem/cachetools). (vs. [gpustat](https://github.com/wookayin/gpustat))
- display information using the `curses` library rather than `print` with ANSI escape codes. (vs. [py3nvml](https://github.com/fbcotter/py3nvml))
- asynchronously gather information using multi-threading and correspond to user input much faster. (vs. [nvtop](https://github.com/Syllo/nvtop))
- **Portable**: work on both Linux and Windows.
- get host process information using the cross-platform library [psutil](https://github.com/giampaolo/psutil) instead of calling `ps -p <pid>` in a subprocess. (vs. [nvidia-htop](https://github.com/peci1/nvidia-htop) & [py3nvml](https://github.com/fbcotter/py3nvml))
- written in pure Python, easy to install with `pip`. (vs. [nvtop](https://github.com/Syllo/nvtop))
- **Integrable**: easy to integrate into other applications, more than monitoring. (vs. [nvidia-htop](https://github.com/peci1/nvidia-htop) & [nvtop](https://github.com/Syllo/nvtop))
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/129374533-fe06c01a-630d-4994-b54b-821cccd0d33c.png" alt="Windows">
<br/>
<code>nvitop</code> supports Windows!
<br/>
(SHELL: PowerShell / TERM: Windows Terminal / OS: Windows 10 / Locale: <code>en-US</code>)
</p>
------
## Requirements
- Python 3.8+
- NVIDIA Management Library (NVML)
- nvidia-ml-py
- psutil
- curses<sup>[*](#curses)</sup> (with `libncursesw`)
**NOTE:** The [NVIDIA Management Library (*NVML*)](https://developer.nvidia.com/nvidia-management-library-nvml) is a C-based programmatic interface for monitoring and managing various states. The runtime version of the NVML library ships with the NVIDIA display driver (available at [Download Drivers | NVIDIA](https://www.nvidia.com/Download/index.aspx)), or can be downloaded as part of the NVIDIA CUDA Toolkit (available at [CUDA Toolkit | NVIDIA Developer](https://developer.nvidia.com/cuda-downloads)). The lists of OS platforms and NVIDIA-GPUs supported by the NVML library can be found in the [NVML API Reference](https://docs.nvidia.com/deploy/nvml-api/nvml-api-reference.html).
This repository contains a Bash script to install/upgrade the NVIDIA drivers for Ubuntu Linux. For example:
```bash
git clone --depth=1 https://github.com/XuehaiPan/nvitop.git && cd nvitop
# Change to tty3 console (required for desktop users with GUI (tty2))
# Optional for SSH users
sudo chvt 3 # or use keyboard shortcut: Ctrl-LeftAlt-F3
bash install-nvidia-driver.sh --package=nvidia-driver-470 # install the R470 driver from ppa:graphics-drivers
bash install-nvidia-driver.sh --latest # install the latest driver from ppa:graphics-drivers
```
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/174480112-e9a35edc-8f42-438e-a103-1d0ce998b381.png" alt="install-nvidia-driver">
<br/>
NVIDIA driver installer for Ubuntu Linux.
</p>
Run `bash install-nvidia-driver.sh --help` for more information.
<a name="curses">*</a> The `curses` library is a built-in module of Python on Unix-like systems, and it is supported by a third-party package called `windows-curses` on Windows using PDCurses. Inconsistent behavior of `nvitop` may occur on different terminal emulators on Windows, such as missing mouse support.
------
## Installation
**It is highly recommended to install `nvitop` in an isolated virtual environment.** Simple installation and run via [`uvx`](https://docs.astral.sh/uv/guides/tools) (a.k.a. `uv tool run`) or [`pipx`](https://pypa.github.io/pipx):
```bash
uvx nvitop
# or
pipx run nvitop
```
You can also set this command as an alias in your shell startup file, e.g.:
```bash
# For Bash
echo 'alias nvitop="uvx nvitop"' >> ~/.bashrc
# For Zsh
echo 'alias nvitop="uvx nvitop"' >> ~/.zshrc
# For Fish
mkdir -p ~/.config/fish
echo 'alias nvitop="uvx nvitop"' >> ~/.config/fish/config.fish
# For PowerShell
New-Item -Path (Split-Path -Parent -Path $PROFILE.CurrentUserAllHosts) -ItemType Directory -Force
'Function nvitop { uvx nvitop @Args }' >> $PROFILE.CurrentUserAllHosts
```
or
```bash
# For Bash
echo 'alias nvitop="pipx run nvitop"' >> ~/.bashrc
# For Zsh
echo 'alias nvitop="pipx run nvitop"' >> ~/.zshrc
# For Fish
mkdir -p ~/.config/fish
echo 'alias nvitop="pipx run nvitop"' >> ~/.config/fish/config.fish
# For PowerShell
New-Item -Path (Split-Path -Parent -Path $PROFILE.CurrentUserAllHosts) -ItemType Directory -Force
'Function nvitop { pipx run nvitop @Args }' >> $PROFILE.CurrentUserAllHosts
```
Install from PyPI ([](https://pypi.org/project/nvitop)):
```bash
pip3 install --upgrade nvitop
```
Install from conda-forge ([](https://anaconda.org/conda-forge/nvitop)):
```bash
conda install -c conda-forge nvitop
```
Install the latest version from GitHub ():
```bash
pip3 install --upgrade pip setuptools
pip3 install git+https://github.com/XuehaiPan/nvitop.git#egg=nvitop
```
Or, clone this repo and install manually:
```bash
git clone --depth=1 https://github.com/XuehaiPan/nvitop.git
cd nvitop
pip3 install .
```
**NOTE:** If you encounter the *"nvitop: command not found"* error after installation, please check whether you have added the Python console script path (e.g., `"${HOME}/.local/bin"`) to your `PATH` environment variable. Alternatively, you can use `python3 -m nvitop`.
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/178963038-a5cd4eb5-02a8-4456-966f-d5ff04eb44d8.png" alt="MIG Device Support">
<br/>
MIG Device Support.
<br/>
</p>
------
## Usage
### Device and Process Status
Query the device and process status. The output is similar to `nvidia-smi`, but has been enriched and colorized.
```bash
# Query the status of all devices
$ nvitop -1 # or use `python3 -m nvitop -1`
# Specify query devices (by integer indices)
$ nvitop -1 -o 0 1 # only show <GPU 0> and <GPU 1>
# Only show devices in `CUDA_VISIBLE_DEVICES` (by integer indices or UUID strings)
$ nvitop -1 -ov
# Only show GPU processes with the compute context (type: 'C' or 'C+G')
$ nvitop -1 -c
```
When the `-1` switch is on, the result will be displayed **ONLY ONCE** (same as the default behavior of `nvidia-smi`). This is much faster and has lower resource usage. See [Command Line Options](#command-line-options-and-environment-variables) for more command options.
There is also a CLI tool called `nvisel` that ships with the `nvitop` PyPI package. See [CUDA Visible Devices Selection Tool](#cuda-visible-devices-selection-tool) for more information.
### Resource Monitor
Run as a resource monitor:
```bash
# Monitor mode (when the display mode is omitted, `NVITOP_MONITOR_MODE` will be used)
$ nvitop # or use `python3 -m nvitop`
# Automatically configure the display mode according to the terminal size
$ nvitop -m auto # shortcut: `a` key
# Arbitrarily display as `full` mode
$ nvitop -m full # shortcut: `f` key
# Arbitrarily display as `compact` mode
$ nvitop -m compact # shortcut: `c` key
# Specify query devices (by integer indices)
$ nvitop -o 0 1 # only show <GPU 0> and <GPU 1>
# Only show devices in `CUDA_VISIBLE_DEVICES` (by integer indices or UUID strings)
$ nvitop -ov
# Only show GPU processes with the compute context (type: 'C' or 'C+G')
$ nvitop -c
# Use ASCII characters only
$ nvitop -U # useful for terminals without Unicode support
# For light terminals
$ nvitop --light
# For spectrum-like bar charts (requires the terminal supports 256-color)
$ nvitop --colorful
```
You can configure the default monitor mode with the `NVITOP_MONITOR_MODE` environment variable (default `auto` if not set). See [Command Line Options and Environment Variables](#command-line-options-and-environment-variables) for more command options.
