1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/*
*
* Copyright (C) 2022 Maxime Schmitt <maxime.schmitt91@gmail.com>
*
* This file is part of Nvtop.
*
* Nvtop is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Nvtop is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with nvtop. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <algorithm>
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
extern "C" {
#include "nvtop/interface.h"
#include "nvtop/interface_layout_selection.h"
}
static std::ostream &operator<<(std::ostream &os, const struct window_position &win) {
os << "Win (" << win.posX << ", " << win.posY << ")--(" << win.posX + win.sizeX << "," << win.posY + win.sizeY << ")";
return os;
}
namespace {
// Returns true if the two windows overlap, false otherwise.
bool window_position_overlap(struct window_position &w1, struct window_position &w2) {
bool overlapX = w1.posX == w2.posX || (w1.posX < w2.posX && w1.posX + w1.sizeX - 1 >= w2.posX) ||
(w1.posX > w2.posX && w2.posX + w2.sizeX - 1 >= w1.posX);
bool overlapY = w1.posY == w2.posY || (w1.posY < w2.posY && w1.posY + w1.sizeY - 1 >= w2.posY) ||
(w1.posY > w2.posY && w2.posY + w2.sizeY - 1 >= w1.posY);
return overlapX && overlapY;
}
bool window_is_empty(const struct window_position &w1) { return w1.sizeX == 0 || w1.sizeY == 0; }
// Check that the window is not empty
// Returns true if the window is not empty
bool check_non_empty_window(const struct window_position &w1) {
EXPECT_GT(w1.sizeX, 0) << "Window " << w1 << " should not be empty";
EXPECT_GT(w1.sizeY, 0) << "Window " << w1 << " should not be empty";
return not window_is_empty(w1);
}
// Check that the none of the windows overlap any other
bool check_no_windows_overlap(std::vector<struct window_position> &windows) {
bool has_overlap = false;
for (unsigned winId = 0; winId < windows.size(); ++winId) {
struct window_position ¤tWin = windows[winId];
for (unsigned winCompareId = winId + 1; winCompareId < windows.size(); ++winCompareId) {
struct window_position &compareTo = windows[winCompareId];
bool overlaps = window_position_overlap(currentWin, compareTo);
EXPECT_FALSE(overlaps) << "Between " << currentWin << " and " << compareTo;
has_overlap = has_overlap || overlaps;
}
}
return !has_overlap;
}
// Check that win does not extend past the container
// Returns true if win is contained inside the container
bool check_window_inside(const struct window_position &win, const struct window_position &container) {
bool insideX = win.posX >= container.posX && win.posX + win.sizeX - 1 <= container.posX + container.sizeX - 1;
EXPECT_TRUE(insideX) << win << " is not inside " << container;
bool insideY = win.posY >= container.posY && win.posY + win.sizeY - 1 <= container.posY + container.sizeY - 1;
EXPECT_TRUE(insideY) << win << " is not inside " << container;
return insideX && insideY;
}
// Check that w1 is below w2
bool check_window_below(const struct window_position &w1, const struct window_position &w2) {
EXPECT_GT(w1.posY, w2.posY + w2.sizeY - 1) << w1 << " is not below " << w2;
return w1.posY > w2.posY + w2.sizeY - 1;
}
// Returns true if the layout is valid
bool check_layout(struct window_position screen, std::vector<struct window_position> &dev_pos,
std::vector<struct window_position> &plot_position, struct window_position process_position,
struct window_position setup_position) {
bool layout_valid = true;
// Header
// A particularity of the header is that it can be bigger than the screen
for (auto const &dev_win : dev_pos) {
bool valid = check_non_empty_window(dev_win);
if (!valid)
std::cout << "Error with header window: " << dev_win << std::endl;
layout_valid = layout_valid && valid;
}
layout_valid = layout_valid && check_no_windows_overlap(dev_pos);
// Plots
for (auto const &plot_win : plot_position) {
bool valid = check_non_empty_window(plot_win);
if (!valid)
std::cout << "Error with plot window: " << plot_win << std::endl;
layout_valid = layout_valid && valid;
}
for (auto const &dev_win : dev_pos) {
for (auto const &plot_win : plot_position) {
layout_valid = layout_valid && check_window_below(plot_win, dev_win);
layout_valid = layout_valid && check_window_inside(plot_win, screen);
}
}
layout_valid = layout_valid && check_no_windows_overlap(plot_position);
// Processes
for (auto const &plot_win : plot_position) {
layout_valid = layout_valid && check_window_below(process_position, plot_win);
}
if (not window_is_empty(process_position))
