1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
<html><head>
<title>Math</title>
<style type="text/css">
.example {
color: #000000;
background-color: #F5F5F5;
padding: 8px;
border: #808080;
border-style: solid;
border-width: 1px;
width:auto;
}
.button {
color: #000000;
background-color: #F5F5F5;
padding-top: 1px;
padding-bottom: 1px;
padding-left: 4px;
padding-right: 8px;
border: #808080;
border-style: solid;
border-width: 1px;
white-space: pre;
}
.box {
color: #000000;
padding-top: 4px;
padding-bottom: 4px;
padding-left: 16px;
padding-right: 16px;
border: #808080;
border-style: solid;
border-width: 1px;
}
</style>
</head>
<body>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="../tutorials/tutorials.htm">Tutorials</a> |
<a href="examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
<hr>
<h1>Math</h1>
<hr>
<ol>
<li><nobr><a href="#number-types">Number Types</a></nobr></li>
<li><nobr><a href="#integer-limits">Integer Limits</a></nobr></li>
<li><nobr><a href="#rounding-and-truncation">Rounding and Truncation</a></nobr></li>
<ul>
<li><nobr><a href="#cl-round">cl:round</a> - round towards the next integer</nobr></li>
<li><nobr><a href="#cl-truncate">cl:truncate</a> - truncate towards zero</nobr></li>
<li><nobr><a href="#cl-ceiling">cl:ceiling</a> - truncate towards positive infinity</nobr></li>
<li><nobr><a href="#cl-floor">cl:floor</a> - truncate towards negative infinity</nobr></li>
</ul>
<li><nobr><li><nobr><a href="#remainder-and-modulus">Remainder and Modulus</a></nobr></li></nobr></li>
<ul>
<li><nobr><a href="#cl-rem">cl:rem</a></nobr></li>
<li><nobr><a href="#cl-mod">cl:mod</a></nobr></li>
</ul>
<li><nobr>Power and Roots</nobr></li>
<ul>
<li><nobr><a href="#cl-exp">cl:exp</a> - compute 'e' to the power of 'x'</nobr></li>
<li><nobr><a href="#cl-expt">cl:expt</a> - compute 'x' to the power of 'y'</nobr></li>
<li><nobr><a href="#cl-log">cl:log</a></nobr></li>
<li><nobr><a href="#cl-sqrt">cl:sqrt</a></nobr></li>
</ul>
</ol>
<hr>
<h2>Number Types</h2>
<hr>
<p>Nyquist/XLISP only knows two types of numers:</p>
<ul>
<li><nobr><b>fixnum</b> - integer numbers</nobr></li>
<li><nobr><b>flonum</b> - floating-point numbers</nobr></li>
</ul>
<p>In Nyquist/XLISP, there are no ratios or complex numbers. Even if the
math functions on this page are modelled after <nobr>Common Lisp</nobr>, no
attempt is made to emulate these numbers.</p>
<a name="integer-limits"></a>
<hr>
<h2>Integer Limits</h2>
<hr>
<pre class="example">
(setq <font color="#AA5500">*most-positive-fixnum*</font> 2147483647)
(setq <font color="#AA5500">*most-negative-fixnum*</font> -2147483648)
</pre>
<p><b>Note:</b> these are the limits for <nobr>32-bit</nobr> machines.</p>
<pre class="example">
(defun <font color="#0000CC">fixnum-bits</font> ()
(dolist (bits '(15 31 63) nil)
(let ((fixnum (round (expt 2.0 bits))))
(and (plusp (1- fixnum))
(minusp fixnum)
(return (1+ bits))))))
</pre>
<pre class="example">
(defun <font color="#0000CC">fixnum-limits</font> ()
(if (dolist (bits '(15 31 63) nil)
(let* ((negative (round (expt 2.0 bits)))
(positive (1- negative)))
(when (and (plusp positive)
(minusp negative))
(setq most-positive-fixnum positive
most-negative-fixnum negative)
(return t))))
most-positive-fixnum
(error <font color="#880000">"fixnum limit not found"</font>)))
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="print-float"></a>
<hr>
<h2>print-float</h2>
<hr>
<p>The '<nobr>print-float</nobr>' function prints
<nobr>floating-point</nobr> numbers ending in '.0' as
<nobr>floating-point</nobr> numbers and not as integers:</p>
<pre class="example">
(defun <font color="#0000CC">print-float</font> (item)
(if (not (floatp item))
item
(let ((string (format nil <font color="#880000">"~a"</font> item)))
(if (not (string-search <font color="#880000">"."</font> string))
(strcat string <font color="#880000">".0"</font>)
string))))
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="divide-float"></a>
<hr>
<h2>divide-float</h2>
<hr>
<p>An easy way to force a sequence of integers to be divided as floating
point numbers is to insert the number 1.0 after the first argument in the