In monitor mode, you can use <kbd>Ctrl-c</kbd> / <kbd>T</kbd> / <kbd>K</kbd> keys to interrupt / terminate / kill a process. And it's recommended to *terminate* or *kill* a process in the **tree-view screen** (shortcut: <kbd>t</kbd>). For normal users, `nvitop` will shallow other users' processes (in low-intensity colors). For **system administrators**, you can use `sudo nvitop` to terminate other users' processes.
Also, to enter the process metrics screen, select a process and then press the <kbd>Enter</kbd> / <kbd>Return</kbd> key . `nvitop` dynamically displays the process metrics with live graphs.
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/192108815-37c03705-be44-47d4-9908-6d05175db230.png" alt="Process Metrics Screen">
<br/>
Watch metrics for a specific process (shortcut: <kbd>Enter</kbd> / <kbd>Return</kbd>).
</p>
Press <kbd>h</kbd> for help or <kbd>q</kbd> to return to the terminal. See [Keybindings for Monitor Mode](#keybindings-for-monitor-mode) for more shortcuts.
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/192108664-61f1983c-6f62-48e6-87c5-29633d9c409e.png" alt="Help Screen">
<br/>
<code>nvitop</code> comes with a help screen (shortcut: <kbd>h</kbd>).
</p>
#### For Docker Users
Build and run the Docker image with [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit):
```bash
git clone --depth=1 https://github.com/XuehaiPan/nvitop.git && cd nvitop # clone this repo first
docker build --tag nvitop:latest . # build the Docker image
docker run -it --rm --runtime=nvidia --gpus=all --pid=host nvitop:latest # run the Docker container
```
**NOTE:** Don't forget to add the `--pid=host` option when running the container.
If you only need to set up the Grafana dashboard, you can start a dashboard at [`http://localhost:3000`](http://localhost:3000) with the following command:
```bash
docker compose --project-directory=nvitop-exporter/grafana up --build --detach
```
See [`nvitop-exporter`](./nvitop-exporter/README.md) for more details.
#### For SSH Users
Run `nvitop` directly on the SSH session instead of a login shell:
```bash
ssh user@host -t nvitop # installed by `sudo pip3 install ...`
ssh user@host -t '~/.local/bin/nvitop' # installed by `pip3 install --user ...`
```
**NOTE:** Users need to add the `-t` option to allocate a pseudo-terminal over the SSH session for monitor mode.
#### Command Line Options and Environment Variables
Type `nvitop --help` for more command options:
```text
usage: nvitop [--help] [--version] [--once | --monitor [{auto,full,compact}]]
[--interval SEC] [--ascii] [--colorful] [--force-color] [--light]
[--gpu-util-thresh th1 th2] [--mem-util-thresh th1 th2]
[--only INDEX [INDEX ...]] [--only-visible]
[--compute] [--only-compute] [--graphics] [--only-graphics]
[--user [USERNAME ...]] [--pid PID [PID ...]]
An interactive NVIDIA-GPU process viewer.
options:
--help, -h Show this help message and exit.
--version, -V Show nvitop's version number and exit.
--once, -1 Report query data only once.
--monitor [{auto,full,compact}], -m [{auto,full,compact}]
Run as a resource monitor. Continuously report query data and handle user inputs.
If the argument is omitted, the value from `NVITOP_MONITOR_MODE` will be used.
(default fallback mode: auto)
--interval SEC Process status update interval in seconds. (default: 2)
--ascii, --no-unicode, -U
Use ASCII characters only, which is useful for terminals without Unicode support.
coloring:
--colorful Use gradient colors to get spectrum-like bar charts. This option is only available
when the terminal supports 256 colors. You may need to set environment variable
`TERM="xterm-256color"`. Note that the terminal multiplexer, such as `tmux`, may
override the `TREM` variable.
--force-color Force colorize even when `stdout` is not a TTY terminal.
--light Tweak visual results for light theme terminals in monitor mode.
Set variable `NVITOP_MONITOR_MODE="light"` on light terminals for convenience.
--gpu-util-thresh th1 th2
Thresholds of GPU utilization to determine the load intensity.
Coloring rules: light < th1 % <= moderate < th2 % <= heavy.
( 1 <= th1 < th2 <= 99, defaults: 10 75 )
--mem-util-thresh th1 th2
Thresholds of GPU memory percent to determine the load intensity.
Coloring rules: light < th1 % <= moderate < th2 % <= heavy.
( 1 <= th1 < th2 <= 99, defaults: 10 80 )
device filtering:
--only INDEX [INDEX ...], -o INDEX [INDEX ...]
Only show the specified devices, suppress option `--only-visible`.
--only-visible, -ov Only show devices in the `CUDA_VISIBLE_DEVICES` environment variable.
process filtering:
--compute, -c Only show GPU processes with the compute context. (type: 'C' or 'C+G')
--only-compute, -C Only show GPU processes exactly with the compute context. (type: 'C' only)
--graphics, -g Only show GPU processes with the graphics context. (type: 'G' or 'C+G')
--only-graphics, -G Only show GPU processes exactly with the graphics context. (type: 'G' only)
--user [USERNAME ...], -u [USERNAME ...]
Only show processes of the given users (or `$USER` for no argument).
--pid PID [PID ...], -p PID [PID ...]
Only show processes of the given PIDs.
```
`nvitop` can accept the following environment variables for monitor mode:
| Name | Description | Valid Values | Default Value |
| -------------------------------------- | --------------------------------------------------- | ----------------------------------------------------------------------- | ----------------- |
| `NVITOP_MONITOR_MODE` | The default display mode (a comma-separated string) | `auto` / `full` / `compact`<br>`plain` / `colorful`<br>`dark` / `light` | `auto,plain,dark` |
| `NVITOP_GPU_UTILIZATION_THRESHOLDS` | Thresholds of GPU utilization | `10,75` , `1,99`, ... | `10,75` |
| `NVITOP_MEMORY_UTILIZATION_THRESHOLDS` | Thresholds of GPU memory percent | `10,80` , `1,99`, ... | `10,80` |
| `LOGLEVEL` | Log level for log messages | `DEBUG` , `INFO`, `WARNING`, ... | `WARNING` |
For example:
```bash
# Replace the following export statements if you are not using Bash / Zsh
export NVITOP_MONITOR_MODE="full,light"
# Full monitor mode with light terminal tweaks
nvitop
```
For convenience, you can add these environment variables to your shell startup file, e.g.:
```bash
# For Bash
echo 'export NVITOP_MONITOR_MODE="full"' >> ~/.bashrc
# For Zsh
echo 'export NVITOP_MONITOR_MODE="full"' >> ~/.zshrc
# For Fish
echo 'set -gx NVITOP_MONITOR_MODE "full"' >> ~/.config/fish/config.fish
# For PowerShell
'$Env:NVITOP_MONITOR_MODE = "full"' >> $PROFILE.CurrentUserAllHosts
```
#### Keybindings for Monitor Mode
| Key | Binding |
| -------------------------------------------------------------------------: | :----------------------------------------------------------------------------------- |
| `q` | Quit and return to the terminal. |
| `h` / `?` | Go to the help screen. |
| `a` / `f` / `c` | Change the display mode to *auto* / *full* / *compact*. |
| `r` / `<C-r>` / `<F5>` | Force refresh the window. |
| | |
| `<Up>` / `<Down>`<br>`<A-k>` / `<A-j>`<br>`<Tab>` / `<S-Tab>`<br>`<Wheel>` | Select and highlight a process. |
| `<Left>` / `<Right>`<br>`<A-h>` / `<A-l>`<br>`<S-Wheel>` | Scroll the host information of processes. |
| `<Home>` | Select the first process. |
| `<End>` | Select the last process. |
| `<C-a>`<br>`^` | Scroll left to the beginning of the process entry (i.e. beginning of line). |
| `<C-e>`<br>`$` | Scroll right to the end of the process entry (i.e. end of line). |
| `<PageUp>` / `<PageDown>`<br/> `<A-K>` / `<A-J>`<br>`[` / `]` | scroll entire screen (for large amounts of processes). |
| | |
| `<Space>` | Tag/untag current process. |
| `<Esc>` | Clear process selection. |
| `<C-c>`<br>`I` | Send `signal.SIGINT` to the selected process (interrupt). |
| `T` | Send `signal.SIGTERM` to the selected process (terminate). |
| `K` | Send `signal.SIGKILL` to the selected process (kill). |
| | |
| `e` | Show process environment. |
| `t` | Toggle tree-view screen. |
| `<Enter>` | Show process metrics. |
| | |
| `,` / `.` | Select the sort column. |
| `/` | Reverse the sort order. |
| `on` (`oN`) | Sort processes in the natural order, i.e., in ascending (descending) order of `GPU`. |
