File: nw8xx_jpgl.c

package info (click to toggle)
nw802 0.0.99-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 244 kB
  • ctags: 375
  • sloc: ansic: 3,058; makefile: 174
file content (706 lines) | stat: -rw-r--r-- 18,787 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

//
// Kernel module for NW8xx based USB webcams.
//
// - WebSite            : nw802.sourceforge.net
// - Mailing list       : nw802-main@lists.sourceforge.net
// - Project Developers : Sylvain Munaut <nw8xx ]at[ 246tNt.com>
//                        Kjell Claesson <keyson ]at[ users.sourceforge.net>
//
// [ sources bestviewed with tabstop=4 ]
//


//
// nw8xx_jpgl.c
//
// Implementation of JPEG Lite decoding algorithm
//
// Author & Copyright (c) 2003 : Sylvain Munaut <nw8xx ]at[ 246tNt.com>
//


#include "nw8xx_jpgl.h"


// ============================================================================
// RingQueue bit reader
// ============================================================================
// All what is needed to read bit by nit from the RingQueue pump 
// provided by usbvideo
// Critical part are macro and not functions to speed things up
// Rem: Data are read from the RingQueue as if they were 16bits Little Endian
//      words. Most Significants Bits are outputed first.


// Structure used to store what we need.
// ( We may need multiple simultaneous instance from several cam )
struct rqBitReader
{
	int cur_bit;
	unsigned int cur_data;
	struct RingQueue *rq;
};


static inline void rqBR_init( struct rqBitReader *br, struct RingQueue *rq )
{
	br->cur_bit = 16;
	br->cur_data =
		RING_QUEUE_PEEK( rq, 2 )        |
		RING_QUEUE_PEEK( rq, 3 ) << 8   |
		RING_QUEUE_PEEK( rq, 0 ) << 16  |
		RING_QUEUE_PEEK( rq, 1 ) << 24  ;
	RING_QUEUE_DEQUEUE_BYTES( rq, 2 );
	br->rq = rq;
}

#define rqBR_peekBits(br,n) ( br->cur_data >> (32-n) )

#define rqBR_flushBits(br,n) do {                                   \
        br->cur_data <<= n;                                         \
        if ( (br->cur_bit -= n) <= 0 ) {                            \
            br->cur_data |=                                         \
                RING_QUEUE_PEEK( br->rq, 2 ) << -br->cur_bit  |     \
                RING_QUEUE_PEEK( br->rq, 3 ) << (8 - br->cur_bit);  \
            RING_QUEUE_DEQUEUE_BYTES( br->rq, 2 );                  \
            br->cur_bit += 16;                                      \
        }                                                           \
	} while (0)



// ============================================================================
// Real JPEG Lite stuff
// ============================================================================

//
// Precomputed tables
// Theses are computed at init time to make real-time operations faster.
// It takes some space ( about 9k ). But believe me it worth it !
//

// Variable Lenght Coding related tables, used for AC coefficient decoding
static char vlcTbl_len[1<<10];	// Meaningful bit count
static char vlcTbl_run[1<<10];	// Run
static char vlcTbl_amp[1<<10];	// Amplitude ( without the sign )

// YUV->RGB conversion table
static int yuvTbl_y[256];
static int yuvTbl_u1[256];
static int yuvTbl_u2[256];
static int yuvTbl_v1[256];
static int yuvTbl_v2[256];

// Clamping table
#define SAFE_CLAMP
#ifdef SAFE_CLAMP
inline unsigned char clamp(int x) {
	if ( x > 255 )
		return 255;
	if ( x < 0 )
		return 0;
	return x;
}
#define clamp_adjust(x) clamp(x+128)
#else
#define clamp(x) clampTbl[(x)+512]
#define clamp_adjust(x) clampTbl[(x)+640]
static char clampTbl[1280];
#endif

// Code to initialize those tables
static void vlcTbl_init()
{
	// Bases tables used to compute the bigger one
	// To understands theses, look at the VLC doc in the
	// US patent document.

	static const int vlc_num = 28;
	static const int vlc_len[] =
		{ 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7,
		  8 ,8 ,8 ,9, 9, 9, 10, 10, 10, 10, 10, 10 };
	static const int vlc_run[] =
		{ 0, 0, 0, 1, 0, 2, 3, 1, 0, 4, 0, 5, 1, 0, -1, -2,
		  2, 6, 0, 3, 1, 0, 1, 0, 7, 2, 0, 8 };
	static const int vlc_amp[] =
		{ 0, 1, 2, 1, 3, 1, 1, 2, 4, 1 ,5 ,1 ,3 ,6, -1, -2,
		  2, 1, 7, 2, 4, 8, 5, 9, 1 ,3, 10, 1 };
	static const int vlc_cod[] =
		{ 0x000, 0x002, 0x003, 0x006, 0x00E, 0x008, 0x00B, 0x012,
		  0x014, 0x03D, 0x03E, 0x078, 0x079, 0x07E, 0x026, 0x027,
		  0x054, 0x057, 0x0FF, 0x0AA, 0x0AC, 0x1FC, 0x156, 0x157,
		  0x15A, 0x15B, 0x3FA, 0x3FB };
	
