File: node29.html

package info (click to toggle)
nwchem 7.0.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,135,004 kB
  • sloc: fortran: 4,903,090; ansic: 67,503; f90: 19,555; python: 17,912; java: 12,311; sh: 12,031; cpp: 9,896; perl: 6,123; csh: 4,345; makefile: 1,885; sed: 246; awk: 115; exp: 111; pascal: 76
file content (426 lines) | stat: -rw-r--r-- 14,226 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!--Converted with jLaTeX2HTML 2002 (1.62) JA patch-1.4
patched version by:  Kenshi Muto, Debian Project.
LaTeX2HTML 2002 (1.62),
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>27. Electron Transfer Calculations with ET</TITLE>
<META NAME="description" CONTENT="27. Electron Transfer Calculations with ET">
<META NAME="keywords" CONTENT="user">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="jLaTeX2HTML v2002 JA patch-1.4">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">

<LINK REL="STYLESHEET" HREF="user.css">

<LINK REL="next" HREF="node30.html">
<LINK REL="previous" HREF="node28.html">
<LINK REL="up" HREF="user.html">
<LINK REL="next" HREF="node30.html">
</HEAD>

<BODY BGCOLOR="#FFFFFF">
<!--Navigation Panel-->
<A NAME="tex2html1540"
  HREF="node30.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> 
<A NAME="tex2html1536"
  HREF="user.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> 
<A NAME="tex2html1530"
  HREF="node28.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> 
<A NAME="tex2html1538"
  HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html1541"
  HREF="node30.html">28. Properties</A>
<B> Up:</B> <A NAME="tex2html1537"
  HREF="user.html">user</A>
<B> Previous:</B> <A NAME="tex2html1531"
  HREF="node28.html">26. DPLOT</A>
 &nbsp <B>  <A NAME="tex2html1539"
  HREF="node2.html">Contents</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>

<UL>
<LI><A NAME="tex2html1542"
  HREF="node29.html#SECTION002910000000000000000">27.1 <TT>VECTORS</TT> -- input of MO vectors for ET reactant and product states</A>
<LI><A NAME="tex2html1543"
  HREF="node29.html#SECTION002920000000000000000">27.2 <TT>FOCK/NOFOCK</TT> -- method for calculating the two-electron contribution to <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$"> </A>
<LI><A NAME="tex2html1544"
  HREF="node29.html#SECTION002930000000000000000">27.3 <TT>TOL2E</TT> -- integral screening threshold</A>
<LI><A NAME="tex2html1545"
  HREF="node29.html#SECTION002940000000000000000">27.4 <TT>Example</TT></A>
</UL>
<!--End of Table of Child-Links-->
<HR>

<H1><A NAME="SECTION002900000000000000000">
27. Electron Transfer Calculations with ET</A>
</H1>
<A NAME="sec:etrans"></A>
<P>
The NWChem electron transfer (ET) module calculates the electronic coupling energy (also called the electron transfer
matrix element) between ET reactant and product states.  The electronic coupling (<IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$">), activation energy (<IMG
 WIDTH="37" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img184.gif"
 ALT="$\Delta G^{*}$">),
and nuclear reorganization energy (<IMG
 WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img185.gif"
 ALT="$\lambda$">) are all components of the electron transfer rate defined by Marcus' theory, which
also depends on the temperature (reference 1):

<P>
<BR>
<DIV ALIGN="RIGHT">

<!-- MATH
 \begin{equation}
{k_{ET}}=
\frac{2\pi}{\hbar}
V_{RP}^{2}
\frac{1}{\sqrt{4\pi \lambda k_{B}T}}
\exp \left( \frac{- \Delta G^{*}}{k_{B} T} \right)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD NOWRAP><IMG
 WIDTH="275" HEIGHT="85" BORDER="0"
 SRC="img186.gif"
 ALT="\begin{displaymath}
{k_{ET}}=
\frac{2\pi}{\hbar}
V_{RP}^{2}
\frac{1}{\sqrt{4\pi ...
...da k_{B}T}}
\exp \left( \frac{- \Delta G^{*}}{k_{B} T} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(27.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>

<P>
The ET module utilizes the method of <EM>Corresponding Orbital Transformation</EM> to calculate <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$">.
The only input required are the names
of the files containing the open-shell (UHF or ODFT) MO vectors for the ET reactant and product states (<IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img187.gif"
 ALT="$R$"> and <IMG
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img188.gif"
 ALT="$P$">).