| `ou` (`oU`) | Sort processes by `USER` in ascending (descending) order. |
| `op` (`oP`) | Sort processes by `PID` in descending (ascending) order. |
| `og` (`oG`) | Sort processes by `GPU-MEM` in descending (ascending) order. |
| `os` (`oS`) | Sort processes by `%SM` in descending (ascending) order. |
| `oc` (`oC`) | Sort processes by `%CPU` in descending (ascending) order. |
| `om` (`oM`) | Sort processes by `%MEM` in descending (ascending) order. |
| `ot` (`oT`) | Sort processes by `TIME` in descending (ascending) order. |
**HINT:** It's recommended to terminate or kill a process in the tree-view screen (shortcut: <kbd>t</kbd>).
------
### CUDA Visible Devices Selection Tool
Automatically select `CUDA_VISIBLE_DEVICES` from the given criteria. Example usage of the CLI tool:
```console
# All devices but sorted
$ nvisel # or use `python3 -m nvitop.select`
6,5,4,3,2,1,0,7,8
# A simple example to select 4 devices
$ nvisel -n 4 # or use `python3 -m nvitop.select -n 4`
6,5,4,3
# Select available devices that satisfy the given constraints
$ nvisel --min-count 2 --max-count 3 --min-free-memory 5GiB --max-gpu-utilization 60
6,5,4
# Set `CUDA_VISIBLE_DEVICES` environment variable using `nvisel`
$ export CUDA_DEVICE_ORDER="PCI_BUS_ID" CUDA_VISIBLE_DEVICES="$(nvisel -c 1 -f 10GiB)"
CUDA_VISIBLE_DEVICES="6,5,4,3,2,1,0"
# Use UUID strings in `CUDA_VISIBLE_DEVICES` environment variable
$ export CUDA_VISIBLE_DEVICES="$(nvisel -O uuid -c 2 -f 5000M)"
CUDA_VISIBLE_DEVICES="GPU-849d5a8d-610e-eeea-1fd4-81ff44a23794,GPU-18ef14e9-dec6-1d7e-1284-3010c6ce98b1,GPU-96de99c9-d68f-84c8-424c-7c75e59cc0a0,GPU-2428d171-8684-5b64-830c-435cd972ec4a,GPU-6d2a57c9-7783-44bb-9f53-13f36282830a,GPU-f8e5a624-2c7e-417c-e647-b764d26d4733,GPU-f9ca790e-683e-3d56-00ba-8f654e977e02"
# Pipe output to other shell utilities
$ nvisel --newline -O uuid -C 6 -f 8GiB
GPU-849d5a8d-610e-eeea-1fd4-81ff44a23794
GPU-18ef14e9-dec6-1d7e-1284-3010c6ce98b1
GPU-96de99c9-d68f-84c8-424c-7c75e59cc0a0
GPU-2428d171-8684-5b64-830c-435cd972ec4a
GPU-6d2a57c9-7783-44bb-9f53-13f36282830a
GPU-f8e5a624-2c7e-417c-e647-b764d26d4733
$ nvisel -0 -O uuid -c 2 -f 4GiB | xargs -0 -I {} nvidia-smi --id={} --query-gpu=index,memory.free --format=csv
CUDA_VISIBLE_DEVICES="GPU-849d5a8d-610e-eeea-1fd4-81ff44a23794,GPU-18ef14e9-dec6-1d7e-1284-3010c6ce98b1,GPU-96de99c9-d68f-84c8-424c-7c75e59cc0a0,GPU-2428d171-8684-5b64-830c-435cd972ec4a,GPU-6d2a57c9-7783-44bb-9f53-13f36282830a,GPU-f8e5a624-2c7e-417c-e647-b764d26d4733,GPU-f9ca790e-683e-3d56-00ba-8f654e977e02"
index, memory.free [MiB]
6, 11018 MiB
index, memory.free [MiB]
5, 11018 MiB
index, memory.free [MiB]
4, 11018 MiB
index, memory.free [MiB]
3, 11018 MiB
index, memory.free [MiB]
2, 11018 MiB
index, memory.free [MiB]
1, 11018 MiB
index, memory.free [MiB]
0, 11018 MiB
# Normalize the `CUDA_VISIBLE_DEVICES` environment variable (e.g. convert UUIDs to indices or get full UUIDs for an abbreviated form)
$ nvisel -i "GPU-18ef14e9,GPU-849d5a8d" -S
5,6
$ nvisel -i "GPU-18ef14e9,GPU-849d5a8d" -S -O uuid --newline
GPU-18ef14e9-dec6-1d7e-1284-3010c6ce98b1
GPU-849d5a8d-610e-eeea-1fd4-81ff44a23794
```
You can also integrate `nvisel` into your training script like this:
```python
# Put this at the top of the Python script
import os
from nvitop import select_devices
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
select_devices(format='uuid', min_count=4, min_free_memory='8GiB')
)
```
Type `nvisel --help` for more command options:
```text
usage: nvisel [--help] [--version]
[--inherit [CUDA_VISIBLE_DEVICES]] [--account-as-free [USERNAME ...]]
[--min-count N] [--max-count N] [--count N]
[--min-free-memory SIZE] [--min-total-memory SIZE]
[--max-gpu-utilization RATE] [--max-memory-utilization RATE]
[--tolerance TOL]
[--format FORMAT] [--sep SEP | --newline | --null] [--no-sort]
CUDA visible devices selection tool.
options:
--help, -h Show this help message and exit.
--version, -V Show nvisel's version number and exit.
constraints:
--inherit [CUDA_VISIBLE_DEVICES], -i [CUDA_VISIBLE_DEVICES]
Inherit the given `CUDA_VISIBLE_DEVICES`. If the argument is omitted, use the
value from the environment. This means selecting a subset of the currently
CUDA-visible devices.
--account-as-free [USERNAME ...]
Account the used GPU memory of the given users as free memory.
If this option is specified but without argument, `$USER` will be used.
--min-count N, -c N Minimum number of devices to select. (default: 0)
The tool will fail (exit non-zero) if the requested resource is not available.
--max-count N, -C N Maximum number of devices to select. (default: all devices)
--count N, -n N Overriding both `--min-count N` and `--max-count N`.
--min-free-memory SIZE, -f SIZE
Minimum free memory of devices to select. (example value: 4GiB)
If this constraint is given, check against all devices.
--min-total-memory SIZE, -t SIZE
Minimum total memory of devices to select. (example value: 10GiB)
If this constraint is given, check against all devices.
--max-gpu-utilization RATE, -G RATE
Maximum GPU utilization rate of devices to select. (example value: 30)
If this constraint is given, check against all devices.
--max-memory-utilization RATE, -M RATE
Maximum memory bandwidth utilization rate of devices to select. (example value: 50)
If this constraint is given, check against all devices.
--tolerance TOL, --tol TOL
The constraints tolerance (in percentage). (default: 0, i.e., strict)
This option can loose the constraints if the requested resource is not available.
