1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
//
// Kernel module for NW8xx based USB webcams.
//
// - WebSite : nw802.sourceforge.net
// - Mailing list : nw802-main@lists.sourceforge.net
// - Project Developers : Sylvain Munaut <nw8xx ]at[ 246tNt.com>
// Kjell Claesson <keyson ]at[ users.sourceforge.net>
//
// [ sources bestviewed with tabstop=4 ]
//
//
// nw8xx_jpgl.c
//
// Implementation of JPEG Lite decoding algorithm
//
// Author & Copyright (c) 2003 : Sylvain Munaut <nw8xx ]at[ 246tNt.com>
//
#include "nw8xx_jpgl.h"
// ============================================================================
// RingQueue bit reader
// ============================================================================
// All what is needed to read bit by nit from the RingQueue pump
// provided by usbvideo
// Critical part are macro and not functions to speed things up
// Rem: Data are read from the RingQueue as if they were 16bits Little Endian
// words. Most Significants Bits are outputed first.
// Structure used to store what we need.
// ( We may need multiple simultaneous instance from several cam )
struct rqBitReader
{
int cur_bit;
unsigned int cur_data;
struct RingQueue *rq;
};
static inline void rqBR_init( struct rqBitReader *br, struct RingQueue *rq )
{
br->cur_bit = 16;
br->cur_data =
RING_QUEUE_PEEK( rq, 2 ) |
RING_QUEUE_PEEK( rq, 3 ) << 8 |
RING_QUEUE_PEEK( rq, 0 ) << 16 |
RING_QUEUE_PEEK( rq, 1 ) << 24 ;
RING_QUEUE_DEQUEUE_BYTES( rq, 2 );
br->rq = rq;
}
#define rqBR_peekBits(br,n) ( br->cur_data >> (32-n) )
#define rqBR_flushBits(br,n) do { \
br->cur_data <<= n; \
if ( (br->cur_bit -= n) <= 0 ) { \
br->cur_data |= \
RING_QUEUE_PEEK( br->rq, 2 ) << -br->cur_bit | \
RING_QUEUE_PEEK( br->rq, 3 ) << (8 - br->cur_bit); \
RING_QUEUE_DEQUEUE_BYTES( br->rq, 2 ); \
br->cur_bit += 16; \
} \
} while (0)
// ============================================================================
// Real JPEG Lite stuff
// ============================================================================
//
// Precomputed tables
// Theses are computed at init time to make real-time operations faster.
// It takes some space ( about 9k ). But believe me it worth it !
//
// Variable Lenght Coding related tables, used for AC coefficient decoding
static char vlcTbl_len[1<<10]; // Meaningful bit count
static char vlcTbl_run[1<<10]; // Run
static char vlcTbl_amp[1<<10]; // Amplitude ( without the sign )
// YUV->RGB conversion table
static int yuvTbl_y[256];
static int yuvTbl_u1[256];
static int yuvTbl_u2[256];
static int yuvTbl_v1[256];
static int yuvTbl_v2[256];
// Clamping table
#define SAFE_CLAMP
#ifdef SAFE_CLAMP
inline unsigned char clamp(int x) {
if ( x > 255 )
return 255;
if ( x < 0 )
return 0;
return x;
}
#define clamp_adjust(x) clamp(x+128)
#else
#define clamp(x) clampTbl[(x)+512]
#define clamp_adjust(x) clampTbl[(x)+640]
static char clampTbl[1280];
#endif
// Code to initialize those tables
static void vlcTbl_init()
{
// Bases tables used to compute the bigger one
// To understands theses, look at the VLC doc in the
// US patent document.