	// Vars
	int i,j;

	// Main filling loop
	for ( i=0 ; i<(1<<10) ; i++ )
	{
		// Find the matching one
		for ( j=0 ; j<vlc_num ; j++ )
		{
			if ( (i >> (10-vlc_len[j])) == vlc_cod[j] )
			{
				if ( vlc_run[j] >= 0 )
					if ( vlc_amp[j] != 0 )
						vlcTbl_len[i] = vlc_len[j] + 1;
					else
						vlcTbl_len[i] = vlc_len[j]; // EOB
				else
					vlcTbl_len[i] = 16;
				vlcTbl_run[i] = vlc_run[j];
				vlcTbl_amp[i] = vlc_amp[j];
				break;
			}
		}
	}
}

static void yuvTbl_init()
{
	// These tables are just pre-multiplied and pre-offseted
	// YUV by the book
	// R = 1.164 * (Y-16) + 1.596 * (U-128)
	// G = 1.164 * (Y-16) - 0.813 * (U-128) - 0.391 * (V-128)
	// B = 1.164 * (Y-16)                   + 2.018 * (V-128) 

	int i;

	// We use fixed point << 16
	for ( i=0 ; i < 256 ; i++ ) {
		yuvTbl_y[i]  =  76284 * (i- 16);
		yuvTbl_u1[i] = 104595 * (i-128);
		yuvTbl_u2[i] =  53281 * (i-128);
		yuvTbl_v1[i] =  25625 * (i-128); 
		yuvTbl_v2[i] = 132252 * (i-128);
	}
}

#ifndef SAFE_CLAMP
static void clampTbl_init()
{
	// Instead of doing if(...) to test for overrange, we use
	// a clamping table
	
	int i;

	for (i=0 ; i < 512 ; i++)
		clampTbl[i] = 0;
	for (i=512 ; i < 768 ; i++ )
		clampTbl[i] = i - 512;
	for (i=768 ; i < 1280 ; i++ )
		clampTbl[i] = 255;

}
#endif

//
// Internal helpers
//

static inline int readAC( struct rqBitReader *br, int *run, int *amp )
{
	// Vars
	unsigned int cod;

	// Get 16 bits
	cod = rqBR_peekBits(br,16);

	// Lookup in the table
	*run = vlcTbl_run[cod>>6];
	*amp = vlcTbl_amp[cod>>6];
	rqBR_flushBits(br,vlcTbl_len[cod>>6]);

	if ( *amp > 0 )
	{
		// Normal stuff, just correct the sign
		if ( cod & ( 0x10000 >> vlcTbl_len[cod>>6] ) )
			*amp = - *amp;
	}
	else
	{
		// Handle special cases
		if ( ! *amp ) 
		{
			return 0;
		}
		else if ( *amp == -1 )
		{
			// 0100110srrraaaaa
			*run = ( cod >> 5 ) & 0x07;
			*amp = ( cod & 0x100) ?
				-(cod&0x1F) : (cod&0x1F);
		}
		else
		{
			// 0100111srrrraaaa
			*run = ( cod >> 4 ) & 0x0F;
			*amp = ( cod & 0x100) ?
				-(cod&0x0F) : (cod&0x0F);
		}
	}

	return 1;
}


#define iDCT_column(b0,b1,b2,b3) do {	\
	int t0,t1,t2,t3;                    \
										\
	t0 = ( b1 + b3 ) << 5;              \
	t2 = t0 - (b3 << 4);                \
	t3 = (b1 *  47) - t0;               \
	t0 = b0 + b2;                       \
	t1 = b0 - b2;                       \
										\
	b0 = ( t0 + t2 );                   \
	b1 = ( t1 + t3 );                   \
	b3 = ( t0 - t2 );                   \
	b2 = ( t1 - t3 );                   \
} while (0)

