1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/* $Id: hybridCpu.c,v 1.32 2004/09/27 21:59:04 graziano Exp $ */
/* #define VERBOSE */
#include "config_nws.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "diagnostic.h" /* FAIL() LOG() */
#include "osutil.h" /* CPUCount() */
#include "strutil.h"
#include "activeCpu.h"
#include "passiveCpu.h"
#include "hybridCpu.h"
#include "skills.h"
#define MAX_FUSE 1000
#define MAX_NICE_VALUES 20
#define MAX_RESOURCES 10
#define TAME_VARIATION 0.01
#define WILD_VARIATION 0.15
/*
** Module variables. These six are set by HybridCpuOpenMonitor() for reference
** by HybridCpuGetLoad(). #adaptingLength# and #adaptingPeriod# indicate
** whether or not we're using heuristics to adapt how long or how frquently we
** run the active sensor. #activeProbeLength# and #activeProbePeriod# are the
** initial values for how long (in msecs) and how frequently (in terms of
** number of passive probes) we run active probes. #passiveResources# caches
** the value returned by PassiveCpuResourceCount(); #totalCpus# the number of
** cpus on the system.
*/
static int adaptingLength;
static int adaptingPeriod;
static unsigned int activeProbeLength;
static int activeProbePeriod = PASSIVE_ONLY;
static int passiveResources;
static int totalCpus;
/*
** For each nice value that we're tracking, we initialize a TrackInfo struct in
** HybridCpuOpenMonitor(), then use heuristics to update it in
** HybridCpuGetLoad(). #fuse# is reduced by some fraction of #burn# every time
** HybridCpuGetLoad() runs a passive test until it reaches zero, at which point
** the function runs an active test. #passiveError# holds the difference
** between the value reported by the prior active probe for each resource and
** the passive probe run at the same time. #passivePrior# is the value
** reported by the previous passive probe for the #bestResource# test.
** #passiveSinceActive# is the number of passive probes which have been run
** since the most recent active probe.
*/
struct TrackInfo {
unsigned short nice;
int bestResource;
int burn;
int fuse;
double passiveError[MAX_RESOURCES];
double passivePrior;
int passiveSinceActive;
};
static struct TrackInfo trackers[MAX_NICE_VALUES];
static int trackCount = 0;
void
HybridCpuUseSkill(const char * options, int *length, SkillResult **results) {
static char *cpuOptions = NULL;
char niceValue[7 + 1], *tmp;
int niceValuesCount;
unsigned short niceValues[20];
const char *c;
char opts[255 + 1];
double res[2];
if((cpuOptions == NULL) || (strcmp(cpuOptions, options) != 0)) {
/* (Re)initialize the CPU monitor using the nice value(s)
* in #options#. */
if(cpuOptions != NULL) {
HybridCpuCloseMonitor();
free(cpuOptions);
}
cpuOptions = strdup(options);
niceValuesCount = 0;
tmp = GetOptionValue(options, "nice", "0");
for (c = tmp; GETTOK(niceValue, c, ",", &c);) {
niceValues[niceValuesCount++] = strtol(niceValue, NULL, 10);
}
FREE(tmp);
HybridCpuOpenMonitor(niceValues,
niceValuesCount,
10, /* see NOTE above */
INITIAL_ACTIVE_FREQ,
ADAPT,
DEFAULT_ACTIVE_LENGTH,
DONT_ADAPT);
}
/* Get measurements for each nice value. */
tmp = GetOptionValue(options, "nice", "0");
for(c = tmp; GETTOK(niceValue, c, ",", &c);) {
vstrncpy(opts, sizeof(opts), 2, "nice:", niceValue);
if(HybridCpuGetLoad(strtol(niceValue, NULL, 10), &res[0], &res[1])) {
AppendResult(availableCpu, opts, 1, res[0], length, results);
AppendResult(currentCpu, opts, 1, res[1], length, results);
DDEBUG2("HybridCpuUseSkill: got %.4f availableCPu and %.4f currentCpu\n", res[0], res[1]);
} else {
AppendResult(availableCpu, opts, 0, 0.0, length, results);
AppendResult(currentCpu, opts, 0, 0.0, length, results);
}
}
FREE(tmp);
}
int
HybridCpuCloseMonitor(void) {
return(PassiveCpuCloseMonitor());
}
int
HybridCpuGetLoad(unsigned short niceValue,
double *newFraction,
double *existingFraction) {
double activeAvail;
int activeResult;
double bestError;
int i;
double passiveAvail[MAX_RESOURCES];
double passiveReport;
int passiveResult[MAX_RESOURCES];
struct TrackInfo *track;
static int testNumber = 0;
for(i = 0; i < trackCount; i++) {
if(trackers[i].nice == niceValue)
break;
}
if(i >= trackCount) {
FAIL1("hybridCpuGetLoad: untracked nice value %d\n", niceValue);
}
track = &trackers[i];
track->passiveSinceActive++;
testNumber++;
for(i = 0; i < passiveResources; i++) {
passiveResult[i] =
PassiveCpuGetLoad(i, niceValue, &passiveAvail[i], existingFraction);
}
if(!passiveResult[track->bestResource]) {
FAIL("hybridCpuGetLoad: passive resource failed\n");
}
*newFraction = passiveAvail[track->bestResource] +
track->passiveError[track->bestResource];
/* Check for obviously-incorrect values. */
if(*newFraction < 0.0)
{
*newFraction = 0.0;
}
else if(*newFraction > totalCpus)
{
*newFraction = totalCpus;