static const int vlc_num = 28;
static const int vlc_len[] =
{ 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7,
8 ,8 ,8 ,9, 9, 9, 10, 10, 10, 10, 10, 10 };
static const int vlc_run[] =
{ 0, 0, 0, 1, 0, 2, 3, 1, 0, 4, 0, 5, 1, 0, -1, -2,
2, 6, 0, 3, 1, 0, 1, 0, 7, 2, 0, 8 };
static const int vlc_amp[] =
{ 0, 1, 2, 1, 3, 1, 1, 2, 4, 1 ,5 ,1 ,3 ,6, -1, -2,
2, 1, 7, 2, 4, 8, 5, 9, 1 ,3, 10, 1 };
static const int vlc_cod[] =
{ 0x000, 0x002, 0x003, 0x006, 0x00E, 0x008, 0x00B, 0x012,
0x014, 0x03D, 0x03E, 0x078, 0x079, 0x07E, 0x026, 0x027,
0x054, 0x057, 0x0FF, 0x0AA, 0x0AC, 0x1FC, 0x156, 0x157,
0x15A, 0x15B, 0x3FA, 0x3FB };
// Vars
int i,j;
// Main filling loop
for ( i=0 ; i<(1<<10) ; i++ )
{
// Find the matching one
for ( j=0 ; j<vlc_num ; j++ )
{
if ( (i >> (10-vlc_len[j])) == vlc_cod[j] )
{
if ( vlc_run[j] >= 0 )
if ( vlc_amp[j] != 0 )
vlcTbl_len[i] = vlc_len[j] + 1;
else
vlcTbl_len[i] = vlc_len[j]; // EOB
else
vlcTbl_len[i] = 16;
vlcTbl_run[i] = vlc_run[j];
vlcTbl_amp[i] = vlc_amp[j];
break;
}
}
}
}
static void yuvTbl_init()
{
// These tables are just pre-multiplied and pre-offseted
// YUV by the book
// R = 1.164 * (Y-16) + 1.596 * (U-128)
// G = 1.164 * (Y-16) - 0.813 * (U-128) - 0.391 * (V-128)
// B = 1.164 * (Y-16) + 2.018 * (V-128)
int i;
// We use fixed point << 16
for ( i=0 ; i < 256 ; i++ ) {
yuvTbl_y[i] = 76284 * (i- 16);
yuvTbl_u1[i] = 104595 * (i-128);
yuvTbl_u2[i] = 53281 * (i-128);
yuvTbl_v1[i] = 25625 * (i-128);
yuvTbl_v2[i] = 132252 * (i-128);
}
}
#ifndef SAFE_CLAMP
static void clampTbl_init()
{
// Instead of doing if(...) to test for overrange, we use
// a clamping table
int i;
for (i=0 ; i < 512 ; i++)
clampTbl[i] = 0;
for (i=512 ; i < 768 ; i++ )
clampTbl[i] = i - 512;
for (i=768 ; i < 1280 ; i++ )
clampTbl[i] = 255;
}
#endif
//
// Internal helpers
//
static inline int readAC( struct rqBitReader *br, int *run, int *amp )
{
// Vars
unsigned int cod;
// Get 16 bits
cod = rqBR_peekBits(br,16);
// Lookup in the table
*run = vlcTbl_run[cod>>6];
*amp = vlcTbl_amp[cod>>6];
rqBR_flushBits(br,vlcTbl_len[cod>>6]);
if ( *amp > 0 )
{
// Normal stuff, just correct the sign
if ( cod & ( 0x10000 >> vlcTbl_len[cod>>6] ) )
*amp = - *amp;
}
else
{
// Handle special cases
if ( ! *amp )
{
return 0;
}
else if ( *amp == -1 )
{
// 0100110srrraaaaa
*run = ( cod >> 5 ) & 0x07;
*amp = ( cod & 0x100) ?
-(cod&0x1F) : (cod&0x1F);
}
else
{
// 0100111srrrraaaa
*run = ( cod >> 4 ) & 0x0F;
*amp = ( cod & 0x100) ?
-(cod&0x0F) : (cod&0x0F);
}
}
return 1;
}
#define iDCT_column(b0,b1,b2,b3) do { \
int t0,t1,t2,t3; \
\
t0 = ( b1 + b3 ) << 5; \
t2 = t0 - (b3 << 4); \
t3 = (b1 * 47) - t0; \
t0 = b0 + b2; \
t1 = b0 - b2; \
\
b0 = ( t0 + t2 ); \
b1 = ( t1 + t3 ); \
b3 = ( t0 - t2 ); \
b2 = ( t1 - t3 ); \
} while (0)
#define iDCT_line(b0,b1,b2,b3) do { \
int t0,t1,t2,t3,bm0,bm2; \
\
bm0 = b0 << 7; \
bm2 = b2 << 7; \
\
t0 = bm0 + bm2; \
t1 = bm0 - bm2; \
t2 = b1 * 183 + b3 * 86; \
t3 = b1 * 86 - b3 * 183; \
\
b0 = ( t0 + t2 ) >> 22; \
b1 = ( t1 + t3 ) >> 22; \
b3 = ( t0 - t2 ) >> 22; \
b2 = ( t1 - t3 ) >> 22; \
} while (0)
// Decode a block
// Basic ops : get the DC - get the ACs - deZigZag - deWeighting -
// deQuantization - iDCT
// Here they are a little mixed-up to speed all this up.
