1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
from __future__ import annotations
import datetime
import dateutil
import h5py
import numpy as np
import pint
import pytest
import nxmx
def test_nxentry(nxmx_example):
nxentry = nxmx.NXentry(nxmx_example["/entry"])
assert nxentry.definition == "NXmx"
assert len(nxentry.samples) == 1
assert isinstance(nxentry.samples[0], nxmx.NXsample)
assert len(nxentry.instruments) == 1
assert isinstance(nxentry.instruments[0], nxmx.NXinstrument)
assert isinstance(nxentry.source, nxmx.NXsource)
assert len(nxentry.data) == 1
assert isinstance(nxentry.data[0], nxmx.NXdata)
def test_axis_end_increment_set(nxmx_example):
omega = nxmx.NXtransformationsAxis(
nxmx_example["/entry/sample/transformations/omega"]
)
assert len(omega.end) == len(omega)
assert omega.end[0] - omega[0] == omega.increment_set
phi = nxmx.NXtransformationsAxis(nxmx_example["/entry/sample/transformations/phi"])
assert phi.end is None
assert phi.increment_set is None
def test_nxmx(nxmx_example):
nx = nxmx.NXmx(nxmx_example)
assert len(nx) == 1
assert nx.keys() == nxmx_example.keys()
entries = nx.entries
assert len(entries) == 1
nxentry = entries[0]
assert nxentry.definition == "NXmx"
assert nxentry.path == "/entry"
assert nxentry.start_time == datetime.datetime(
2021, 9, 10, 6, 54, 37, tzinfo=dateutil.tz.tzutc()
)
assert nxentry.end_time == datetime.datetime(
2021, 9, 10, 6, 55, 9, tzinfo=dateutil.tz.tzutc()
)
assert nxentry.end_time_estimated == datetime.datetime(
2021, 9, 10, 6, 55, 9, tzinfo=dateutil.tz.tzutc()
)
samples = nxentry.samples
assert len(samples) == 1
sample = samples[0]
assert sample.name == "mysample"
assert sample.depends_on.path == "/entry/sample/transformations/phi"
assert sample.temperature == pint.Quantity(273, "K")
assert sample.path == "/entry/sample"
transformations = sample.transformations
assert len(transformations) == 1
axes = transformations[0].axes
assert len(axes) == 3
assert set(axes.keys()) == {"chi", "omega", "phi"}
phi_depends_on = axes["phi"].depends_on
assert phi_depends_on.path == "/entry/sample/transformations/chi"
assert len(nxentry.instruments) == 1
instrument = nxentry.instruments[0]
assert instrument.name == "DIAMOND BEAMLINE I03"
assert instrument.short_name == "I03"
assert len(instrument.beams) == 1
beam = instrument.beams[0]
assert np.all(beam.incident_beam_size == pint.Quantity([3e-5, 3e-5], "m"))
assert beam.incident_wavelength.to("angstrom").magnitude == 0.976223
assert beam.flux is None
assert beam.total_flux == pint.Quantity(1e12, "Hz")
assert len(instrument.detectors) == 1
detector = instrument.detectors[0]
assert detector.description == "Eiger 16M"
assert detector.sensor_material == "Silicon"
assert detector.sensor_thickness.to("mm").magnitude == 0.45
assert (
detector.depends_on.path == "/entry/instrument/detector/transformations/det_z"
)
assert detector.bit_depth_readout == 32
assert detector.bit_depth_image == 32
assert detector.beam_center_x == pint.Quantity(2079.79727597266, "pixel")
assert detector.beam_center_y == pint.Quantity(2225.38773853771, "pixel")
assert len(detector.modules) == 1
module = detector.modules[0]
assert np.all(module.data_origin == [0, 0])
assert np.all(module.data_size == [4362, 4148])
assert module.fast_pixel_direction.matrix.shape == (1, 4, 4)
assert list(module.fast_pixel_direction.matrix.flatten()) == [
1,
0,
0,
-0.075,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
]
assert nxentry.source.name == "Diamond"
assert nxentry.source.short_name == "DLS"
@pytest.fixture(params=[(), (1,)], ids=["scalar", "length-1 array"])
def nx_detector(request):
"""A dummy NXdetector with some data sets that may be scalar or length-1 arrays."""
shape = request.param
with h5py.File("_", "w", **pytest.h5_in_memory) as f:
entry = f.create_group("entry")
entry.attrs["NX_class"] = "NXentry"
entry["definition"] = "NXmx"
instrument = entry.create_group("instrument")
instrument.attrs["NX_class"] = "NXinstrument"
detector = instrument.create_group("detector")
detector.attrs["NX_class"] = "NXdetector"
time = detector.create_dataset("count_time", data=0, shape=shape)
time.attrs["units"] = "s"
distance = detector.create_dataset("distance", data=0.00314159, shape=shape)
distance.attrs["units"] = "m"
detector.create_dataset("pixel_mask_applied", data=False, shape=shape)
detector.create_dataset("pixel_mask", data=np.zeros((2, 100, 200)))
detector.create_dataset("saturation_value", data=12345, shape=shape)
detector.create_dataset("serial_number", data="ABCDE", shape=shape)
yield f
def test_nxmx_single_value_properties(nx_detector):
"""
Check we correctly interpret scalar data stored as single-valued arrays.