#define iDCT_line(b0,b1,b2,b3) do {		\
	int t0,t1,t2,t3,bm0,bm2;            \
										\
	bm0 = b0 << 7;                      \
	bm2 = b2 << 7;                      \
										\
	t0 = bm0 + bm2;                     \
	t1 = bm0 - bm2;                     \
	t2 = b1 * 183 + b3 *  86;           \
	t3 = b1 *  86 - b3 * 183;           \
										\
	b0 = ( t0 + t2 ) >> 22;             \
	b1 = ( t1 + t3 ) >> 22;             \
	b3 = ( t0 - t2 ) >> 22;             \
	b2 = ( t1 - t3 ) >> 22;             \
} while (0)


// Decode a block
// Basic ops : get the DC - get the ACs - deZigZag - deWeighting - 
//             deQuantization - iDCT
// Here they are a little mixed-up to speed all this up.
static inline int decodeBlock( struct rqBitReader *br, int *block, int *dc )
{
	// Tables used for block decoding
	
		// deZigZag table
		//
		// ZigZag: each of the coefficient of the DCT transformed 4x4
		//         matrix is taken in a certain order to make a linear
		//         array with the high frequency AC at the end
		//
		// / 0  1  5  6 \    .
		// | 2  4  7 12 |    This is the order taken. We must deZigZag
		// | 3  8 11 13 |    to reconstitute the original matrix
		// \ 9 10 14 15 /
	static const int iZigZagTbl[16] =
		{ 0, 1, 4, 8, 5, 2, 3, 6,  9,12, 13, 10, 7, 11, 14, 15 };

		// deQuantization, deWeighting & iDCT premultiply
	
		//
		// Weighting : Each DCT coefficient is weighted by a certain factor. We
		//             must compensate for this to rebuilt the original DCT matrix.
		//
		// Quantization: According to the read Q factor, DCT coefficient are
		//               quantized. We need to compensate for this. 
		//
		// iDCT premultiply: Since for the first iDCT pass ( column ), we'll need
		//                   to do some multiplication, the ones that we can
		//                   integrate here, we do.
		//
		// Rem: - The factors are here presented in the ZigZaged order,
		//      because we will need those BEFORE the deZigZag
		//      - For more informations, consult jpgl_tbl.c, it's the little
		//      prog that computes this table
	static const int iQWTbl[4][16] = {
		{  32768,  17808,    794,  18618,    850,  18618,  43115,   1828,
		   40960,   1924,   2089,  45511,   2089,  49648,   2216,   2521 },
		{  32768,  35617,   1589,  37236,   1700,  37236,  86231,   3656,
		   81920,   3849,   4179,  91022,   4179,  99296,   4432,   5043 },
		{  32768,  71234,   3179,  74472,   3401,  74472, 172463,   7313,
		  163840,   7698,   8358, 182044,   8358, 198593,   8865,  10087 },
		{  32768, 142469,   6359, 148945,   6803, 148945, 344926,  14627,
		  327680,  15397,  16716, 364088,  16716, 397187,  17730,  20175 }
	};	

	// Vars
	int hdr;
	int *eff_iQWTbl;
	int cc, run, amp;

	// Read & Decode the block header ( Q, T, DC )
	hdr = rqBR_peekBits(br,11);

	if ( hdr & 0x100 )
	{
		// Differential mode
		if ( hdr & 0x80 )
			*dc += ( hdr >> 3 ) | ~0xF;
		else
			*dc += ( hdr >> 3 ) & 0xF;

		// Flush the header bits
		rqBR_flushBits(br,8);
	}
	else
	{
		// Direct mode
		if ( hdr & 0x80 )
			*dc = hdr | ~0x7F;
		else
			*dc = hdr & 0x7F;
			
		// Flush the header bits
		rqBR_flushBits(br,11);
	}

	// Clear the block & store DC ( with pre-multiply )
	block[0] = *dc << 15;
	block[1] = 0x00;
	block[2] = 0x00;
	block[3] = 0x00;
	block[4] = 0x00;
	block[5] = 0x00;
	block[6] = 0x00;
	block[7] = 0x00;
	block[8] = 0x00;
	block[9] = 0x00;
	block[10] = 0x00;
	block[11] = 0x00;
	block[12] = 0x00;
	block[13] = 0x00;
	block[14] = 0x00;
	block[15] = 0x00;
	
	// Read the AC coefficients
	// at the same time, deZigZag, deQuantization, deWeighting & iDCT premultiply
	eff_iQWTbl = (int*) iQWTbl[hdr>>9];
	cc = 0;
	
	while ( readAC(br,&run,&amp) )
	{
		cc += run + 1;
		if ( cc > 15 )
			return -1;
		block[iZigZagTbl[cc]] = amp * eff_iQWTbl[cc];
	}
	