static inline int decodeBlock( struct rqBitReader *br, int *block, int *dc )
{
// Tables used for block decoding
// deZigZag table
//
// ZigZag: each of the coefficient of the DCT transformed 4x4
// matrix is taken in a certain order to make a linear
// array with the high frequency AC at the end
//
// / 0 1 5 6 \ .
// | 2 4 7 12 | This is the order taken. We must deZigZag
// | 3 8 11 13 | to reconstitute the original matrix
// \ 9 10 14 15 /
static const int iZigZagTbl[16] =
{ 0, 1, 4, 8, 5, 2, 3, 6, 9,12, 13, 10, 7, 11, 14, 15 };
// deQuantization, deWeighting & iDCT premultiply
//
// Weighting : Each DCT coefficient is weighted by a certain factor. We
// must compensate for this to rebuilt the original DCT matrix.
//
// Quantization: According to the read Q factor, DCT coefficient are
// quantized. We need to compensate for this.
//
// iDCT premultiply: Since for the first iDCT pass ( column ), we'll need
// to do some multiplication, the ones that we can
// integrate here, we do.
//
// Rem: - The factors are here presented in the ZigZaged order,
// because we will need those BEFORE the deZigZag
// - For more informations, consult jpgl_tbl.c, it's the little
// prog that computes this table
static const int iQWTbl[4][16] = {
{ 32768, 17808, 794, 18618, 850, 18618, 43115, 1828,
40960, 1924, 2089, 45511, 2089, 49648, 2216, 2521 },
{ 32768, 35617, 1589, 37236, 1700, 37236, 86231, 3656,
81920, 3849, 4179, 91022, 4179, 99296, 4432, 5043 },
{ 32768, 71234, 3179, 74472, 3401, 74472, 172463, 7313,
163840, 7698, 8358, 182044, 8358, 198593, 8865, 10087 },
{ 32768, 142469, 6359, 148945, 6803, 148945, 344926, 14627,
327680, 15397, 16716, 364088, 16716, 397187, 17730, 20175 }
};
// Vars
int hdr;
int *eff_iQWTbl;
int cc, run, amp;
// Read & Decode the block header ( Q, T, DC )
hdr = rqBR_peekBits(br,11);
if ( hdr & 0x100 )
{
// Differential mode
if ( hdr & 0x80 )
*dc += ( hdr >> 3 ) | ~0xF;
else
*dc += ( hdr >> 3 ) & 0xF;
// Flush the header bits
rqBR_flushBits(br,8);
}
else
{
// Direct mode
if ( hdr & 0x80 )
*dc = hdr | ~0x7F;
else
*dc = hdr & 0x7F;
// Flush the header bits
rqBR_flushBits(br,11);
}
// Clear the block & store DC ( with pre-multiply )
block[0] = *dc << 15;
block[1] = 0x00;
block[2] = 0x00;
block[3] = 0x00;
block[4] = 0x00;
block[5] = 0x00;
block[6] = 0x00;
block[7] = 0x00;
block[8] = 0x00;
block[9] = 0x00;
block[10] = 0x00;
block[11] = 0x00;
block[12] = 0x00;
block[13] = 0x00;
block[14] = 0x00;
block[15] = 0x00;
// Read the AC coefficients
// at the same time, deZigZag, deQuantization, deWeighting & iDCT premultiply
eff_iQWTbl = (int*) iQWTbl[hdr>>9];
cc = 0;
while ( readAC(br,&run,&) )
{
cc += run + 1;
if ( cc > 15 )
return -1;
block[iZigZagTbl[cc]] = amp * eff_iQWTbl[cc];
}
// Do the column iDCT ( what's left to do )
iDCT_column(block[0], block[4], block[8], block[12]);
iDCT_column(block[1], block[5], block[9], block[13]);
iDCT_column(block[2], block[6], block[10], block[14]);
iDCT_column(block[3], block[7], block[11], block[15]);
// Do the line iDCT ( complete one here )
iDCT_line(block[0], block[1], block[2], block[3]);
iDCT_line(block[4], block[5], block[6], block[7]);
iDCT_line(block[8], block[9], block[10], block[11]);
iDCT_line(block[12], block[13], block[14], block[15]);
return ( ! hdr & 0x700 );
}
//
// Exported functions
//
// Decode a frame. The input stream MUST BE aligned ( refer to
// jpgl_findHeader ). A complete frame MUST BE available !