For example, set `--tolerance=20` will accept a device with only 4GiB of free
memory when set `--min-free-memory=5GiB`.
formatting:
--format FORMAT, -O FORMAT
The output format of the selected device identifiers. (default: index)
If any MIG device found, the output format will be fallback to `uuid`.
--sep SEP, --separator SEP, -s SEP
Separator for the output. (default: ',')
--newline Use newline character as separator for the output, equivalent to `--sep=$'\n'`.
--null, -0 Use null character ('\x00') as separator for the output. This option corresponds
to the `-0` option of `xargs`.
--no-sort, -S Do not sort the device by memory usage and GPU utilization.
```
------
### Callback Functions for Machine Learning Frameworks (DEPRECATED)
`nvitop` provides two builtin callbacks for [TensorFlow (Keras)](https://www.tensorflow.org) and [PyTorch Lightning](https://pytorchlightning.ai).
#### Callback for [TensorFlow (Keras)](https://www.tensorflow.org)
```python
from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model
from tensorflow.python.keras.callbacks import TensorBoard
from nvitop.callbacks.keras import GpuStatsLogger
gpus = ['/gpu:0', '/gpu:1'] # or `gpus = [0, 1]` or `gpus = 2`
model = Xception(weights=None, ..)
model = multi_gpu_model(model, gpus) # optional
model.compile(..)
tb_callback = TensorBoard(log_dir='./logs') # or `keras.callbacks.CSVLogger`
gpu_stats = GpuStatsLogger(gpus)
model.fit(.., callbacks=[gpu_stats, tb_callback])
```
**NOTE:** Users should assign a `keras.callbacks.TensorBoard` callback or a `keras.callbacks.CSVLogger` callback to the model. And the `GpuStatsLogger` callback should be placed before the `keras.callbacks.TensorBoard` / `keras.callbacks.CSVLogger` callback.
#### Callback for [PyTorch Lightning](https://lightning.ai)
```python
from lightning.pytorch import Trainer
from nvitop.callbacks.lightning import GpuStatsLogger
gpu_stats = GpuStatsLogger()
trainer = Trainer(gpus=[..], logger=True, callbacks=[gpu_stats])
```
**NOTE:** Users should assign a logger to the trainer.
#### [TensorBoard](https://github.com/tensorflow/tensorboard) Integration
Please refer to [Resource Metric Collector](#resource-metric-collector) for an example.
------
### More than a Monitor
`nvitop` can be easily integrated into other applications. You can use `nvitop` to make your own monitoring tools. The full API references host at <https://nvitop.readthedocs.io>.
#### Quick Start
A minimal script to monitor the GPU devices based on APIs from `nvitop`:
```python
from nvitop import Device
devices = Device.all() # or `Device.cuda.all()` to use CUDA ordinal instead
for device in devices:
processes = device.processes() # type: Dict[int, GpuProcess]
sorted_pids = sorted(processes.keys())
print(device)
print(f' - Fan speed: {device.fan_speed()}%')
print(f' - Temperature: {device.temperature()}C')
print(f' - GPU utilization: {device.gpu_utilization()}%')
print(f' - Total memory: {device.memory_total_human()}')
print(f' - Used memory: {device.memory_used_human()}')
print(f' - Free memory: {device.memory_free_human()}')
print(f' - Processes ({len(processes)}): {sorted_pids}')
for pid in sorted_pids:
print(f' - {processes[pid]}')
print('-' * 120)
```
Another more advanced approach with coloring:
```python
import time
from nvitop import Device, GpuProcess, NA, colored
print(colored(time.strftime('%a %b %d %H:%M:%S %Y'), color='red', attrs=('bold',)))
devices = Device.cuda.all() # or `Device.all()` to use NVML ordinal instead
separator = False
for device in devices:
processes = device.processes() # type: Dict[int, GpuProcess]
print(colored(str(device), color='green', attrs=('bold',)))
print(colored(' - Fan speed: ', color='blue', attrs=('bold',)) + f'{device.fan_speed()}%')
print(colored(' - Temperature: ', color='blue', attrs=('bold',)) + f'{device.temperature()}C')
print(colored(' - GPU utilization: ', color='blue', attrs=('bold',)) + f'{device.gpu_utilization()}%')
print(colored(' - Total memory: ', color='blue', attrs=('bold',)) + f'{device.memory_total_human()}')
print(colored(' - Used memory: ', color='blue', attrs=('bold',)) + f'{device.memory_used_human()}')
print(colored(' - Free memory: ', color='blue', attrs=('bold',)) + f'{device.memory_free_human()}')
if len(processes) > 0:
processes = GpuProcess.take_snapshots(processes.values(), failsafe=True)
processes.sort(key=lambda process: (process.username, process.pid))
print(colored(f' - Processes ({len(processes)}):', color='blue', attrs=('bold',)))
fmt = ' {pid:<5} {username:<8} {cpu:>5} {host_memory:>8} {time:>8} {gpu_memory:>8} {sm:>3} {command:<}'.format
print(colored(fmt(pid='PID', username='USERNAME',
cpu='CPU%', host_memory='HOST-MEM', time='TIME',
gpu_memory='GPU-MEM', sm='SM%',
command='COMMAND'),
attrs=('bold',)))
for snapshot in processes:
print(fmt(pid=snapshot.pid,
username=snapshot.username[:7] + ('+' if len(snapshot.username) > 8 else snapshot.username[7:8]),
cpu=snapshot.cpu_percent, host_memory=snapshot.host_memory_human,
time=snapshot.running_time_human,
gpu_memory=(snapshot.gpu_memory_human if snapshot.gpu_memory_human is not NA else 'WDDM:N/A'),
sm=snapshot.gpu_sm_utilization,
command=snapshot.command))
else:
print(colored(' - No Running Processes', attrs=('bold',)))
if separator:
print('-' * 120)
separator = True
```
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/177041142-fe988d58-6a97-4559-84fd-b51204cf9231.png" alt="Demo">
<br/>
An example monitoring script built with APIs from <code>nvitop</code>.
</p>
------
#### Status Snapshot
`nvitop` provides a helper function [`take_snapshots`](https://nvitop.readthedocs.io/en/latest/api/collector.html#nvitop.take_snapshots) to retrieve the status of both GPU devices and GPU processes at once. You can type `help(nvitop.take_snapshots)` in Python REPL for detailed documentation.
```python
In [1]: from nvitop import take_snapshots, Device
...: import os
...: os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
...: os.environ['CUDA_VISIBLE_DEVICES'] = '1,0' # comma-separated integers or UUID strings
In [2]: take_snapshots() # equivalent to `take_snapshots(Device.all())`
Out[2]:
SnapshotResult(
devices=[
DeviceSnapshot(
real=Device(index=0, ...),
...
),
...
],
gpu_processes=[
GpuProcessSnapshot(
real=GpuProcess(pid=xxxxxx, device=Device(index=0, ...), ...),
...
),
...
]
)
In [3]: device_snapshots, gpu_process_snapshots = take_snapshots(Device.all()) # type: Tuple[List[DeviceSnapshot], List[GpuProcessSnapshot]]
In [4]: device_snapshots, _ = take_snapshots(gpu_processes=False) # ignore process snapshots
In [5]: take_snapshots(Device.cuda.all()) # use CUDA device enumeration
Out[5]:
SnapshotResult(
devices=[
CudaDeviceSnapshot(
real=CudaDevice(cuda_index=0, nvml_index=1, ...),
...
),
CudaDeviceSnapshot(
real=CudaDevice(cuda_index=1, nvml_index=0, ...),
...
),
],
gpu_processes=[
GpuProcessSnapshot(
real=GpuProcess(pid=xxxxxx, device=CudaDevice(cuda_index=0, ...), ...),
...
),
...
]
)
In [6]: take_snapshots(Device.cuda(1)) # <CUDA 1> only
Out[6]:
SnapshotResult(
devices=[
CudaDeviceSnapshot(
real=CudaDevice(cuda_index=1, nvml_index=0, ...),
...