Some data sources, notably Dectris Eiger detectors at Diamond Light Source,
record some scalar data as length-1 arrays. Check here that we correctly
interpret such data as scalars, whether they are recorded as scalars or as
length-1 arrays.
"""
with nx_detector as f:
nx_detector = nxmx.NXmx(f).entries[0].instruments[0].detectors[0]
# These scalar parameters are populated with data from single-valued arrays.
assert nx_detector.count_time == pint.Quantity(0, "s")
assert nx_detector.distance == pint.Quantity(3.14159, "mm")
assert nx_detector.pixel_mask_applied is False
assert nx_detector.saturation_value == 12345
assert nx_detector.serial_number == "ABCDE"
def test_nxdetector_pixel_mask(nx_detector):
with nx_detector as f:
nx_detector = nxmx.NXmx(f).entries[0].instruments[0].detectors[0]
assert isinstance(nx_detector.pixel_mask, h5py.Dataset)
assert nx_detector.pixel_mask.shape == (2, 100, 200)
assert nx_detector.pixel_mask[0].shape == (100, 200)
assert nx_detector.pixel_mask[1].shape == (100, 200)
def test_get_rotation_axes(nxmx_example):
sample = nxmx.NXmx(nxmx_example).entries[0].samples[0]
dependency_chain = nxmx.get_dependency_chain(sample.depends_on)
axes = nxmx.get_rotation_axes(dependency_chain)
assert np.all(axes.is_scan_axis == [False, False, True])
assert np.all(axes.names == ["phi", "chi", "omega"])
assert np.all(axes.angles == [0.0, 0.0, 0.0])
assert np.all(
axes.axes == np.array([[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0]])
)
@pytest.mark.parametrize(
"scan_data", [np.array(0), np.array([0])], ids=["scalar", "vector"]
)
def test_get_rotation_axis_scalar_or_vector(scan_data):
"""
Test that single-valued rotation axis positions can be scalar or vector.
A rotation axis with a single angular position may be recorded in a HDF5 NeXus
file either as an array data set with a single entry, or as a scalar data set.
Both are equally valid. Check that they are handled correctly in get_rotation_axis.
"""
# Create a basic h5py data set. A non-empty string file name is required,
# even though there is no corresponding file.
with h5py.File(" ", "w", **pytest.h5_in_memory) as f:
# Create a single data set representing the goniometer axis.
scan_axis = f.create_dataset("dummy_axis", data=scan_data)
# Add the attributes of a rotation scan axis aligned with the x axis.
scan_axis.attrs["transformation_type"] = "rotation"
scan_axis.attrs["vector"] = (1, 0, 0)
scan_axis.attrs["units"] = "degrees"
# Test that we can interpret the rotation axis datum.
scan_axes = [nxmx.NXtransformationsAxis(scan_axis)]
nxmx.get_rotation_axes(scan_axes)
def test_get_dependency_chain(nxmx_example):
sample = nxmx.NXmx(nxmx_example).entries[0].samples[0]
dependency_chain = nxmx.get_dependency_chain(sample.depends_on)
assert [d.path for d in dependency_chain] == [
"/entry/sample/transformations/phi",
"/entry/sample/transformations/chi",
"/entry/sample/transformations/omega",
]
assert (
str(dependency_chain)
== """\
/entry/sample/transformations/phi = [0] degree
@transformation_type = rotation
@vector = [-1. 0. 0.]
@offset = None
@depends_on = /entry/sample/transformations/chi
/entry/sample/transformations/chi = [0] degree
@transformation_type = rotation
@vector = [0 0 1]
@offset = None
@depends_on = /entry/sample/transformations/omega
/entry/sample/transformations/omega = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] degree
@transformation_type = rotation
@vector = [-1. 0. 0.]
@offset = None
@depends_on = ."""