// Return 0 if the frame is valid.
// Another code is an error code
int jpgl_processFrame( struct RingQueue *rq, unsigned char *fb )
{
// Vars
struct rqBitReader br;
int img_height, img_width; // Height>>2 & Width
int row, col; // Row & Column in the image
int x,y;
int block_idx;
unsigned char *Yline_baseptr, *Uline_baseptr, *Vline_baseptr;
unsigned char *Yline, *Uline, *Vline;
int Yline_baseofs, UVline_baseofs;
int dc_y, dc_u, dc_v; // DC Coefficients
int block_y[16*4]; // Y blocks
int block_u[16]; // U block
int block_v[16]; // V block
unsigned char *mainbuffer;
int yc,uc,vc;
// Ok, get the height/width & skip the header
img_width = RING_QUEUE_PEEK(rq,3) << 2;
img_height = RING_QUEUE_PEEK(rq,2);
RING_QUEUE_DEQUEUE_BYTES(rq,8);
printk("Frame decoding: fb=%08X W=%d H=%d\n", fb, img_width, img_height);
// Prepare a bit-by-bit reader
rqBR_init(&br, rq);
// Allocate a big buffer & setup pointers
#ifdef _JPGL_TEST_
mainbuffer = malloc( 4 * ( img_width + (img_width>>1) + 2 ) );
#else
mainbuffer = kmalloc( 4 * ( img_width + (img_width>>1) + 2 ), GFP_KERNEL );
#endif
Yline_baseptr = mainbuffer;
Uline_baseptr = mainbuffer + (4 * img_width);
Vline_baseptr = Uline_baseptr + (img_width + 4);
Yline_baseofs = img_width - 4;
UVline_baseofs = (img_width >> 2) - 3;
// Process 4 lines at a time ( one block height )
for ( row=0 ; row<img_height ; row++ )
{
// Line start reset DC
dc_y = dc_u = dc_v = 0;
// Process 16 columns at a time ( 4 block width )
for ( col=0 ; col<img_width ; col+=16 )
{
// Decode blocks
// Block order : Y Y Y Y V U ( Why V before U ?
// that just depends what you call U&V ... I took the
// 'by-the-book' names and that make V and then U,
// ... just ask the DivIO folks ;) )
if ( decodeBlock(&br, block_y, &dc_y) && (!col) )
return -1; // Bad block, so bad frame ...
decodeBlock(&br, block_y + 16, &dc_y);
decodeBlock(&br, block_y + 32, &dc_y);
decodeBlock(&br, block_y + 48, &dc_y);
decodeBlock(&br, block_v, &dc_v);
decodeBlock(&br, block_u, &dc_u);
// Copy data to temporary buffers ( to make a complete line )
block_idx = 0;
Yline = Yline_baseptr + col;
Uline = Uline_baseptr + (col >> 2);
Vline = Vline_baseptr + (col >> 2);
for ( y=0 ; y<4 ; y++)
{
// Scan line
for ( x=0 ; x<4 ; x++ )
{
// Y block
Yline[ 0] = clamp_adjust(block_y[block_idx ]);
Yline[ 4] = clamp_adjust(block_y[block_idx+16]);
Yline[ 8] = clamp_adjust(block_y[block_idx+32]);
Yline[12] = clamp_adjust(block_y[block_idx+48]);
// U block
*Uline = clamp_adjust(block_u[block_idx]);
// V block
*Vline = clamp_adjust(block_v[block_idx]);
// Ajust pointers & index
block_idx++;
Yline++;
Uline++;
Vline++;
}
// Adjust pointers
Yline += Yline_baseofs;
Uline += UVline_baseofs;
Vline += UVline_baseofs;
}
}
// Handle interpolation special case ( at the end of the lines )
Uline = Uline_baseptr + (UVline_baseofs+2);
Vline = Vline_baseptr + (UVline_baseofs+2);
for ( y=0 ; y<4 ; y++ )
{
// Copy the last pixel
Uline[1] = Uline[0];
Vline[1] = Vline[0];
// Adjust ptr