	// Do the column iDCT ( what's left to do )
	iDCT_column(block[0], block[4], block[8], block[12]);
	iDCT_column(block[1], block[5], block[9], block[13]);
	iDCT_column(block[2], block[6], block[10], block[14]);
	iDCT_column(block[3], block[7], block[11], block[15]);
	
	// Do the line iDCT ( complete one here )
	iDCT_line(block[0], block[1], block[2], block[3]);
	iDCT_line(block[4], block[5], block[6], block[7]);
	iDCT_line(block[8], block[9], block[10], block[11]);
	iDCT_line(block[12], block[13], block[14], block[15]);

	return ( ! hdr & 0x700 );
}


//
// Exported functions
//


// Decode a frame. The input stream MUST BE aligned ( refer to 
// jpgl_findHeader ). A complete frame MUST BE available !
// Return 0 if the frame is valid.
// Another code is an error code
int jpgl_processFrame( struct RingQueue *rq, unsigned char *fb )
{
	// Vars
	struct rqBitReader br;

	int img_height, img_width;	// Height>>2 & Width

	int row, col;	// Row & Column in the image

	int x,y;
	int block_idx;

	unsigned char *Yline_baseptr, *Uline_baseptr, *Vline_baseptr;
	unsigned char *Yline, *Uline, *Vline;
	int Yline_baseofs, UVline_baseofs;

	int dc_y, dc_u, dc_v;	// DC Coefficients
	int block_y[16*4];		// Y blocks
	int block_u[16];		// U block
	int block_v[16];		// V block

	unsigned char *mainbuffer;

	int yc,uc,vc;


	// Ok, get the height/width & skip the header
	img_width = RING_QUEUE_PEEK(rq,3) << 2;
	img_height = RING_QUEUE_PEEK(rq,2);
	RING_QUEUE_DEQUEUE_BYTES(rq,8);

	printk("Frame decoding: fb=%08X W=%d H=%d\n", fb, img_width, img_height);

	// Prepare a bit-by-bit reader
	rqBR_init(&br, rq);

	// Allocate a big buffer & setup pointers
#ifdef _JPGL_TEST_
	mainbuffer = malloc( 4 * ( img_width + (img_width>>1) + 2 ) );
#else
	mainbuffer = kmalloc( 4 * ( img_width + (img_width>>1) + 2 ), GFP_KERNEL );
#endif
	
	Yline_baseptr = mainbuffer;
	Uline_baseptr = mainbuffer + (4 * img_width);
	Vline_baseptr = Uline_baseptr + (img_width + 4);

	Yline_baseofs = img_width - 4;
	UVline_baseofs = (img_width >> 2) - 3;

	// Process 4 lines at a time ( one block height )
	for ( row=0 ; row<img_height ; row++ )
	{
		// Line start reset DC
		dc_y = dc_u = dc_v = 0;

		// Process 16 columns at a time ( 4 block width )
		for ( col=0 ; col<img_width ; col+=16 )
		{
			// Decode blocks
			// Block order : Y Y Y Y V U ( Why V before U ?
			// that just depends what you call U&V ... I took the
			// 'by-the-book' names and that make V and then U,
			// ... just ask the DivIO folks ;) )
			if ( decodeBlock(&br, block_y, &dc_y) && (!col) )
				return -1;	// Bad block, so bad frame ...

			decodeBlock(&br, block_y + 16, &dc_y);
			decodeBlock(&br, block_y + 32, &dc_y);
			decodeBlock(&br, block_y + 48, &dc_y);
			decodeBlock(&br, block_v, &dc_v);
			decodeBlock(&br, block_u, &dc_u);
			
			// Copy data to temporary buffers ( to make a complete line )
			block_idx = 0;
			Yline = Yline_baseptr + col;
			Uline = Uline_baseptr + (col >> 2);
			Vline = Vline_baseptr + (col >> 2);

			for ( y=0 ; y<4 ; y++)
			{
				// Scan line
				for ( x=0 ; x<4 ; x++ )
				{
					// Y block
					Yline[ 0] = clamp_adjust(block_y[block_idx   ]);
					Yline[ 4] = clamp_adjust(block_y[block_idx+16]);
					Yline[ 8] = clamp_adjust(block_y[block_idx+32]);
					Yline[12] = clamp_adjust(block_y[block_idx+48]);

					// U block
					*Uline = clamp_adjust(block_u[block_idx]);

					// V block
					*Vline = clamp_adjust(block_v[block_idx]);

					// Ajust pointers & index
					block_idx++;
					Yline++;
					Uline++;
					Vline++;
				}

				// Adjust pointers
				Yline += Yline_baseofs;
				Uline += UVline_baseofs;
				Vline += UVline_baseofs;
			}
		}