<P>
Although open-shell DFT orbitals can be used as input, the current implementation of the ET module uses a Hartree-Fock 
formalism (ref.3).  Therefore, for consistency, UHF orbitals should be used for the calculation of <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$">, although this
is not required.

<P>
The basis set used in the calculation of <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$"> must be the same as the basis set used to calculate the MO vectors of
<IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img187.gif"
 ALT="$R$"> and <IMG
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img188.gif"
 ALT="$P$">.  The magnitude of <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$"> depends on the amount of overlap between <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img187.gif"
 ALT="$R$"> and <IMG
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img188.gif"
 ALT="$P$">,
which is important to consider when choosing the basis set.  Diffuse functions may be
necessary to fill in the overlap, particularly when the ET distance is long.

<P>
The MO's of <IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img187.gif"
 ALT="$R$"> and <IMG
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img188.gif"
 ALT="$P$"> must correspond to localized states.  for instance, in the reaction <IMG
 WIDTH="27" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img189.gif"
 ALT="$A^{ -}$"> <IMG
 WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img190.gif"
 ALT="$B$"> <IMG
 WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img3.gif"
 ALT="$\rightarrow $"> <IMG
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img36.gif"
 ALT="$A$"> <IMG
 WIDTH="28" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img191.gif"
 ALT="$B^{ -}$">
the transferring electron is localized on A in the reactant state and is localized on B in the product state.
To verify the localization of the electron in the calculation of the vectors, carefully examine the Mulliken population
analysis.  In order to determine which orbitals are involved in the electron transfer, use the print keyword <code>"mulliken ao"</code> 
which prints the Mulliken population of each basis function.

<P>
An effective core potential (ECP) basis can be used to replace core electrons.  However, there is one caveat: the orbitals
involved in electron transfer must not be replaced with ECP's.  Since the ET orbitals are valence orbitals, this is not usually
a problem, but the user should use ECP's with care.

<P>
Suggested references are listed below.  The first two references gives a good description 
of Marcus' two-state ET model, and the appendix of the third reference details the method used
in the ET module.

<P>

<OL>
<LI>R.A. Marcus, N. Sutin, Biochimica Biophysica Acta 35, 437, (1985).
</LI>
<LI>J.R. Bolton, N. Mataga, and G. McLendon in ``Electron Transfer in Inorganic, Organic and Biological Systems"
(American Chemical Society, Washington, D.C., 1991)
</LI>
<LI>A. Farazdel, M. Dupuis, E. Clementi, and A. Aviram, 
J.&nbsp;Am.&nbsp;Chem.&nbsp;Soc., 112, 4206 (1990).
</LI>
</OL>

<P>

<H1><A NAME="SECTION002910000000000000000"></A>
<A NAME="sec:etransvectors"></A>
<BR>
27.1 <TT>VECTORS</TT> -- input of MO vectors for ET reactant and product states
</H1>

<P>
<PRE>
  VECTORS [reactants] &lt;string reactants_filename&gt;
  VECTORS [products ] &lt;string products_filename&gt;
</PRE>

<P>
In the <code>VECTORS</code> directive the user specifies the source 
of the molecular orbital vectors for the ET reactant and product states. 
This is required input, as no default filename will be set by the program.
In fact, this is the only required input in the ET module, although there are
other optional keywords described below.

<P>

<H1><A NAME="SECTION002920000000000000000"></A>
<A NAME="sec:etransfock"></A>
<BR>
27.2 <TT>FOCK/NOFOCK</TT> -- method for calculating the two-electron contribution to <IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$"> 
</H1>

<P>
<PRE>
   &lt;string (FOCK||NOFOCK) default FOCK&gt;
</PRE>

<P>
This directive enables/disables the use of the NWChem's Fock matrix 
routine in the calculation of the two-electron portion of the ET Hamiltonian.
Since the Fock matrix routine has been optimized for speed, accuracy and parallel performance,
it is the most efficient choice.

<P>
Alternatively, the user can calculate the two-electron contribution to the ET Hamiltonian
with another subroutine which may be more accurate for systems with a small
number of basis functions, although it is slower.