)
],
gpu_processes=[
GpuProcessSnapshot(
real=GpuProcess(pid=xxxxxx, device=CudaDevice(cuda_index=1, ...), ...),
...
),
...
]
)
```
Please refer to section [Low-level APIs](#low-level-apis) for more information.
------
#### Resource Metric Collector
[`ResourceMetricCollector`](https://nvitop.readthedocs.io/en/latest/api/collector.html#nvitop.ResourceMetricCollector) is a class that collects resource metrics for host, GPUs and processes running on the GPUs. All metrics will be collected in an asynchronous manner. You can type `help(nvitop.ResourceMetricCollector)` in Python REPL for detailed documentation.
```python
In [1]: from nvitop import ResourceMetricCollector, Device
...: import os
...: os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
...: os.environ['CUDA_VISIBLE_DEVICES'] = '3,2,1,0' # comma-separated integers or UUID strings
In [2]: collector = ResourceMetricCollector() # log all devices and descendant processes of the current process on the GPUs
In [3]: collector = ResourceMetricCollector(root_pids={1}) # log all devices and all GPU processes
In [4]: collector = ResourceMetricCollector(devices=Device(0), root_pids={1}) # log <GPU 0> and all GPU processes on <GPU 0>
In [5]: collector = ResourceMetricCollector(devices=Device.cuda.all()) # use the CUDA ordinal
In [6]: with collector(tag='<tag>'):
...: # Do something
...: collector.collect() # -> Dict[str, float]
# key -> '<tag>/<scope>/<metric (unit)>/<mean/min/max>'
{
'<tag>/host/cpu_percent (%)/mean': 8.967849777683456,
'<tag>/host/cpu_percent (%)/min': 6.1,
'<tag>/host/cpu_percent (%)/max': 28.1,
...,
'<tag>/host/memory_percent (%)/mean': 21.5,
'<tag>/host/swap_percent (%)/mean': 0.3,
'<tag>/host/memory_used (GiB)/mean': 91.0136418208109,
'<tag>/host/load_average (%) (1 min)/mean': 10.251427386878328,
'<tag>/host/load_average (%) (5 min)/mean': 10.072539414569503,
'<tag>/host/load_average (%) (15 min)/mean': 11.91126970422139,
...,
'<tag>/cuda:0 (gpu:3)/memory_used (MiB)/mean': 3.875,
'<tag>/cuda:0 (gpu:3)/memory_free (MiB)/mean': 11015.562499999998,
'<tag>/cuda:0 (gpu:3)/memory_total (MiB)/mean': 11019.437500000002,
'<tag>/cuda:0 (gpu:3)/memory_percent (%)/mean': 0.0,
'<tag>/cuda:0 (gpu:3)/gpu_utilization (%)/mean': 0.0,
'<tag>/cuda:0 (gpu:3)/memory_utilization (%)/mean': 0.0,
'<tag>/cuda:0 (gpu:3)/fan_speed (%)/mean': 22.0,
'<tag>/cuda:0 (gpu:3)/temperature (C)/mean': 25.0,
'<tag>/cuda:0 (gpu:3)/power_usage (W)/mean': 19.11166264116916,
...,
'<tag>/cuda:1 (gpu:2)/memory_used (MiB)/mean': 8878.875,
...,
'<tag>/cuda:2 (gpu:1)/memory_used (MiB)/mean': 8182.875,
...,
'<tag>/cuda:3 (gpu:0)/memory_used (MiB)/mean': 9286.875,
...,
'<tag>/pid:12345/host/cpu_percent (%)/mean': 151.34342772112265,
'<tag>/pid:12345/host/host_memory (MiB)/mean': 44749.72373447514,
'<tag>/pid:12345/host/host_memory_percent (%)/mean': 8.675082352111717,
'<tag>/pid:12345/host/running_time (min)': 336.23803206741576,
'<tag>/pid:12345/cuda:1 (gpu:4)/gpu_memory (MiB)/mean': 8861.0,
'<tag>/pid:12345/cuda:1 (gpu:4)/gpu_memory_percent (%)/mean': 80.4,
'<tag>/pid:12345/cuda:1 (gpu:4)/gpu_memory_utilization (%)/mean': 6.711118172407917,
'<tag>/pid:12345/cuda:1 (gpu:4)/gpu_sm_utilization (%)/mean': 48.23283397736476,
...,
'<tag>/duration (s)': 7.247399162035435,
'<tag>/timestamp': 1655909466.9981883
}
```
The results can be easily logged into [TensorBoard](https://github.com/tensorflow/tensorboard) or a CSV file. For example:
```python
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from nvitop import CudaDevice, ResourceMetricCollector
from nvitop.callbacks.tensorboard import add_scalar_dict
# Build networks and prepare datasets
...
# Logger and status collector
writer = SummaryWriter()
collector = ResourceMetricCollector(devices=CudaDevice.all(), # log all visible CUDA devices and use the CUDA ordinal
root_pids={os.getpid()}, # only log the descendant processes of the current process
interval=1.0) # snapshot interval for background daemon thread
# Start training
global_step = 0
for epoch in range(num_epoch):
with collector(tag='train'):
for batch in train_dataset:
with collector(tag='batch'):
metrics = train(net, batch)
global_step += 1
add_scalar_dict(writer, 'train', metrics, global_step=global_step)
add_scalar_dict(writer, 'resources', # tag='resources/train/batch/...'
collector.collect(),
global_step=global_step)
add_scalar_dict(writer, 'resources', # tag='resources/train/...'
collector.collect(),
global_step=epoch)
with collector(tag='validate'):
metrics = validate(net, validation_dataset)
add_scalar_dict(writer, 'validate', metrics, global_step=epoch)
add_scalar_dict(writer, 'resources', # tag='resources/validate/...'
collector.collect(),
global_step=epoch)
```
Another example for logging into a CSV file:
```python
import datetime
import time
import pandas as pd
from nvitop import ResourceMetricCollector
collector = ResourceMetricCollector(root_pids={1}, interval=2.0) # log all devices and all GPU processes
df = pd.DataFrame()
with collector(tag='resources'):
for _ in range(60):
# Do something
time.sleep(60)
metrics = collector.collect()
df_metrics = pd.DataFrame.from_records(metrics, index=[len(df)])
df = pd.concat([df, df_metrics], ignore_index=True)
# Flush to CSV file ...
df.insert(0, 'time', df['resources/timestamp'].map(datetime.datetime.fromtimestamp))
df.to_csv('results.csv', index=False)
```
You can also daemonize the collector in the background using [`collect_in_background`](https://nvitop.readthedocs.io/en/latest/api/collector.html#nvitop.collect_in_background) or [`ResourceMetricCollector.daemonize`](https://nvitop.readthedocs.io/en/latest/api/collector.html#nvitop.ResourceMetricCollector.daemonize) with callback functions.
```python
from nvitop import Device, ResourceMetricCollector, collect_in_background
logger = ...
def on_collect(metrics): # will be called periodically
if logger.is_closed(): # closed manually by user
return False
logger.log(metrics)
return True
def on_stop(collector): # will be called only once at stop
if not logger.is_closed():
logger.close() # cleanup
# Record metrics to the logger in the background every 5 seconds.
# It will collect 5-second mean/min/max for each metric.
collect_in_background(
on_collect,
ResourceMetricCollector(Device.cuda.all()),
interval=5.0,
on_stop=on_stop,
)
```
or simply:
```python
ResourceMetricCollector(Device.cuda.all()).daemonize(
on_collect,
interval=5.0,
on_stop=on_stop,
)
```
------
#### Low-level APIs
The full API references can be found at <https://nvitop.readthedocs.io>.
