1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with jLaTeX2HTML 2002 (1.62) JA patch-1.4
patched version by: Kenshi Muto, Debian Project.
LaTeX2HTML 2002 (1.62),
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>27. Electron Transfer Calculations with ET</TITLE>
<META NAME="description" CONTENT="27. Electron Transfer Calculations with ET">
<META NAME="keywords" CONTENT="user">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="jLaTeX2HTML v2002 JA patch-1.4">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="user.css">
<LINK REL="next" HREF="node30.html">
<LINK REL="previous" HREF="node28.html">
<LINK REL="up" HREF="user.html">
<LINK REL="next" HREF="node30.html">
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<!--Navigation Panel-->
<A NAME="tex2html1540"
HREF="node30.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html1536"
HREF="user.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html1530"
HREF="node28.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html1538"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1541"
HREF="node30.html">28. Properties</A>
<B> Up:</B> <A NAME="tex2html1537"
HREF="user.html">user</A>
<B> Previous:</B> <A NAME="tex2html1531"
HREF="node28.html">26. DPLOT</A>
  <B> <A NAME="tex2html1539"
HREF="node2.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
<LI><A NAME="tex2html1542"
HREF="node29.html#SECTION002910000000000000000">27.1 <TT>VECTORS</TT> -- input of MO vectors for ET reactant and product states</A>
<LI><A NAME="tex2html1543"
HREF="node29.html#SECTION002920000000000000000">27.2 <TT>FOCK/NOFOCK</TT> -- method for calculating the two-electron contribution to <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$"> </A>
<LI><A NAME="tex2html1544"
HREF="node29.html#SECTION002930000000000000000">27.3 <TT>TOL2E</TT> -- integral screening threshold</A>
<LI><A NAME="tex2html1545"
HREF="node29.html#SECTION002940000000000000000">27.4 <TT>Example</TT></A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<H1><A NAME="SECTION002900000000000000000">
27. Electron Transfer Calculations with ET</A>
</H1>
<A NAME="sec:etrans"></A>
<P>
The NWChem electron transfer (ET) module calculates the electronic coupling energy (also called the electron transfer
matrix element) between ET reactant and product states. The electronic coupling (<IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$">), activation energy (<IMG
WIDTH="37" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img184.gif"
ALT="$\Delta G^{*}$">),
and nuclear reorganization energy (<IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img185.gif"
ALT="$\lambda$">) are all components of the electron transfer rate defined by Marcus' theory, which
also depends on the temperature (reference 1):
<P>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
{k_{ET}}=
\frac{2\pi}{\hbar}
V_{RP}^{2}
\frac{1}{\sqrt{4\pi \lambda k_{B}T}}
\exp \left( \frac{- \Delta G^{*}}{k_{B} T} \right)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD NOWRAP><IMG
WIDTH="275" HEIGHT="85" BORDER="0"
SRC="img186.gif"
ALT="\begin{displaymath}
{k_{ET}}=
\frac{2\pi}{\hbar}
V_{RP}^{2}
\frac{1}{\sqrt{4\pi ...
...da k_{B}T}}
\exp \left( \frac{- \Delta G^{*}}{k_{B} T} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(27.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
The ET module utilizes the method of <EM>Corresponding Orbital Transformation</EM> to calculate <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$">.
The only input required are the names
of the files containing the open-shell (UHF or ODFT) MO vectors for the ET reactant and product states (<IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img187.gif"
ALT="$R$"> and <IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img188.gif"
ALT="$P$">).
<P>
Although open-shell DFT orbitals can be used as input, the current implementation of the ET module uses a Hartree-Fock
formalism (ref.3). Therefore, for consistency, UHF orbitals should be used for the calculation of <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$">, although this
is not required.
<P>
The basis set used in the calculation of <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$"> must be the same as the basis set used to calculate the MO vectors of
<IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img187.gif"
ALT="$R$"> and <IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img188.gif"
ALT="$P$">. The magnitude of <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$"> depends on the amount of overlap between <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img187.gif"
ALT="$R$"> and <IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img188.gif"
ALT="$P$">,
which is important to consider when choosing the basis set. Diffuse functions may be
necessary to fill in the overlap, particularly when the ET distance is long.
<P>
The MO's of <IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img187.gif"
ALT="$R$"> and <IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img188.gif"
ALT="$P$"> must correspond to localized states. for instance, in the reaction <IMG
WIDTH="27" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img189.gif"
ALT="$A^{ -}$"> <IMG
WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img190.gif"
ALT="$B$"> <IMG
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.gif"
ALT="$\rightarrow $"> <IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img36.gif"
ALT="$A$"> <IMG
WIDTH="28" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img191.gif"
ALT="$B^{ -}$">
the transferring electron is localized on A in the reactant state and is localized on B in the product state.
To verify the localization of the electron in the calculation of the vectors, carefully examine the Mulliken population
analysis. In order to determine which orbitals are involved in the electron transfer, use the print keyword <code>"mulliken ao"</code>
which prints the Mulliken population of each basis function.
<P>
An effective core potential (ECP) basis can be used to replace core electrons. However, there is one caveat: the orbitals
involved in electron transfer must not be replaced with ECP's. Since the ET orbitals are valence orbitals, this is not usually
a problem, but the user should use ECP's with care.
<P>
Suggested references are listed below. The first two references gives a good description
of Marcus' two-state ET model, and the appendix of the third reference details the method used
in the ET module.
<P>
<OL>
<LI>R.A. Marcus, N. Sutin, Biochimica Biophysica Acta 35, 437, (1985).