list of arguments to the divider function or to explicitely convert the
first argument into a floating point number by using the XLISP <a
href="float.htm">float</a> function:</p>
<pre class="example">
(defun <font color="#0000CC">divide-float</font> (&rest args)
(if (null args)
(error <font color="#880000">"too few arguments"</font>)
(apply #'/ (cons (float (first args)) (rest args)))))
</pre>
<p>See <a href="apply.htm">apply</a>, <a href="cons.htm">cons</a>,
<a href="defun.htm">defun</a>, <a href="error.htm">error</a>,
<a href="first.htm">first</a>, <a href="float.htm">float</a>,
<a href="if.htm">if</a>, <a href="null.htm">null</a>,
<a href="rest.htm">rest</a>,
<a href="lambda-keyword-rest.htm">&rest</a>.</p>
<p>Examples:</p>
<pre class="example">
(divide-float 1) => 1.0
(divide-float 1 2) => 0.5
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="rounding-and-truncation"></a>
<hr>
<h2>Rounding and Truncation</h2>
<hr>
<p>The <a href="#cl-round">cl:round</a>,
<a href="#cl-truncate">cl:truncate</a>,
<a href="#cl-ceiling">cl:ceiling</a> and
<a href="#cl-floor">cl:floor</a> functions divide a number by a divisor,
returning a quotient and a remainder:</p>
<p><div class="box">
<p><table cellpadding="0" cellspacing="0"><tbody>
<tr valign="top">
<td align="right"><nobr>(<a href="#cl-round">cl:round</a> </nobr></td>
<td><nobr><i>number</i> [<i>divisor</i>])</nobr></td>
<td><nobr> ⇒ </nobr></td>
<td><nobr><i>quotient</i>, <i>remainder</i></nobr></td>
</tr>
<tr valign="top">
<td align="right"><nobr>(<a href="#cl-truncate">cl:truncate</a> </nobr></td>
<td><nobr><i>number</i> [<i>divisor</i>])</nobr></td>
<td><nobr> ⇒ </nobr></td>
<td><nobr><i>quotient</i>, <i>remainder</i></nobr></td>
</tr>
<tr valign="top">
<td align="right"><nobr>(<a href="#cl-ceiling">cl:ceiling</a> </nobr></td>
<td><nobr><i>number</i> [<i>divisor</i>])</nobr></td>
<td><nobr> ⇒ </nobr></td>
<td><nobr><i>quotient</i>, <i>remainder</i></nobr></td>
</tr>
<tr valign="top">
<td align="right"><nobr>(<a href="#cl-floor">cl:floor</a> </nobr></td>
<td><nobr><i>number</i> [<i>divisor</i>])</nobr></td>
<td><nobr> ⇒ </nobr></td>
<td><nobr><i>quotient</i>, <i>remainder</i></nobr></td>
</tr>
</tbody></table></p>
<p><nobr>
<i>quotient</i> * <i>divisor</i> + <i>remainder</i> = <i>number</i></nobr></p>
</div></p>
<p>The 'quotient' always represents a mathematical integer. <nobr>The
'remainder'</nobr> is an integer if both 'number' and 'divisor' arguments
are integers, and a <nobr>floating-point</nobr> number if either the
'number' or the 'divisor' or both are <nobr>floating-point</nobr>
numbers.</p>
<p>With Nyquist/XLISP, the 'quotient' is always directly returned by the
function, while a list:</p>
<pre class="example">
(<font color="#0000CC">quotient remainder</font>)
</pre>
<p>is stored in the Nyquist/XLISP
<a href="../reference/global-rslt.htm">*rslt*</a> variable and the
<a href="values.htm#cl-global-multiple-values">cl:*multiple-values*</a> is
set to <a href="../reference/t.htm"> T </a> to signal that
<a href="values.htm">Multiple Values</a> are returned.</p>
Examples:
<pre class="example">
(cl:round 3.5) => 4 <font color="#008844">; *rslt* = ( 4 -0.5)</font>
(cl:truncate 3.5) => 3 <font color="#008844">; *rslt* = ( 3 0.5)</font>
(cl:ceiling 3.5) => 4 <font color="#008844">; *rslt* = ( 4 -0.5)</font>
(cl:floor 3.5) => 3 <font color="#008844">; *rslt* = ( 3 0.5)</font>
(cl:round -3.5) => -4 <font color="#008844">; *rslt* = (-4 0.5)</font>
(cl:truncate -3.5) => -3 <font color="#008844">; *rslt* = (-3 -0.5)</font>
(cl:ceiling -3.5) => -3 <font color="#008844">; *rslt* = (-3 -0.5)</font>
(cl:floor -3.5) => -4 <font color="#008844">; *rslt* = (-4 0.5)</font>
</pre>
Force integer division:
<pre class="example">
(cl:truncate 3.0 2.0) => 1
(/ (truncate 3.0) (truncate 2.0)) => 1
(/ 3 4) => 1
</pre>
<p><div class="box">
<p><b>Implementation Notes</b></p>
<pre class="example">
(defun <font color="#0000CC">name</font> (number &optional (divisor (if (<font color="#AA0000">integerp</font> number) 1 1.0)))
... )
</pre>
<p>The <a href="../reference/integerp.htm">integerp</a> test in the
parameter list signals an error if the 'number' argument is not a number,