		// Handle interpolation special case ( at the end of the lines )
		Uline = Uline_baseptr + (UVline_baseofs+2);
		Vline = Vline_baseptr + (UVline_baseofs+2);
		for ( y=0 ; y<4 ; y++ )
		{
			// Copy the last pixel
			Uline[1] = Uline[0];
			Vline[1] = Vline[0];
	
			// Adjust ptr
			Uline += UVline_baseofs+4;	
			Vline += UVline_baseofs+4;	
		}

		// We have 4 complete lines, so tempbuffer<YUV> -> framebuffer<RGB>
		// Go line by line
		Yline = Yline_baseptr;
		Uline = Uline_baseptr;
		Vline = Vline_baseptr;

		for ( y=0 ; y<4 ; y++ ) 
		{
			
			// Process 4 pixel at a time to handle interpolation
			// for U & V values
			for ( x=0 ; x<img_width ; x+=4 )
			{
			# if 0
				*(fb++) = *(Yline++);
				*(fb++) = Uline[0];
				*(fb++) = Vline[0];
				
				*(fb++) = *(Yline++);
				*(fb++)= ( 3*Uline[0] + Uline[1] ) >> 2;
				*(fb++) = ( 3*Vline[0] + Vline[1] ) >> 2;
				
				*(fb++) = *(Yline++);
				*(fb++)= ( Uline[0] + Uline[1] ) >> 1;
				*(fb++) = ( Vline[0] + Vline[1] ) >> 1;
				
				*(fb++) = *(Yline++);
				*(fb++)= ( Uline[0] + 3*Uline[1] ) >> 2;
				*(fb++) = ( Vline[0] + 3*Vline[1] ) >> 2;
		#else	
				// First pixel
				yc = yuvTbl_y[*(Yline++)];
				uc = Uline[0];
				vc = Vline[0];

					// B G R
				*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
				*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
				*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
				fb++;
#endif

				// Second pixel
				yc = yuvTbl_y[*(Yline++)];
				uc = ( 3*Uline[0] + Uline[1] ) >> 2;
				vc = ( 3*Vline[0] + Vline[1] ) >> 2;
				
					// B G R
				*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
				*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
				*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
				fb++;
#endif

				// Third pixel
				yc = yuvTbl_y[*(Yline++)];
				uc = ( Uline[0] + Uline[1] ) >> 1;
				vc = ( Vline[0] + Vline[1] ) >> 1;

					// B G R
				*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
				*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
				*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
				fb++;
#endif

				// Fourth pixel
				yc = yuvTbl_y[*(Yline++)];
				uc = ( Uline[0] + 3*Uline[1] ) >> 2;
				vc = ( Vline[0] + 3*Vline[1] ) >> 2;

					// B G R
				*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
				*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
				*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
				fb++;
#endif
				#endif

				// Adjust pointers
				Uline++;
				Vline++;
			}
				
			// Adjust pointers
			Uline++;
			Vline++;
		}
	}

	// Free our buffer
#ifdef _JPGL_TEST_
	free(mainbuffer);
#else
	kfree(mainbuffer);
#endif

	return 0;
}

// Find a valid header and return the offset to skip to correctly align
// the stream for frame decoding.
// The ofs parameter allows you to start searching from some offset. 
// Returns -1 if nothing found.
int jpgl_findHeader( struct RingQueue *rq, int w, int h, int ofs )
{
	#define JPGL_HEADERLEN 8
	int header_pos = 0;
	int rq_ofs = ofs;
	int rq_len;

	static const unsigned char header_mask[JPGL_HEADERLEN] =
		{ 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF };
	unsigned char header_data[JPGL_HEADERLEN] =
		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF };

	// Adjust variable header bytes
	header_data[2] = (unsigned char)( h >> 2 );
	header_data[3] = (unsigned char)( w >> 2 );

	// Look for a complete header in the RingQueue, starting at ofs
	rq_len = RingQueue_GetLength( rq );

	while ( (rq_ofs < rq_len) && (header_pos < JPGL_HEADERLEN) )
	{
		if ( ( RING_QUEUE_PEEK(rq, rq_ofs) & header_mask[header_pos] ) ==
				header_data[header_pos] )
			header_pos++;
		else
			header_pos = 0;

		rq_ofs++;
	}

	return ( header_pos == JPGL_HEADERLEN ) ? rq_ofs - JPGL_HEADERLEN : -1;
}

// Init the decoder. Should only be called once
void jpgl_initDecoder()
{
	vlcTbl_init();
	yuvTbl_init();
#ifndef SAFE_CLAMP
	clampTbl_init();
#endif
}