layout_valid = layout_valid && check_window_inside(process_position, screen);
return layout_valid;
}
bool test_with_terminal_size(unsigned device_count, unsigned header_rows, unsigned header_cols, unsigned rows,
unsigned cols) {
struct window_position screen = {.posX = 0, .posY = 0, .sizeX = cols, .sizeY = rows};
nvtop_interface_gpu_opts to_draw_default = {.to_draw = plot_default_draw_info()};
std::vector<nvtop_interface_gpu_opts> plot_display(device_count, to_draw_default);
process_field_displayed proc_display = process_default_displayed_field();
unsigned num_plots = 0;
std::vector<struct window_position> dev_positions(device_count);
std::vector<struct window_position> plot_positions(MAX_CHARTS);
struct window_position process_position;
struct window_position setup_position;
std::vector<unsigned> map_dev_to_plot(device_count);
compute_sizes_from_layout(device_count, header_rows, header_cols, rows, cols, plot_display.data(), proc_display,
dev_positions.data(), &num_plots, plot_positions.data(), map_dev_to_plot.data(),
&process_position, &setup_position, false);
plot_positions.resize(num_plots);
return check_layout(screen, dev_positions, plot_positions, process_position, setup_position);
}
} // namespace
TEST(InterfaceLayout, LayoutSelection_issue_147) { test_with_terminal_size(8, 3, 78, 26, 189); }
TEST(InterfaceLayout, CheckEmptyProcessWindow) {
unsigned device_count = 3, header_rows = 3, header_cols = 55, rows = 4, cols = 120;
struct window_position screen = {.posX = 0, .posY = 0, .sizeX = cols, .sizeY = rows};
nvtop_interface_gpu_opts to_draw_default = {.to_draw = plot_default_draw_info()};
std::vector<nvtop_interface_gpu_opts> plot_display(device_count, to_draw_default);
process_field_displayed proc_display = process_default_displayed_field();
unsigned num_plots = 0;
std::vector<struct window_position> dev_positions(device_count);
std::vector<struct window_position> plot_positions(MAX_CHARTS);
struct window_position process_position;
struct window_position setup_position;
std::vector<unsigned> map_dev_to_plot(device_count);
compute_sizes_from_layout(device_count, header_rows, header_cols, rows, cols, plot_display.data(), proc_display,
dev_positions.data(), &num_plots, plot_positions.data(), map_dev_to_plot.data(),
&process_position, &setup_position, false);
plot_positions.resize(num_plots);
EXPECT_EQ(num_plots, 0);
EXPECT_TRUE(window_is_empty(process_position));
}
TEST(InterfaceLayout, FixInfiniteLoop) {
unsigned device_count = 3, header_rows = 3, header_cols = 55, rows = 22, cols = 25;
struct window_position screen = {.posX = 0, .posY = 0, .sizeX = cols, .sizeY = rows};
nvtop_interface_gpu_opts to_draw_default = {.to_draw = plot_default_draw_info()};
std::vector<nvtop_interface_gpu_opts> plot_display(device_count, to_draw_default);
process_field_displayed proc_display = process_default_displayed_field();
unsigned num_plots = 0;
std::vector<struct window_position> dev_positions(device_count);
std::vector<struct window_position> plot_positions(MAX_CHARTS);
struct window_position process_position;
struct window_position setup_position;
std::vector<unsigned> map_dev_to_plot(device_count);
compute_sizes_from_layout(device_count, header_rows, header_cols, rows, cols, plot_display.data(), proc_display,
dev_positions.data(), &num_plots, plot_positions.data(), map_dev_to_plot.data(),
&process_position, &setup_position, false);
plot_positions.resize(num_plots);
}
TEST(InterfaceLayout, LayoutSelection_test_fail_case1) { test_with_terminal_size(32, 3, 55, 16, 1760); }
#ifdef THOROUGH_TESTING
TEST(InterfaceLayout, CheckManyTermSize) {
const std::array<unsigned, 8> dev_count_to_test = {0, 1, 2, 3, 6, 16, 32, 64};
const std::map<unsigned, unsigned> extra_increment = {{0, 0}, {1, 0}, {2, 0}, {3, 0},
{6, 4}, {16, 6}, {32, 8}, {64, 17}};
for (unsigned dev_count : dev_count_to_test) {
for (unsigned screen_rows = 1; screen_rows < 2048; screen_rows += 1 + extra_increment.at(dev_count)) {
for (unsigned screen_cols = 1; screen_cols < 2048; screen_cols += 1 + extra_increment.at(dev_count)) {
for (unsigned header_cols = 55; header_cols < 120; header_cols += 1 + extra_increment.at(dev_count)) {
ASSERT_TRUE(test_with_terminal_size(dev_count, 3, header_cols, screen_rows, screen_cols))
<< "Problem found with " << dev_count << " devices, (" << 3 << ", header " << header_cols
<< "), terminal size (" << screen_rows << ", " << screen_cols << ")";
}
}
}
}
}
#endif // THOROUGH_TESTING
|