also the <nobr><a href="../reference/division.htm"> / </a>
[division]</nobr> function signals errors if the 'divisor' argument is zero
or not a number, so we do not explicitely need to test the arguments.</p>
<p>The <nobr><a href="#cl-ceiling">cl:ceiling</a></nobr> and <nobr><a
href="#cl-floor">cl:floor</a></nobr> functions test if 'number' is an
integer multiple of 'divisor' by comparing the results of an integer
division and a <nobr>floating-point</nobr> division:</p>
<pre class="example">
(let ((<font color="#AA0000">i-quotient</font> (/ (truncate number) (truncate divisor)))
(<font color="#AA0000">f-quotient</font> (/ (float number) divisor)))
(if (= <font color="#AA0000">i-quotient f-quotient</font>)
...
</pre>
<p>I'm not sure if this really catches all cases <nobr>[e.g.
regarding</nobr> floating point precision], but have found no problems so
far.</p>
</div></p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-round"></a>
<hr>
<h2>cl:round</h2>
<hr>
<p>The '<nobr>cl:round</nobr>' function truncates towards the next
integer:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>round</b> <i>number </i> [<i>divisor</i>])</dt>
<dd><i>number</i> - an integer or <nobr>floating-point</nobr> number<br>
<i>divisor</i> - an integer or <nobr>floating-point</nobr> number, except zero<br>
<table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td valign="top"><nobr>returns</nobr></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the result of runding the result of <i>number</i> divided by <i>divisor</i></td>
</tr>
<tr>
<td></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the remainder of the round operation</td>
</tr>
</tbody></table></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:round</font> (number &optional (divisor
(if (integerp number) 1 1.0)
divisor-p))
(let* ((x (/ (float number) divisor))
(quotient (cond ((and (not divisor-p) (integerp number)) number)
((= number divisor) 1)
((plusp x) (truncate (+ x 0.5)))
((= (- x 0.5) (truncate (- x 0.5)))
(if (minusp x)
(1- (truncate x))
(truncate x)))
(t (truncate (- x 0.5))))))
(setq <font color="#AA5500">*rslt*</font> (list quotient (- number (* quotient divisor)))
<font color="#AA5500">cl:*multiple-values*</font> t)
quotient))
</pre>
<p>The '<nobr>cl:round</nobr>' function computes a quotient that has been rounded to the
nearest mathematical integer. <nobr>If the</nobr> mathematical quotient is
exactly halfway between two integers, [that is, it has the form
<nobr>'integer+1/2']</nobr>, then the quotient has been rounded to the even
[divisible <nobr>by two]</nobr> integer. <nobr>See
<a href="#rounding-and-truncation">Rounding and Truncation</a></nobr>
above for more details.</p>
<pre class="example">
(round 3.5) => 4
(round -3.5) => -3
(cl:round 3.5) => 4 <font color="#008844">; *rslt* = ( 4 -0.5)</font>
(cl:round -3.5) => -4 <font color="#008844">; *rslt* = (-4 0.5)</font>
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-truncate"></a>
<hr>
<h2>cl:truncate</h2>
<hr>
<p>The '<nobr>cl:truncate</nobr>' function truncates towards zero:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>truncate</b> <i>number </i> [<i>divisor</i>])</dt>
<dd><i>number</i> - an integer or <nobr>floating-point</nobr> number<br>
<i>divisor</i> - an integer or <nobr>floating-point</nobr> number, except zero<br>
<table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td valign="top"><nobr>returns</nobr></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the result of truncating the result of <i>number</i> divided by <i>divisor</i></td>
</tr>
<tr>
<td></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the remainder of the truncate operation</td>
</tr>
</tbody></table></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:truncate</font> (number &optional (divisor (if (integerp number) 1 1.0)))
(let ((quotient (truncate (/ (float number) divisor))))
(setq <font color="#AA5500">*rslt*</font> (list quotient (- number (* quotient divisor)))
<font color="#AA5500">cl:*multiple-values*</font> t)
quotient))
</pre>
<p>The '<nobr>cl:truncate</nobr>' function computes a quotient that has been