##### Device
The [device module](https://nvitop.readthedocs.io/en/latest/api/device.html) provides:
<table class="autosummary longtable docutils align-default">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.Device" title="nvitop.Device"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Device</span></code></a>([index, uuid, bus_id])</p></td>
<td><p>Live class of the GPU devices, different from the device snapshots.</p></td>
</tr>
<tr class="row-even">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.PhysicalDevice" title="nvitop.PhysicalDevice"><code class="xref py py-obj docutils literal notranslate"><span class="pre">PhysicalDevice</span></code></a>([index, uuid, bus_id])</p></td>
<td><p>Class for physical devices.</p></td>
</tr>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.MigDevice" title="nvitop.MigDevice"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MigDevice</span></code></a>([index, uuid, bus_id])</p></td>
<td><p>Class for MIG devices.</p></td>
</tr>
<tr class="row-even">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.CudaDevice" title="nvitop.CudaDevice"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CudaDevice</span></code></a>([cuda_index, nvml_index, uuid])</p></td>
<td><p>Class for devices enumerated over the CUDA ordinal.</p></td>
</tr>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.CudaMigDevice" title="nvitop.CudaMigDevice"><code class="xref py py-obj docutils literal notranslate"><span class="pre">CudaMigDevice</span></code></a>([cuda_index, nvml_index, uuid])</p></td>
<td><p>Class for CUDA devices that are MIG devices.</p></td>
</tr>
<tr class="row-even">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.parse_cuda_visible_devices" title="nvitop.parse_cuda_visible_devices"><code class="xref py py-obj docutils literal notranslate"><span class="pre">parse_cuda_visible_devices</span></code></a>([...])</p></td>
<td><p>Parse the given <code class="docutils literal notranslate"><span class="pre">CUDA_VISIBLE_DEVICES</span></code> value into a list of NVML device indices.</p></td>
</tr>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/device.html#nvitop.normalize_cuda_visible_devices" title="nvitop.normalize_cuda_visible_devices"><code class="xref py py-obj docutils literal notranslate"><span class="pre">normalize_cuda_visible_devices</span></code></a>([...])</p></td>
<td><p>Parse the given <code class="docutils literal notranslate"><span class="pre">CUDA_VISIBLE_DEVICES</span></code> value and convert it into a comma-separated string of UUIDs.</p></td>
</tr>
</tbody>
</table>
```python
In [1]: from nvitop import (
...: host,
...: Device, PhysicalDevice, CudaDevice,
...: parse_cuda_visible_devices, normalize_cuda_visible_devices
...: HostProcess, GpuProcess,
...: NA,
...: )
...: import os
...: os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
...: os.environ['CUDA_VISIBLE_DEVICES'] = '9,8,7,6' # comma-separated integers or UUID strings
In [2]: Device.driver_version()
Out[2]: '525.60.11'
In [3]: Device.cuda_driver_version() # the maximum CUDA version supported by the driver (can be different from the CUDA Runtime version)
Out[3]: '12.0'
In [4]: Device.cuda_runtime_version() # the CUDA Runtime version
Out[4]: '11.8'
In [5]: Device.count()
Out[5]: 10
In [6]: CudaDevice.count() # or `Device.cuda.count()`
Out[6]: 4
In [7]: all_devices = Device.all() # all devices on board (physical device)
...: nvidia0, nvidia1 = Device.from_indices([0, 1]) # from physical device indices
...: all_devices
Out[7]: [
PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=2, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=3, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=4, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=5, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=6, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=7, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=8, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
PhysicalDevice(index=9, name="GeForce RTX 2080 Ti", total_memory=11019MiB)
]
In [8]: # NOTE: The function results might be different between calls when the `CUDA_VISIBLE_DEVICES` environment variable has been modified
...: cuda_visible_devices = Device.from_cuda_visible_devices() # from the `CUDA_VISIBLE_DEVICES` environment variable
...: cuda0, cuda1 = Device.from_cuda_indices([0, 1]) # from CUDA device indices (might be different from physical device indices if `CUDA_VISIBLE_DEVICES` is set)
...: cuda_visible_devices = CudaDevice.all() # shortcut to `Device.from_cuda_visible_devices()`
...: cuda_visible_devices = Device.cuda.all() # `Device.cuda` is aliased to `CudaDevice`
...: cuda_visible_devices
Out[8]: [
CudaDevice(cuda_index=0, nvml_index=9, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB),
CudaDevice(cuda_index=1, nvml_index=8, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB),
CudaDevice(cuda_index=2, nvml_index=7, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB),
CudaDevice(cuda_index=3, nvml_index=6, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB)
]
In [9]: nvidia0 = Device(0) # from device index (or `Device(index=0)`)
...: nvidia0
Out[9]: PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB)
In [10]: nvidia1 = Device(uuid='GPU-01234567-89ab-cdef-0123-456789abcdef') # from UUID string (or just `Device('GPU-xxxxxxxx-...')`)
...: nvidia2 = Device(bus_id='00000000:06:00.0') # from PCI bus ID
...: nvidia1
Out[10]: PhysicalDevice(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB)
In [11]: cuda0 = CudaDevice(0) # from CUDA device index (equivalent to `CudaDevice(cuda_index=0)`)
...: cuda1 = CudaDevice(nvml_index=8) # from physical device index
...: cuda3 = CudaDevice(uuid='GPU-xxxxxxxx-...') # from UUID string
...: cuda4 = Device.cuda(4) # `Device.cuda` is aliased to `CudaDevice`
...: cuda0
Out[11]:
CudaDevice(cuda_index=0, nvml_index=9, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB)
In [12]: nvidia0.memory_used() # in bytes
Out[12]: 9293398016
In [13]: nvidia0.memory_used_human()
Out[13]: '8862MiB'
In [14]: nvidia0.gpu_utilization() # in percentage
Out[14]: 5
In [15]: nvidia0.processes() # type: Dict[int, GpuProcess]
Out[15]: {
52059: GpuProcess(pid=52059, gpu_memory=7885MiB, type=C, device=PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=52059, name='ipython3', status='sleeping', started='14:31:22')),
53002: GpuProcess(pid=53002, gpu_memory=967MiB, type=C, device=PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=53002, name='python', status='running', started='14:31:59'))
}
In [16]: nvidia1_snapshot = nvidia1.as_snapshot()
...: nvidia1_snapshot
Out[16]: PhysicalDeviceSnapshot(
real=PhysicalDevice(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
bus_id='00000000:05:00.0',
compute_mode='Default',
clock_infos=ClockInfos(graphics=1815, sm=1815, memory=6800, video=1680), # in MHz
clock_speed_infos=ClockSpeedInfos(current=ClockInfos(graphics=1815, sm=1815, memory=6800, video=1680), max=ClockInfos(graphics=2100, sm=2100, memory=7000, video=1950)), # in MHz
cuda_compute_capability=(7, 5),
current_driver_model='N/A',
decoder_utilization=0, # in percentage
display_active='Disabled',
display_mode='Disabled',
encoder_utilization=0, # in percentage
fan_speed=22, # in percentage
gpu_utilization=17, # in percentage (NOTE: this is the utilization rate of SMs, i.e. GPU percent)
index=1,
max_clock_infos=ClockInfos(graphics=2100, sm=2100, memory=7000, video=1950), # in MHz
memory_clock=6800, # in MHz
memory_free=10462232576, # in bytes
memory_free_human='9977MiB',
memory_info=MemoryInfo(total=11554717696, free=10462232576, used=1092485120) # in bytes
memory_percent=9.5, # in percentage (NOTE: this is the percentage of used GPU memory)
memory_total=11554717696, # in bytes
memory_total_human='11019MiB',
memory_usage='1041MiB / 11019MiB',
memory_used=1092485120, # in bytes
memory_used_human='1041MiB',
memory_utilization=7, # in percentage (NOTE: this is the utilization rate of GPU memory bandwidth)
mig_mode='N/A',
name='GeForce RTX 2080 Ti',
pcie_rx_throughput=1000, # in KiB/s
pcie_rx_throughput_human='1000KiB/s',
pcie_throughput=ThroughputInfo(tx=1000, rx=1000), # in KiB/s
pcie_tx_throughput=1000, # in KiB/s
pcie_tx_throughput_human='1000KiB/s',
performance_state='P2',
persistence_mode='Disabled',
power_limit=250000, # in milliwatts (mW)
power_status='66W / 250W', # in watts (W)
power_usage=66051, # in milliwatts (mW)
sm_clock=1815, # in MHz
temperature=39, # in Celsius
total_volatile_uncorrected_ecc_errors='N/A',
utilization_rates=UtilizationRates(gpu=17, memory=7, encoder=0, decoder=0), # in percentage
uuid='GPU-01234567-89ab-cdef-0123-456789abcdef',
)
In [17]: nvidia1_snapshot.memory_percent # snapshot uses properties instead of function calls
Out[17]: 9.5
In [18]: nvidia1_snapshot['memory_info'] # snapshot also supports `__getitem__` by string
Out[18]: MemoryInfo(total=11554717696, free=10462232576, used=1092485120)
In [19]: nvidia1_snapshot.bar1_memory_info # snapshot will automatically retrieve not presented attributes from `real`
Out[19]: MemoryInfo(total=268435456, free=257622016, used=10813440)
```
**NOTE:** Some entry values may be `'N/A'` (type: [`NaType`](https://nvitop.readthedocs.io/en/latest/index.html#nvitop.NaType), a subclass of `str`) when the corresponding resources are not applicable. The [`NA`](https://nvitop.readthedocs.io/en/latest/index.html#nvitop.NA) value supports arithmetic operations. It acts like `math.nan: float`.