track->fuse = 0; /* assume that the problem is
that we need to recalibrate =>
force an active probe */
}
/*
** Heuristic description: if the values reported by the passive probe begin
** to vary wildly, then the error we stored on the most recent active probe
** is stale and we want to move more quickly toward a new active probe.
** When we run an active probe, if the passive error is fairly consistent
** then we can relax a bit; otherwise, we want to move toward running
** active probes more frequently.
*/
if(activeProbePeriod != PASSIVE_ONLY) {
if(!adaptingPeriod)
track->fuse -= track->burn;
else if(fabs(track->passivePrior - passiveAvail[track->bestResource]) >=
WILD_VARIATION)
track->fuse -= track->burn * 2;
else if(fabs(track->passivePrior - passiveAvail[track->bestResource]) <=
TAME_VARIATION)
track->fuse -= track->burn / 2;
else
track->fuse -= track->burn;
if(track->fuse <= 0) {
/* Run an active probe and reset all counters. */
activeResult =
ActiveCpuGetLoad(niceValue, 60, activeProbeLength, &activeAvail);
LOG2("hybridCpu: Active probe %d reports %f\n", testNumber, activeAvail);
if(activeResult) {
bestError = 101.0;
for(i = 0; i < passiveResources; i++) {
if( passiveResult[i] &&
(fabs(activeAvail - passiveAvail[i]) < fabs(bestError)) ) {
bestError = activeAvail - passiveAvail[i];
track->bestResource = i;
}
}
LOG1("hybridCpu: using %s for passive probes.\n",
PassiveCpuResourceName(track->bestResource));
if(!adaptingPeriod || (track->passiveSinceActive <= 1))
track->burn = MAX_FUSE / activeProbePeriod;
else if(fabs(bestError - track->passiveError[track->bestResource]) >=
WILD_VARIATION)
track->burn = MAX_FUSE / (track->passiveSinceActive / 2);
else if(fabs(bestError - track->passiveError[track->bestResource]) <=
TAME_VARIATION)
track->burn = MAX_FUSE / (track->passiveSinceActive * 2);
else
track->burn = MAX_FUSE / (track->passiveSinceActive + 1);
*newFraction = activeAvail;
for(i = 0; i < passiveResources; i++) {
track->passiveError[i] = activeAvail - passiveAvail[i];
}
}
track->fuse = MAX_FUSE;
track->passiveSinceActive = 0;
}
}
#ifdef VERBOSE
for(i = 0; i < passiveResources; i++) {
passiveReport = passiveAvail[i] + passiveError[i];
/* Check for obviously-incorrect values. */
if(passiveReport < 0.0)
passiveReport = 0.0;
else if(passiveReport > totalCpus)
passiveReport = totalCpus;
LOG3("hybridCpu: %s probe %d reports %f\n",
PassiveCpuResourceName(i), testNumber, passiveAvail[i]);
LOG3("hybridCpu: %s probe %d returns %f\n",
PassiveCpuResourceName(i), testNumber, passiveReport);
}
#else
passiveReport = 0.0; /* Avoid compiler warning. */
#endif
track->passivePrior = passiveAvail[track->bestResource];
return(1);
}
int
HybridCpuMonitorAvailable(const char *options) {
return PassiveCpuMonitorAvailable();
}
int
HybridCpuOpenMonitor(const unsigned short *niceValues,
int niceCount,
int checkFrequency,
int activePeriod,
int adaptPeriod,
int activeLength,
int adaptLength) {
int i;
int resource;
LOG2("HybridCPUOpenMonitor: run every %d secs, active every %dth time\n",
checkFrequency, activePeriod);
totalCpus = CPUCount();
passiveResources = PassiveCpuResourceCount();
trackCount = niceCount;
/* if we have more than 1 cpu, current active probes may not be accurate */
/* this will cause activeProbePeriod to remain PASSIVE_ONLY */
if (totalCpus == 1) {
activeProbeLength = activeLength;
activeProbePeriod = activePeriod;
adaptingLength = adaptLength;
adaptingPeriod = adaptPeriod;
}
LOG1("HybridCPUOpenMonitor: %d CPUs detected\n", totalCpus);
for(i = 0; i < trackCount; i++) {
trackers[i].nice = niceValues[i];
trackers[i].bestResource = 0;
trackers[i].burn = 0;
trackers[i].fuse = 0; /* This forces an initial active probe. */
trackers[i].passivePrior = 0.0;
trackers[i].passiveSinceActive = 0;
for (resource = 0; resource < passiveResources; resource++) {
trackers[i].passiveError[resource] = 0.0;
}
}
return(PassiveCpuOpenMonitor(checkFrequency));
}
|