truncated towards zero. That is, the quotient represents the mathematical
integer of the same sign as the mathematical quotient, and that has the
greatest integral magnitude not greater than that of the mathematical
quotient. <nobr>See
<a href="#rounding-and-truncation">Rounding and Truncation</a></nobr>
above for more details.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-ceiling"></a>
<hr>
<h2>cl:ceiling</h2>
<hr>
<p>The '<nobr>cl:ceiling</nobr>' function truncates towards positive
infinity:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>ceiling</b> <i>number </i> [<i>divisor</i>])</dt>
<dd><i>number</i> - an integer or <nobr>floating-point</nobr> number<br>
<i>divisor</i> - an integer or <nobr>floating-point</nobr> number, except zero<br>
<table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td valign="top"><nobr>returns</nobr></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the result of truncating the result of <i>number</i> divided by <i>divisor</i></td>
</tr>
<tr>
<td></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the remainder of the truncate operation</td>
</tr>
</tbody></table></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:ceiling</font> (number &optional (divisor
(if (integerp number) 1 1.0)
divisor-p))
(let ((quotient
(cond ((and (not divisor-p) (integerp number)) number)
((= number divisor) 1)
(t (let ((i-quotient (/ (truncate number) (truncate divisor)))
(f-quotient (/ (float number) divisor)))
(if (or (= i-quotient f-quotient) <font color="#008844">; integer result</font>
(not (plusp f-quotient)))
(truncate f-quotient)
(1+ (truncate f-quotient))))))))
(setq <font color="#AA5500">*rslt*</font> (list quotient (- number (* quotient divisor)))
<font color="#AA5500">cl:*multiple-values*</font> t)
quotient))
</pre>
<p>The '<nobr>cl:ceiling</nobr>' function computes a quotient that has been
truncated toward positive infinity. That is, the quotient represents the
smallest mathematical integer that is not smaller than the mathematical
result. <nobr>See
<a href="#rounding-and-truncation">Rounding and Truncation</a></nobr>
above for more details.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-floor"></a>
<hr>
<h2>cl:floor</h2>
<hr>
<p>The '<nobr>cl:floor</nobr>' function truncates towards negative infinity:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>floor</b> <i>number </i> [<i>divisor</i>])</dt>
<dd><i>number</i> - an integer or <nobr>floating-point</nobr> number<br>
<i>divisor</i> - an integer or <nobr>floating-point</nobr> number, except zero<br>
<table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td valign="top"><nobr>returns</nobr></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the result of truncating the result of <i>number</i> divided by <i>divisor</i></td>
</tr>
<tr>
<td></td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">the remainder of the truncate operation</td>
</tr>
</tbody></table></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:floor</font> (number &optional (divisor
(if (integerp number) 1 1.0)
divisor-p))
(let ((quotient
(cond ((and (not divisor-p) (integerp number)) number)
((= number divisor) 1)
(t (let ((i-quotient (/ (truncate number) (truncate divisor)))
(f-quotient (/ (float number) divisor)))
(if (or (= i-quotient f-quotient) <font color="#008844">; integer result</font>
(not (minusp f-quotient)))
(truncate f-quotient)
(1- (truncate f-quotient))))))))
(setq <font color="#AA5500">*rslt*</font> (list quotient (- number (* quotient divisor)))
<font color="#AA5500">cl:*multiple-values*</font> t)
quotient))
</pre>
<p>The <nobr>'cl:floor</nobr>' function computes a quotient that has been
truncated toward negative infinity. That is, the quotient represents the
largest mathematical integer that is not larger than the mathematical
quotient. <nobr>See
<a href="#rounding-and-truncation">Rounding and Truncation</a></nobr>
above for more details.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="remainder-and-modulus"></a>
<hr>
<h2>Remainder and Modulus</h2>
<hr>
<p>The <a href="#cl-mod">cl:mod</a> and <a href="#cl-rem">cl:rem</a>
function are generalizations of the modulus and remainder functions.