</LI>
<LI>J.R. Bolton, N. Mataga, and G. McLendon in ``Electron Transfer in Inorganic, Organic and Biological Systems"
(American Chemical Society, Washington, D.C., 1991)
</LI>
<LI>A. Farazdel, M. Dupuis, E. Clementi, and A. Aviram,
J. Am. Chem. Soc., 112, 4206 (1990).
</LI>
</OL>
<P>
<H1><A NAME="SECTION002910000000000000000"></A>
<A NAME="sec:etransvectors"></A>
<BR>
27.1 <TT>VECTORS</TT> -- input of MO vectors for ET reactant and product states
</H1>
<P>
<PRE>
VECTORS [reactants] <string reactants_filename>
VECTORS [products ] <string products_filename>
</PRE>
<P>
In the <code>VECTORS</code> directive the user specifies the source
of the molecular orbital vectors for the ET reactant and product states.
This is required input, as no default filename will be set by the program.
In fact, this is the only required input in the ET module, although there are
other optional keywords described below.
<P>
<H1><A NAME="SECTION002920000000000000000"></A>
<A NAME="sec:etransfock"></A>
<BR>
27.2 <TT>FOCK/NOFOCK</TT> -- method for calculating the two-electron contribution to <IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$">
</H1>
<P>
<PRE>
<string (FOCK||NOFOCK) default FOCK>
</PRE>
<P>
This directive enables/disables the use of the NWChem's Fock matrix
routine in the calculation of the two-electron portion of the ET Hamiltonian.
Since the Fock matrix routine has been optimized for speed, accuracy and parallel performance,
it is the most efficient choice.
<P>
Alternatively, the user can calculate the two-electron contribution to the ET Hamiltonian
with another subroutine which may be more accurate for systems with a small
number of basis functions, although it is slower.
<P>
<H1><A NAME="SECTION002930000000000000000"></A>
<A NAME="sec:etranstol2e"></A>
<BR>
27.3 <TT>TOL2E</TT> -- integral screening threshold
</H1>
<P>
<PRE>
TOL2E <real tol2e default max(10e-12,min(10e-7, S(RP)*10e-7 )>
</PRE>
<P>
The variable <code>tol2e</code> is used in determining the integral
screening threshold for the evaluation of the two-electron contribution to the Hamiltonian
between the electron transfer reactant and product states.
As a default, <code>tol2e</code> is set depending on the magnitude
of the overlap between the ET reactant and product states (<IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img192.gif"
ALT="$S_{RP}$">), and is not less than 1.0d-12
or greater than 1.0d-7.
<P>
The input to specify the threshold explicitly within the <code>ET</code>
directive is, for example:
<P>
<PRE>
tol2e 1e-9
</PRE>
<P>
<H1><A NAME="SECTION002940000000000000000">
27.4 <TT>Example</TT></A>
</H1>
<P>
The following example is for a simple electron transfer reaction, <IMG
WIDTH="27" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img193.gif"
ALT="$He_{}$"> <IMG
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.gif"
ALT="$\rightarrow $"> <IMG
WIDTH="37" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img194.gif"
ALT="$He^{ +}$">.
The ET calculation is easy to execute, but it is crucial that ET reactant and product
wavefunctions reflect <EM>localized states</EM>. This can be accomplished
using either a fragment guess (shown in the example, see <A HREF="node12.html#sec:fragguess">10.5.1</A>), or a charged atomic
density guess (see <A HREF="node12.html#sec:atomscf">10.5.2</A>).
For self-exchange ET reactions such as this one, you can use the
<code>REORDER</code> keyword to move the electron from the first helium to the second (see <A HREF="node12.html#sec:vectors">10.5</A>).
<P>
Example input :
<PRE>
#ET reactants:
charge 1
scf
doublet; uhf; vectors input fragment HeP.mo He.mo output HeA.mo
# HeP.mo are the vectors for He(+),
# He.mo are the vectors for neutral He.
end
task scf
#ET products:
charge 1
scf
doublet; uhf; vectors input HeA.mo reorder 2 1 output HeB.mo
end
task scf
et
vectors reactants HeA.mo
vectors products HeB.mo
end
task scf et
</PRE>
<P>
Here is what the output looks like for this example:
<PRE>
Electron Transfer Calculation
-----------------------------
MO vectors for reactants: HeA.mo
MO vectors for products : HeB.mo
Electronic energy of reactants H(RR) -5.3402392824
Electronic energy of products H(PP) -5.3402392824
Reactants/Products overlap S(RP) -0.0006033839
Reactants/Products interaction energy:
-------------------------------------
One-electron contribution H1(RP) 0.0040314092
Beginning calculation of 2e contribution
Two-electron integral screening (tol2e) : 6.03E-11
Two-electron contribution H2(RP) -0.0007837138
Total interaction energy H(RP) 0.0032476955
Electron Transfer Coupling Energy |V(RP)| 0.0000254810
5.592 cm-1
0.000693 eV
0.016 kcal/mol
</PRE>
<P>
The overlap between the ET reactant and product states (<IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img192.gif"
ALT="$S_{RP}$">) is small,
so the magnitude of the coupling between the states is also small.
If the fragment guess
or charged atomic density guess were not used, the Mulliken spin population would be 0.5 on both He atoms, the overlap between
the ET reactant and product states would be <code>100 %</code> and an infinite
<IMG
WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img4.gif"
ALT="$V_{RP}$"> would result.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html1540"
HREF="node30.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html1536"
HREF="user.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html1530"
HREF="node28.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html1538"
HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1541"
HREF="node30.html">28. Properties</A>
<B> Up:</B> <A NAME="tex2html1537"
HREF="user.html">user</A>
<B> Previous:</B> <A NAME="tex2html1531"
HREF="node28.html">26. DPLOT</A>
  <B> <A NAME="tex2html1539"
HREF="node2.html">Contents</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Edoardo Apra
2004-05-25
</ADDRESS>
</BODY>
</HTML>
|