)
@pytest.fixture(
params=[True, False], ids=["equipment_component", "no equipment_component"]
)
def detector_depends_on_example(request):
with h5py.File(" ", "w", **pytest.h5_in_memory) as f:
module = f.create_group("/entry/instrument/detector/module")
module.attrs["NX_class"] = "NXdetector_module"
fast_pixel_direction = module.create_dataset(
"fast_pixel_direction", data=7.5e-5
)
fast_pixel_direction.attrs["transformation_type"] = "translation"
fast_pixel_direction.attrs["depends_on"] = (
"/entry/instrument/detector/module/module_offset"
)
fast_pixel_direction.attrs["vector"] = np.array([-1.0, 0.0, 0.0])
fast_pixel_direction.attrs["offset"] = np.array([0.0, 0.0, 0.0])
fast_pixel_direction.attrs["offset_units"] = "m"
fast_pixel_direction.attrs["units"] = "m"
module_offset = module.create_dataset("module_offset", data=0)
module_offset.attrs["transformation_type"] = "translation"
if request.param:
module_offset.attrs["depends_on"] = (
"/entry/instrument/detector/transformations/det_z_tune"
)
else:
module_offset.attrs["depends_on"] = (
"/entry/instrument/detector/transformations/det_z"
)
module_offset.attrs["vector"] = np.array([1.0, 0.0, 0.0])
module_offset.attrs["offset"] = np.array([0.155985, 0.166904, -0])
module_offset.attrs["offset_units"] = "m"
module_offset.attrs["units"] = "m"
transformations = f.create_group("/entry/instrument/detector/transformations")
if request.param:
det_z_tune = transformations.create_dataset(
"det_z_tune", data=np.array([-0.5])
)
det_z_tune.attrs["depends_on"] = (
b"/entry/instrument/detector/transformations/det_z"
)
det_z_tune.attrs["transformation_type"] = b"translation"
det_z_tune.attrs["units"] = b"mm"
det_z_tune.attrs["vector"] = np.array([0.0, 0.0, 1.0])
det_z_tune.attrs["equipment_component"] = "detector_arm"
det_z = transformations.create_dataset("det_z", data=np.array([289.3]))
det_z.attrs["depends_on"] = b"."
det_z.attrs["transformation_type"] = b"translation"
det_z.attrs["units"] = b"mm"
det_z.attrs["vector"] = np.array([0.0, 0.0, 1.0])
if request.param:
det_z.attrs["equipment_component"] = "detector_arm"
yield f
def test_get_dependency_chain_detector(detector_depends_on_example):
equipment_component = (
"equipment_component"
in detector_depends_on_example[
"/entry/instrument/detector/transformations/det_z"
].attrs
)
fast_pixel_direction = detector_depends_on_example[
"/entry/instrument/detector/module/fast_pixel_direction"
]
fast_axis = nxmx.NXtransformationsAxis(fast_pixel_direction)
dependency_chain = nxmx.get_dependency_chain(fast_axis)
if equipment_component:
assert len(dependency_chain) == 4
assert [d.path for d in dependency_chain] == [
"/entry/instrument/detector/module/fast_pixel_direction",
"/entry/instrument/detector/module/module_offset",
"/entry/instrument/detector/transformations/det_z_tune",
"/entry/instrument/detector/transformations/det_z",
]
z = 288.8
else:
assert len(dependency_chain) == 3
assert [d.path for d in dependency_chain] == [
"/entry/instrument/detector/module/fast_pixel_direction",
"/entry/instrument/detector/module/module_offset",
"/entry/instrument/detector/transformations/det_z",
]
z = 289.3
A = nxmx.get_cumulative_transformation(dependency_chain)
assert A.shape == (1, 4, 4)
assert np.allclose(
A[0],
np.array(
[
[1.0, 0.0, 0.0, 155.91],
[0.0, 1.0, 0.0, 166.904],
[0.0, 0.0, 1.0, z],
[0.0, 0.0, 0.0, 1.0],
]
),
)
def test_get_cumulative_transformation(nxmx_example):
sample = nxmx.NXmx(nxmx_example).entries[0].samples[0]
dependency_chain = nxmx.get_dependency_chain(sample.depends_on)
A = nxmx.get_cumulative_transformation(dependency_chain)
assert A.shape == (10, 4, 4)
assert np.all(
A[0]
== np.array(
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
)
@pytest.fixture
def detector_group():
with h5py.File(" ", "w", **pytest.h5_in_memory) as f:
entry = f.create_group("entry")
entry.attrs["NX_class"] = "NXentry"
entry["definition"] = "NXmx"
instrument = entry.create_group("instrument")
instrument.attrs["NX_class"] = "NXinstrument"
group = instrument.create_group("detector_group")
group.attrs["NX_class"] = "NXdetector_group"
group.create_dataset(
"group_names",
data=[np.str_(n) for n in ("DET", "DTL", "DTR", "DLL", "DLR")],
dtype="S12",
)
group.create_dataset("group_index", data=np.array([1, 2, 3, 4, 5]))
group.create_dataset("group_parent", data=np.array([-1, 1, 1, 1]))
yield f
def test_nxdetector_group(detector_group):
group = nxmx.NXmx(detector_group).entries[0].instruments[0].detector_groups[0]
assert list(group.group_names) == ["DET", "DTL", "DTR", "DLL", "DLR"]
assert list(group.group_index) == [1, 2, 3, 4, 5]
assert list(group.group_parent) == [-1, 1, 1, 1]
|