Uline += UVline_baseofs+4;
Vline += UVline_baseofs+4;
}
// We have 4 complete lines, so tempbuffer<YUV> -> framebuffer<RGB>
// Go line by line
Yline = Yline_baseptr;
Uline = Uline_baseptr;
Vline = Vline_baseptr;
for ( y=0 ; y<4 ; y++ )
{
// Process 4 pixel at a time to handle interpolation
// for U & V values
for ( x=0 ; x<img_width ; x+=4 )
{
# if 0
*(fb++) = *(Yline++);
*(fb++) = Uline[0];
*(fb++) = Vline[0];
*(fb++) = *(Yline++);
*(fb++)= ( 3*Uline[0] + Uline[1] ) >> 2;
*(fb++) = ( 3*Vline[0] + Vline[1] ) >> 2;
*(fb++) = *(Yline++);
*(fb++)= ( Uline[0] + Uline[1] ) >> 1;
*(fb++) = ( Vline[0] + Vline[1] ) >> 1;
*(fb++) = *(Yline++);
*(fb++)= ( Uline[0] + 3*Uline[1] ) >> 2;
*(fb++) = ( Vline[0] + 3*Vline[1] ) >> 2;
#else
// First pixel
yc = yuvTbl_y[*(Yline++)];
uc = Uline[0];
vc = Vline[0];
// B G R
*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
fb++;
#endif
// Second pixel
yc = yuvTbl_y[*(Yline++)];
uc = ( 3*Uline[0] + Uline[1] ) >> 2;
vc = ( 3*Vline[0] + Vline[1] ) >> 2;
// B G R
*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
fb++;
#endif
// Third pixel
yc = yuvTbl_y[*(Yline++)];
uc = ( Uline[0] + Uline[1] ) >> 1;
vc = ( Vline[0] + Vline[1] ) >> 1;
// B G R
*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
fb++;
#endif
// Fourth pixel
yc = yuvTbl_y[*(Yline++)];
uc = ( Uline[0] + 3*Uline[1] ) >> 2;
vc = ( Vline[0] + 3*Vline[1] ) >> 2;
// B G R
*(fb++) = clamp(( yc + yuvTbl_v2[vc] ) >> 16);
*(fb++) = clamp(( yc - yuvTbl_u2[uc] - yuvTbl_v1[vc] ) >> 16);
*(fb++) = clamp(( yc + yuvTbl_u1[uc] ) >> 16);
#ifdef _JPGL_TEST_
fb++;
#endif
#endif
// Adjust pointers
Uline++;
Vline++;
}
// Adjust pointers
Uline++;
Vline++;
}
}
// Free our buffer
#ifdef _JPGL_TEST_
free(mainbuffer);
#else
kfree(mainbuffer);
#endif
return 0;
}
// Find a valid header and return the offset to skip to correctly align
// the stream for frame decoding.
// The ofs parameter allows you to start searching from some offset.
// Returns -1 if nothing found.
int jpgl_findHeader( struct RingQueue *rq, int w, int h, int ofs )
{
#define JPGL_HEADERLEN 8
int header_pos = 0;
int rq_ofs = ofs;
int rq_len;
static const unsigned char header_mask[JPGL_HEADERLEN] =
{ 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFF, 0xFF };
unsigned char header_data[JPGL_HEADERLEN] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF };
// Adjust variable header bytes
header_data[2] = (unsigned char)( h >> 2 );
header_data[3] = (unsigned char)( w >> 2 );
// Look for a complete header in the RingQueue, starting at ofs
rq_len = RingQueue_GetLength( rq );
while ( (rq_ofs < rq_len) && (header_pos < JPGL_HEADERLEN) )
{
if ( ( RING_QUEUE_PEEK(rq, rq_ofs) & header_mask[header_pos] ) ==
header_data[header_pos] )
header_pos++;
else
header_pos = 0;
rq_ofs++;
}
return ( header_pos == JPGL_HEADERLEN ) ? rq_ofs - JPGL_HEADERLEN : -1;
}
// Init the decoder. Should only be called once
void jpgl_initDecoder()
{
vlcTbl_init();
yuvTbl_init();
#ifndef SAFE_CLAMP
clampTbl_init();
#endif
}
|