<nobr>The <a href="#cl-mod">cl:mod</a></nobr> function performs the
<a href="#cl-floor">cl:floor</a> operation on its arguments and returns the
remainder of the <a href="#cl-floor">cl:floor</a> operation.
<nobr>The <a href="#cl-rem">cl:rem</a></nobr> function performs the
<a href="cl-truncate">cl:truncate</a> operation on its arguments and returns
the remainder of the <a href="cl-truncate">cl:truncate</a> operation.
<nobr>The <a href="#cl-mod">cl:mod</a></nobr> and
<a href="#cl-rem">cl:rem</a> functions are the modulus and remainder
functions when the 'number' and 'divisor' arguments both are integers.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-rem"></a>
<hr>
<h2>cl:rem</h2>
<hr>
<p><div class="box">
<dl>
<dt>(cl:<b>rem</b> <i>number divisor</i>)</dt>
<dd><i>number</i> - an integer or floating-point number<br>
<i>divisor</i> - an integer or floating-point number<br>
returns - the remainder of a <a href="cl-truncate">cl:truncate</a> operation</dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:rem</font> (number divisor)
(if (= (abs number) (abs divisor))
(if (and (integerp number) (integerp divisor)) 0 0.0)
(let ((quotient (truncate (/ (float number) divisor))))
(- number (* quotient divisor)))))
</pre>
<p>The '<nobr>cl:rem</nobr>' function performs the
<a href="cl-truncate">cl:truncate</a> operation on its arguments and returns
the remainder of the <a href="cl-truncate">cl:truncate</a> operation.
<nobr>The result</nobr> is either zero or an integer or
<nobr>floating-point</nobr> number with the same sign as the 'number'
argument. <nobr>If both</nobr> arguments are integer numbers, the
'<nobr>cl:rem</nobr>' function is equal to the mathematical remainder
function.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-mod"></a>
<hr>
<h2>cl:mod</h2>
<hr>
<p><div class="box">
<dl>
<dt>(cl:<b>mod</b> <i>number divisor</i>)</dt>
<dd><i>number</i> - an integer or floating-point number<br>
<i>divisor</i> - an integer or floating-point number<br>
returns - the remainder of a <a href="#cl-floor">cl:floor</a> operation</dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:mod</font> (number divisor)
(if (= (abs number) (abs divisor))
(if (and (integerp number) (integerp divisor)) 0 0.0)
(let* ((i-quotient (/ (truncate number) (truncate divisor)))
(f-quotient (/ (float number) divisor))
(quotient (if (or (= i-quotient f-quotient) <font color="#008844">; integer result</font>
(not (minusp f-quotient)))
(truncate f-quotient)
(1- (truncate f-quotient)))))
(- number (* quotient divisor)))))
</pre>
<p>The '<nobr>cl:mod</nobr>' function performs the
<a href="#cl-floor">cl:floor</a> operation on its arguments and returns the
remainder of the <a href="#cl-floor">cl:floor</a> operation. <nobr>The
result</nobr> is either zero or an integer or <nobr>floating-point</nobr>
number with the same sign as the 'divisor' argument. <nobr>If both</nobr>
arguments are integer numbers, the '<nobr>cl:rem</nobr>' function is equal
to the mathematical modulus function.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-exp"></a>
<hr>
<h2>cl:exp</h2>
<hr>
<p>The '<nobr>cl:exp</nobr>' function does the same as the Nyquist/XLISP
<a href="../reference/exp.htm">exp</a> function, but it also accepts
integer numbers as argument:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>exp</b> <i>power</i>)</dt>
<dd><i>power</i> - an integer or floating-point number<br>
returns - the result of <nobr>'e' [2.7128]</nobr> to the power of <i>power</i></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:exp</font> (x)
(exp (float x)))
</pre>
