1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

Source: nwchem
Section: science
Priority: optional
Maintainer: Debichem Team <debichemdevel@lists.alioth.debian.org>
Uploaders: Michael Banck <mbanck@debian.org>
BuildDepends: autotoolsdev (>> 20100122.1~),
csh,
debhelper (>= 7.0.50~),
dhpython,
gfortran,
libarmcimpidev (>= 0.3.1~beta),
libblasdev,
libglobalarraysdev (>= 5.7.22),
liblapackdev,
libscalapackmpidev (>= 2),
mpidefaultbin,
mpidefaultdev,
opensshclient,
pkgconfig,
python3dev,
zlib1gdev
StandardsVersion: 3.9.5
XPythonVersion: current
Homepage: http://www.nwchemsw.org
VcsBrowser: https://salsa.debian.org/debichemteam/nwchem
VcsGit: https://salsa.debian.org/debichemteam/nwchem.git
Package: nwchem
Architecture: any
Depends: mpidefaultbin,
nwchemdata (= ${source:Version}),
${misc:Depends},
${shlibs:Depends}
Description: Highperformance computational chemistry software
NWChem is a computational chemistry program package. It provides methods
which are scalable both in their ability to treat large scientific
computational chemistry problems efficiently, and in their use of available
parallel computing resources from highperformance parallel supercomputers to
conventional workstation clusters.
.
NWChem can handle:
.
* Molecular electronic structure methods using gaussian
basis functions for highaccuracy calculations of molecules
* Pseudopotentials planewave electronic structure methods for calculating
molecules, liquids, crystals, surfaces, semiconductors or metals
* Abinitio and classical molecular dynamics simulations
* Mixed quantumclassical simulations
* Parallel scaling to thousands of processors
.
Features include:
* Molecular electronic structure methods, analytic second derivatives:
 Restricted/unrestricted HartreeFock (RHF, UHF)
 Restricted Density Functional Theory (DFT) using many local,
nonlocal (gradientcorrected) or hybrid (local, nonlocal, and HF)
exchangecorrelation potentials
* Molecular electronic structure methods, analytic gradients:
 Restricted openshell HartreeFock (ROHF)
 Unrestricted Density Functional Theory (DFT)
 Secondorder MoellerPlesset perturbation theory (MP2), using RHF and UHF
reference
 MP2 with resolution of the identity approximation (RIMP2)
 Complete active space SCF (CASSCF)
 TimeDependent Density Functional Theory (TDDFT)
* Molecular electronic structure methods, singlepoint energies:
 MP2 spincomponent scaled approach (SCSMP2)
 Coupled cluster singles and doubles, triples or pertubative triples
(CCSD, CCSDT, CCSD(T)), with RHF and UHF reference
 Configuration interaction (CISD, CISDT, and CISDTQ)
 Secondorder approximate coupledcluster singles doubles (CC2)
 Statespecific multireference coupled cluster methods (MRCC)
(BrillouinWigner (BWMRCC) and Mukherjee (MkMRCC) approaches)
* Further molecular electronic structure features:
 Geometry optimization including transition state searches, constraints
and minimum energy paths (via the Nudged Elastic Band (NEB) and Zero
Temperature String methods)
 Vibrational frequencies
 Equationofmotion (EOM)CCSD, EOMCCSDT, EOMCCSD(T), CC2,
ConfigurationInteraction singles (CIS), timedependent HF (TDHF) and
TDDFT, for excited states with RHF, UHF, RDFT, or UDFT reference
 Solvatisation using the Conductorlike screening model (COSMO) for RHF,
ROHF and DFT, including analytical gradients
 Hybrid calculations using the two and threelayer ONIOM method
 Relativistic effects via spinfree and spinorbit oneelectron
DouglasKroll and zerothorder regular approximations (ZORA) and
oneelectron spinorbit effects for DFT via spinorbit potentials
* Pseudopotential planewave electronic structure:
 Pseudopotential PlaneWave (PSPW), Projector Augmented Wave (PAW) or band
structure methods for calculating molecules, liquids, crystals, surfaces,
semiconductors or metals
 Geometry/unit cell optimization including transition state searches
 Vibrational frequencies
 LDA, PBE96, and PBE0 exchangecorrelation potentials (restricted and
unrestricted)
 SIC, pertOEP, HartreeFock, and hybrid functionals (restricted and
unrestricted)
 Hamann, TroullierMartins and HartwigsenGoedeckerHutter normconserving
pseudopotentials with semicore corrections
 Wavefunction, density, electrostatic and Wannier plotting
 Band structure and density of states generation
* CarParrinello abinitio molecular dynamics (CPMD):
 Constant energy and constant temperature dynamics
 Verlet algorithm for integration
 Geometry constraints in cartesian coordinates
* Classical molecular dynamics (MD):
 Single configuration energy evaluation
 Energy minimization
 Molecular dynamics simulation
 Free energy simulation (multistep thermodynamic perturbation (MSTP) or
multiconfiguration thermodynamic integration (MCTI) methods with options
of single and/or dual topologies, double wide sampling, and separation
shifted scaling)
 Force fields providing effective pair potentials, first order
polarization, self consistent polarization, smooth particle mesh Ewald
(SPME), periodic boundary conditions and SHAKE constraints
* Mixed quantumclassical:
 Mixed quantummechanics and molecularmechanics (QM/MM) minimizations and
molecular dynamics simulations
 Quantum molecular dynamics simulation by using any of the quantum
mechanical methods capable of returning gradients.
Package: nwchemdata
Architecture: all
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: Highperformance computational chemistry software (data files)
NWChem is a computational chemistry program package. It provides methods
which are scalable both in their ability to treat large scientific
computational chemistry problems efficiently, and in their use of available
parallel computing resources from highperformance parallel supercomputers to
conventional workstation clusters.
.
This package contains the basis sets, pseudopotentials and AMBER/CHARMM
parameter files.