```python
>>> from nvitop import NA
>>> NA
'N/A'
>>> 'memory usage: {}'.format(NA) # NA is an instance of `str`
'memory usage: N/A'
>>> NA.lower() # NA is an instance of `str`
'n/a'
>>> NA.ljust(5) # NA is an instance of `str`
'N/A '
>>> NA + 'str' # string contamination if the operand is a string
'N/Astr'
>>> float(NA) # explicit conversion to float (`math.nan`)
nan
>>> NA + 1 # auto-casting to float if the operand is a number
nan
>>> NA * 1024 # auto-casting to float if the operand is a number
nan
>>> NA / (1024 * 1024) # auto-casting to float if the operand is a number
nan
```
You can use `entry != 'N/A'` conditions to avoid exceptions. It's safe to use `float(entry)` for numbers while `NaType` will be converted to `math.nan`. For example:
```python
memory_used: Union[int, NaType] = device.memory_used() # memory usage in bytes or `'N/A'`
memory_used_in_mib: float = float(memory_used) / (1 << 20) # memory usage in Mebibytes (MiB) or `math.nan`
```
It's safe to compare `NaType` with numbers, but `NaType` is always larger than any number:
```python
devices_by_used_memory = sorted(Device.all(), key=Device.memory_used, reverse=True) # it's safe to compare `'N/A'` with numbers
devices_by_free_memory = sorted(Device.all(), key=Device.memory_free, reverse=True) # please add `memory_free != 'N/A'` checks if sort in descending order here
```
See [`nvitop.NaType`](https://nvitop.readthedocs.io/en/latest/apis/index.html#nvitop.NaType) documentation for more details.
##### Process
The [process module](https://nvitop.readthedocs.io/en/latest/api/process.html) provides:
<table class="autosummary longtable docutils align-default">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/process.html#nvitop.HostProcess" title="nvitop.HostProcess"><code class="xref py py-obj docutils literal notranslate"><span class="pre">HostProcess</span></code></a>([pid])</p></td>
<td><p>Represents an OS process with the given PID.</p></td>
</tr>
<tr class="row-even">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/process.html#nvitop.GpuProcess" title="nvitop.GpuProcess"><code class="xref py py-obj docutils literal notranslate"><span class="pre">GpuProcess</span></code></a>(pid, device[, gpu_memory, ...])</p></td>
<td><p>Represents a process with the given PID running on the given GPU device.</p></td>
</tr>
<tr class="row-odd">
<td><p><a href="https://nvitop.readthedocs.io/en/latest/api/process.html#nvitop.command_join" title="nvitop.command_join"><code class="xref py py-obj docutils literal notranslate"><span class="pre">command_join</span></code></a>(cmdline)</p></td>
<td><p>Returns a shell-escaped string from command line arguments.</p></td>
</tr>
</tbody>
</table>
```python
In [20]: processes = nvidia1.processes() # type: Dict[int, GpuProcess]
...: processes
Out[20]: {
23266: GpuProcess(pid=23266, gpu_memory=1031MiB, type=C, device=Device(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=23266, name='python3', status='running', started='2021-05-10 21:02:40'))
}
In [21]: process = processes[23266]
...: process
Out[21]: GpuProcess(pid=23266, gpu_memory=1031MiB, type=C, device=Device(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=23266, name='python3', status='running', started='2021-05-10 21:02:40'))
In [22]: process.status() # GpuProcess will automatically inherit attributes from GpuProcess.host
Out[22]: 'running'
In [23]: process.cmdline() # type: List[str]
Out[23]: ['python3', 'rllib_train.py']
In [24]: process.command() # type: str
Out[24]: 'python3 rllib_train.py'
In [25]: process.cwd() # GpuProcess will automatically inherit attributes from GpuProcess.host
Out[25]: '/home/xxxxxx/Projects/xxxxxx'
In [26]: process.gpu_memory_human()
Out[26]: '1031MiB'
In [27]: process.as_snapshot()
Out[27]: GpuProcessSnapshot(
real=GpuProcess(pid=23266, gpu_memory=1031MiB, type=C, device=PhysicalDevice(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=23266, name='python3', status='running', started='2021-05-10 21:02:40')),
cmdline=['python3', 'rllib_train.py'],
command='python3 rllib_train.py',
compute_instance_id='N/A',
cpu_percent=98.5, # in percentage
device=PhysicalDevice(index=1, name="GeForce RTX 2080 Ti", total_memory=11019MiB),
gpu_encoder_utilization=0, # in percentage
gpu_decoder_utilization=0, # in percentage
gpu_instance_id='N/A',
gpu_memory=1081081856, # in bytes
gpu_memory_human='1031MiB',
gpu_memory_percent=9.4, # in percentage (NOTE: this is the percentage of used GPU memory)
gpu_memory_utilization=5, # in percentage (NOTE: this is the utilization rate of GPU memory bandwidth)
gpu_sm_utilization=0, # in percentage (NOTE: this is the utilization rate of SMs, i.e. GPU percent)
host=HostProcessSnapshot(
real=HostProcess(pid=23266, name='python3', status='running', started='2021-05-10 21:02:40'),
cmdline=['python3', 'rllib_train.py'],
command='python3 rllib_train.py',
cpu_percent=98.5, # in percentage
host_memory=9113627439, # in bytes
host_memory_human='8691MiB',
is_running=True,
memory_percent=1.6849018430285683, # in percentage
name='python3',
running_time=datetime.timedelta(days=1, seconds=80013, microseconds=470024),
running_time_human='46:13:33',
running_time_in_seconds=166413.470024,
status='running',
username='panxuehai',
),
host_memory=9113627439, # in bytes
host_memory_human='8691MiB',
is_running=True,
memory_percent=1.6849018430285683, # in percentage (NOTE: this is the percentage of used host memory)
name='python3',
pid=23266,
running_time=datetime.timedelta(days=1, seconds=80013, microseconds=470024),
running_time_human='46:13:33',
running_time_in_seconds=166413.470024,
status='running',
type='C', # 'C' for Compute / 'G' for Graphics / 'C+G' for Both
username='panxuehai',
)
In [28]: process.uids() # GpuProcess will automatically inherit attributes from GpuProcess.host
Out[28]: puids(real=1001, effective=1001, saved=1001)
In [29]: process.kill() # GpuProcess will automatically inherit attributes from GpuProcess.host
In [30]: list(map(Device.processes, all_devices)) # all processes
Out[30]: [
{
52059: GpuProcess(pid=52059, gpu_memory=7885MiB, type=C, device=PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=52059, name='ipython3', status='sleeping', started='14:31:22')),
53002: GpuProcess(pid=53002, gpu_memory=967MiB, type=C, device=PhysicalDevice(index=0, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=53002, name='python', status='running', started='14:31:59'))
},
{},
{},
{},
{},
{},
{},
{},
{
84748: GpuProcess(pid=84748, gpu_memory=8975MiB, type=C, device=PhysicalDevice(index=8, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=84748, name='python', status='running', started='11:13:38'))
},
{