<P>

<H1><A NAME="SECTION002930000000000000000"></A>
<A NAME="sec:etranstol2e"></A>
<BR>
27.3 <TT>TOL2E</TT> -- integral screening threshold
</H1>

<P>
<PRE>
  TOL2E &lt;real tol2e default max(10e-12,min(10e-7, S(RP)*10e-7 )&gt;
</PRE>

<P>
The variable <code>tol2e</code> is used in determining the integral
screening threshold for the evaluation of the two-electron contribution to the Hamiltonian
between the electron transfer reactant and product states.
As a default, <code>tol2e</code> is set depending on the magnitude
of the overlap between the ET reactant and product states (<IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img192.gif"
 ALT="$S_{RP}$">), and is not less than 1.0d-12 
or greater than 1.0d-7.

<P>
The input to specify the threshold explicitly within the <code>ET</code>
directive is, for example:

<P>
<PRE>
  tol2e 1e-9
</PRE>

<P>

<H1><A NAME="SECTION002940000000000000000">
27.4 <TT>Example</TT></A>
</H1>

<P>
The following example is for a simple electron transfer reaction, <IMG
 WIDTH="27" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img193.gif"
 ALT="$He_{}$"> <IMG
 WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img3.gif"
 ALT="$\rightarrow $"> <IMG
 WIDTH="37" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
 SRC="img194.gif"
 ALT="$He^{ +}$">.
The ET calculation is easy to execute, but it is crucial that ET reactant and product
wavefunctions reflect <EM>localized states</EM>. This can be accomplished
using either a fragment guess (shown in the example, see <A HREF="node12.html#sec:fragguess">10.5.1</A>), or a charged atomic
density guess (see <A HREF="node12.html#sec:atomscf">10.5.2</A>). 
For self-exchange ET reactions such as this one, you can use the 
<code>REORDER</code> keyword to move the electron from the first helium to the second (see <A HREF="node12.html#sec:vectors">10.5</A>).

<P>
Example input :
<PRE>
#ET reactants:
charge 1
scf 
  doublet; uhf; vectors input fragment HeP.mo He.mo output HeA.mo
# HeP.mo are the vectors for He(+), 
# He.mo  are the vectors for neutral He.
end 
task scf

#ET products:
charge 1
scf 
  doublet; uhf; vectors input HeA.mo reorder 2 1 output HeB.mo
end 
task scf

et
 vectors reactants HeA.mo 
 vectors products HeB.mo
end
task scf et
</PRE>

<P>
Here is what the output looks like for this example:
<PRE>
                           Electron Transfer Calculation
                           -----------------------------

 MO vectors for reactants: HeA.mo
 MO vectors for products : HeB.mo

 Electronic energy of reactants     H(RR)      -5.3402392824
 Electronic energy of products      H(PP)      -5.3402392824

 Reactants/Products overlap         S(RP)      -0.0006033839

 Reactants/Products interaction energy:
 -------------------------------------
 One-electron contribution         H1(RP)       0.0040314092

 Beginning calculation of 2e contribution
 Two-electron integral screening (tol2e) : 6.03E-11

 Two-electron contribution         H2(RP)      -0.0007837138
 Total interaction energy           H(RP)       0.0032476955

 Electron Transfer Coupling Energy |V(RP)|      0.0000254810
                                                       5.592 cm-1
                                                    0.000693 eV
                                                       0.016 kcal/mol
</PRE>

<P>
The overlap between the ET reactant and product states (<IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img192.gif"
 ALT="$S_{RP}$">) is small,
so the magnitude of the coupling between the states is also small. 
If the fragment guess
or charged atomic density guess were not used, the Mulliken spin population would be 0.5 on both He atoms, the overlap between
the ET reactant and product states would be <code>100 %</code> and an infinite
<IMG
 WIDTH="34" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img4.gif"
 ALT="$V_{RP}$"> would result.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html1540"
  HREF="node30.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> 
<A NAME="tex2html1536"
  HREF="user.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> 
<A NAME="tex2html1530"
  HREF="node28.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> 
<A NAME="tex2html1538"
  HREF="node2.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html1541"
  HREF="node30.html">28. Properties</A>
<B> Up:</B> <A NAME="tex2html1537"
  HREF="user.html">user</A>
<B> Previous:</B> <A NAME="tex2html1531"
  HREF="node28.html">26. DPLOT</A>
 &nbsp <B>  <A NAME="tex2html1539"
  HREF="node2.html">Contents</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
Edoardo Apra
2004-05-25
</ADDRESS>
</BODY>
</HTML>