<p>The '<nobr>cl:exp</nobr>' function computes <nobr>'e' [2.7128]</nobr>
raised to the specified 'power'. <nobr>The result</nobr> is always a
<nobr>floating-point</nobr> number.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-expt"></a>
<hr>
<h2>cl:expt</h2>
<hr>
<p>The '<nobr>cl:expt</nobr>' function computes the result of 'x' to the
power <nobr>of 'y'</nobr>:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>expt</b> <i>base power</i>)</dt>
<dd><i>base</i> - the base<br>
<i>power</i> - the exponent<br>
returns - the result of <i>base</i> to the power of <i>power</i></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:expt</font> (x y)
(let ((power (expt (float x) y)))
(if (and (integerp x) (integerp y))
(round power)
power)))
</pre>
<p>See <a href="../reference/and.htm">and</a>,
<a href="../reference/defun.htm">defun</a>,
<a href="../reference/expt.htm">expt</a>,
<a href="../reference/float.htm">float</a>,
<nobr><a href="../reference/if.htm"> if </a></nobr>,
<a href="../reference/integerp.htm">integerp</a>,
<a href="../reference/let.htm">let</a>,
<a href="../reference/power.htm">power</a>,
<a href="../reference/round.htm">round</a>.</p>
<p>The '<nobr>cl:expt</nobr>' function accepts integer and floating point
numbers as arguments. <nobr>If both</nobr> arguments are integer numbers,
the result will be an integer number, <nobr>if one</nobr> or both arguments
are <nobr>floating-point</nobr> numbers, the result will be a
<nobr>floating-point</nobr> number. <nobr>In contrast</nobr> to the
Nyquist/XLISP <a href="../reference/expt.htm">expt</a> function, the
'<nobr>cl:expt</nobr>' function specifies exactly two arguments.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-log"></a>
<hr>
<h2>cl:log</h2>
<hr>
<p>The '<nobr>cl:log</nobr>' function does the same as the Nyquist/XLISP
<a href="../reference/log.htm">log</a> function, but also accepts
integer numbers and has an optional 'base' argument:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>log</b> <i>number</i> [<i>base</i>])</dt>
<dd><i>number</i> - an integer or floating-point number<br>
<i>base</i> - an integer or floating-point number<br>
returns - the the logarithm of <i>number</i> in base <i>base</i></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:log</font> (number &optional base)
(if base
(if (zerop base)
0.0
(/ (log (float number)) (log (float base))))
(log (float number))))
</pre>
<p>The '<nobr>cl:log</nobr>' function returns the logarithm of 'number' in
base 'base'. <nobr>If 'base'</nobr> is not supplied its value <nobr>is
'e'</nobr>, the base of the natural logarithms. <nobr>If the</nobr> 'base'
argument is zero, then 'cl:log' returns zero. <nobr>The result</nobr> is
always a <nobr>floating-point</nobr> number.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="cl-sqrt"></a>
<hr>
<h2>cl:sqrt</h2>
<hr>
<p>The '<nobr>cl:sqrt</nobr>' function does the same as the Nyquist/XLISP
<a href="../reference/sqrt.htm">sqrt</a> function, but it also accepts
integer numbers as argument:</p>
<p><div class="box">
<dl>
<dt>(cl:<b>sqrt</b> <i>number</i>)</dt>
<dd><i>number</i> - an integer or floating-point number<br>
returns - the square root of <i>number</i></dd>
</dl>
</div></p>
<pre class="example">
(defun <font color="#0000CC">cl:sqrt</font> (x)
(sqrt (float x)))
</pre>
<p><nobr>The result</nobr> is always a <nobr>floating-point</nobr>
number.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<hr>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="../tutorials/tutorials.htm">Tutorials</a> |
<a href="examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
</body></html>
|