84748: GpuProcess(pid=84748, gpu_memory=8341MiB, type=C, device=PhysicalDevice(index=9, name="GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=84748, name='python', status='running', started='11:13:38'))
}
]
In [31]: this = HostProcess(os.getpid())
...: this
Out[31]: HostProcess(pid=35783, name='python', status='running', started='19:19:00')
In [32]: this.cmdline() # type: List[str]
Out[32]: ['python', '-c', 'import IPython; IPython.terminal.ipapp.launch_new_instance()']
In [33]: this.command() # not simply `' '.join(cmdline)` but quotes are added
Out[33]: 'python -c "import IPython; IPython.terminal.ipapp.launch_new_instance()"'
In [34]: this.memory_info()
Out[34]: pmem(rss=83988480, vms=343543808, shared=12079104, text=8192, lib=0, data=297435136, dirty=0)
In [35]: import cupy as cp
...: x = cp.zeros((10000, 1000))
...: this = GpuProcess(os.getpid(), cuda0) # construct from `GpuProcess(pid, device)` explicitly rather than calling `device.processes()`
...: this
Out[35]: GpuProcess(pid=35783, gpu_memory=N/A, type=N/A, device=CudaDevice(cuda_index=0, nvml_index=9, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=35783, name='python', status='running', started='19:19:00'))
In [36]: this.update_gpu_status() # update used GPU memory from new driver queries
Out[36]: 267386880
In [37]: this
Out[37]: GpuProcess(pid=35783, gpu_memory=255MiB, type=C, device=CudaDevice(cuda_index=0, nvml_index=9, name="NVIDIA GeForce RTX 2080 Ti", total_memory=11019MiB), host=HostProcess(pid=35783, name='python', status='running', started='19:19:00'))
In [38]: id(this) == id(GpuProcess(os.getpid(), cuda0)) # IMPORTANT: the instance will be reused while the process is running
Out[38]: True
```
##### Host (inherited from [psutil](https://github.com/giampaolo/psutil))
```python
In [39]: host.cpu_count()
Out[39]: 88
In [40]: host.cpu_percent()
Out[40]: 18.5
In [41]: host.cpu_times()
Out[41]: scputimes(user=2346377.62, nice=53321.44, system=579177.52, idle=10323719.85, iowait=28750.22, irq=0.0, softirq=11566.87, steal=0.0, guest=0.0, guest_nice=0.0)
In [42]: host.load_average()
Out[42]: (14.88, 17.8, 19.91)
In [43]: host.virtual_memory()
Out[43]: svmem(total=270352478208, available=192275968000, percent=28.9, used=53350518784, free=88924037120, active=125081112576, inactive=44803993600, buffers=37006450688, cached=91071471616, shared=23820632064, slab=8200687616)
In [44]: host.memory_percent()
Out[44]: 28.9
In [45]: host.swap_memory()
Out[45]: sswap(total=65534947328, used=475136, free=65534472192, percent=0.0, sin=2404139008, sout=4259434496)
In [46]: host.swap_percent()
Out[46]: 0.0
```
------
## Screenshots

Example output of `nvitop -1`:
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/117765250-41793880-b260-11eb-8a1b-9c32868a46d4.png" alt="Screenshot">
</p>
Example output of `nvitop`:
<table>
<tr valign="center" align="center">
<td>Full</td>
<td>Compact</td>
</tr>
<tr valign="top" align="center">
<td><img src="https://user-images.githubusercontent.com/16078332/117765260-4342fc00-b260-11eb-9198-7bcfdd1db113.png" alt="Full"></td>
<td><img src="https://user-images.githubusercontent.com/16078332/117765274-476f1980-b260-11eb-9afd-877cca54e0bc.png" alt="Compact"></td>
</tr>
</table>
Tree-view screen (shortcut: <kbd>t</kbd>) for GPU processes and their ancestors:
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/123914889-7b3e0400-d9b2-11eb-9b71-a48971617c2a.png" alt="Tree-view">
</p>
**NOTE:** The process tree is built in backward order (recursively back to the tree root). Only GPU processes along with their children and ancestors (parents and grandparents ...) will be shown. Not all running processes will be displayed.
Environment variable screen (shortcut: <kbd>e</kbd>):
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/123914881-7a0cd700-d9b2-11eb-8da1-26f7a3a7c2b6.png" alt="Environment Screen">
</p>
Spectrum-like bar charts (with option <code>--colorful</code>):
<p align="center">
<img width="100%" src="https://user-images.githubusercontent.com/16078332/182555606-8388e5a5-43a9-4990-90d4-46e45ac448a0.png" alt="Spectrum-like Bar Charts">
<br/>
</p>
------
## Changelog
See [CHANGELOG.md](https://github.com/XuehaiPan/nvitop/blob/HEAD/CHANGELOG.md).
------
## License
The source code of `nvitop` is dual-licensed by the **Apache License, Version 2.0 (Apache-2.0)** and **GNU General Public License, Version 3 (GPL-3.0)**. The `nvitop` CLI is released under the **GPL-3.0** license while the remaining part of `nvitop` is released under the **Apache-2.0** license. The license files can be found at [LICENSE](https://github.com/XuehaiPan/nvitop/blob/HEAD/LICENSE) (Apache-2.0) and [COPYING](https://github.com/XuehaiPan/nvitop/blob/HEAD/COPYING) (GPL-3.0).
The source code is organized as:
```text
nvitop (GPL-3.0)
├── __init__.py (Apache-2.0)
├── version.py (Apache-2.0)
├── api (Apache-2.0)
│ ├── LICENSE (Apache-2.0)
│ └── * (Apache-2.0)
├── callbacks (Apache-2.0)
│ ├── LICENSE (Apache-2.0)
│ └── * (Apache-2.0)
├── select.py (Apache-2.0)
├── __main__.py (GPL-3.0)
├── cli.py (GPL-3.0)
└── tui (GPL-3.0)
├── COPYING (GPL-3.0)
└── * (GPL-3.0)
```
### Copyright Notice
Please feel free to use `nvitop` as a dependency for your own projects. The following Python import statements are permitted:
```python
import nvitop
import nvitop as alias
import nvitop.api as api
import nvitop.device as device
from nvitop import *
from nvitop.api import *
from nvitop import Device, ResourceMetricCollector
```
The public APIs from `nvitop` are released under the **Apache License, Version 2.0 (Apache-2.0)**. The original license files can be found at [LICENSE](https://github.com/XuehaiPan/nvitop/blob/HEAD/LICENSE), [nvitop/api/LICENSE](https://github.com/XuehaiPan/nvitop/blob/HEAD/nvitop/api/LICENSE), and [nvitop/callbacks/LICENSE](https://github.com/XuehaiPan/nvitop/blob/HEAD/nvitop/callbacks/LICENSE).
The CLI of `nvitop` is released under the **GNU General Public License, Version 3 (GPL-3.0)**. The original license files can be found at [COPYING](https://github.com/XuehaiPan/nvitop/blob/HEAD/COPYING) and [nvitop/tui/COPYING](https://github.com/XuehaiPan/nvitop/blob/HEAD/nvitop/tui/COPYING). If you dynamically load the source code of `nvitop`'s CLI or TUI:
```python
from nvitop import cli
from nvitop import tui
import nvitop.cli
import nvitop.tui
```
your source code should also be released under the GPL-3.0 License.
If you want to add or modify some features of `nvitop`'s CLI, or copy some source code of `nvitop`'s CLI into your own code, the source code should also be released under the GPL-3.0 License (as `nvitop` contains some modified source code from [ranger](https://github.com/ranger/ranger) under the GPL-3.0 License).
|