1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
|
<html><head><title>XLISP Internals</title>
<style type="text/css">
pre.example {
color: #000000;
background-color: #F5F5F5;
padding-top: 8px;
padding-right: 8px;
padding-bottom: 8px;
padding-left: 8px;
border: #808080;
border-style: solid;
border-top-width: 1px;
border-right-width: 1px;
border-bottom-width: 1px;
border-left-width: 1px;
width:auto;
}
</style>
</head>
<body>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="../tutorials/tutorials.htm">Tutorials</a> |
<a href="../examples/examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
<hr>
<h1>XLISP Internals</h1>
<hr>
<p>92Jan14 jsp@glia.biostr.washington.edu [Jeff Prothero]. Public Domain.</p>
<pre>
+---------------------+
| xlisp 2.1 internals |
+---------------------+
"Trust the Source, Luke, trust the Source!"
</pre>
<hr>
<h2> Contents</h2>
<hr>
<ol>
<li><nobr><a href="xlisp-internals.html#SEC01">Who should read this?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC02">What is an LVAL?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC03">What is the obarray?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC04">The Interpreter Stacks</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC05">What is a context?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC06">What is an environment?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC07">How are XLISP entities stored and identified?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC08">How are vectors implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC09">How are strings implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC10">How are symbols implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC11">How are closures implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC12">How are objects implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC13">How are classes implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC14">How is the class hierarchy laid out?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC15">How do we look up the value of a variable?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC16">How are function calls implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC17">How are message-sends implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC18">How is garbage collection implemented?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC19">How are the source files laid out?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC20">How do I add a new primitive fn to xlisp?</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC21">Minor Observations.</a></nobr></li>
<li><nobr><a href="xlisp-internals.html#SEC22">Acknowledgements. </a></nobr></li>
</ol>
<a name="SEC01"></a>
<hr>
<h2>Who should read this ?</h2>
<hr>
<p>Anyone poking through the C implementation of XLISP for the first time.
This is intended to provide a rough roadmap of the global XLISP structures
and algorithms. If you just want to write lisp code in XLISP, you don't need
to read this file. Go read the
<nobr><a href="../manual/xlisp-man-index.htm">XLISP 2.0 Manual</a>,</nobr>
the <nobr><a href="../tutorials/xlisp-objects.htm">XLisp Objects Primer</a>,</nobr>
and the <nobr><a href="../reference/reference-index.htm">XLisp Language Reference</a>,</nobr>
in about that order. If you want to tinker with the XLISP implementation
code, you should *still* read those three before reading this. The following
isn't intended to be exhaustively precise, that's what the source code is
for. It is intended only to allow you a fighting change of understanding the
code the first time through [instead of the third time].</p>
<p>At the bottom of the file you'll find an example of how to add new
primitive functions to XLISP.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC02"></a>
<hr>
<h2>What is an LVAL ?</h2>
<hr>
<p>An LVAL is the C type for a generic pointer to an XLISP
garbage-collectable something. [Cons cell, object, string, closure, symbol,
vector, whatever.] Virtually every variable in the interpreter is an LVAL.
Cons cells contain two LVAL slots, symbols contains four LVAL slots,
etc.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC03"></a>
<hr>
<h2>What is the obarray ?</h2>
<hr>
<p>The obarray is the XLISP symbol table. More precisely, it is a hashtable
mapping ASCII strings [symbol names] to symbols. [The name 'obarray' is
traditional but a bit of a misnomer, since it contains only XLISP symbols,
and in particular contains no XLISP objects.] It is used when converting
Lisp expressions from text to internal form. Since it is a root for the
garbage collector, it also serves to distinguish permanent global-variable
symbols from other symbols. You can permanently protect a symbol from the
garbage collector by entering it into the obarray. This is called
'interning' the symbol. The obarray is called 'obarray' in C and
<a href="../reference/global-obarray.htm">*obarray*</a>
in XLISP. It is physically implemented as a vector-valued symbol.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC04"></a>
<hr>
<h2>The Interpreter Stacks</h2>
<hr>
<p>XLISP uses two stacks, an 'evaluation stack' and an 'argument stack'.
Both are roots for the garbage collector. The evaluation stack is largely
private to the interpreter and protects internal values from garbage
collection, while the argument stack holds the conventional user-visible
stackframes.</p>
<p>The evaluation stack is an 'edepth'-long array of LVAL allocated by
'xldmem.c:xlminit()'. It grows zeroward.</p>
<p>'xlstkbase' points to the zero-near end of the evaluation stack.</p>
<p>'xlstktop' points to the zero-far end of the evaluation stack, the
occupied part of the stack lies between 'xlstack' and 'xlstktop'. Note that
'xlstktop' is *NOT* the top of the stack in the conventional sense of
indicating the most recent entry on the stack. 'xlstktop' is a static bounds
pointer which never changes once the stack is allocated.</p>
<p>'xlstack' starts at the zero-far end of the evaluation stack. '*xlstack'
is the most recent LVAL on the stack. The garbage collector marks everything
reachable from the evaluation stack [among other things], so we frequently
push things on this stack while C code is manipulating them. [Via
'xlsave()', 'xlprotect()', 'xlsave1()', 'xlprot1()'.]</p>
<p>The argument stack is an 'adepth'-long array of LVAL. It also grows
zeroward. The evaluator pushes arguments on the argument stack at the start
of a function call [form evaluation]. Built-in functions usually eat them
directly off the stack. For user-lisp functions 'xleval.c:evfun()' pops them
off the stack and binds them to the appropriate symbols before beginning
execution of the function body proper.</p>
<p><table cellpadding="0" cellspacing="0" style="margin-left:10px"><tbody>
<tr valign="top">
<td colspan="3"><nobr><b>xlargstkbase</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">is the zero-near end of argument stack.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr valign="top">
<td colspan="3"><nobr><b>xlargstktop</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">is the zero-far end of argument stack. Like 'xlstktop',
'xlargstktop' is a static bounds pointer which never changes after the
stack is allocated.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr valign="top">
<td><nobr><b>*xlsp</b></nobr></td>
<td><nobr><code> </code></nobr></td>
<td><nobr>[stack pointer]</nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">is the most recent item on the argument stack.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr valign="top">
<td><nobr><b>*xlfp</b></nobr></td>
<td><nobr><code> </code></nobr></td>
<td><nobr>[frame pointer]</nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">is the base of the current stackframe.</td>
</tr>
</tbody></table></p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC05"></a>
<hr>
<h2>What is a context ?</h2>
<hr>
<p>A XLISP context is something like a checkpoint, recording a particular
point buried in the execution history so that we can abort or return back to
it. Contexts are used to implement call and return, catch and throw,
signals, gotos, and breaks. 'xlcontext' points to the chain of active
contexts, the top one being the second-newest active context. [The newest,
that is, the current, active context is implemented by the variables
'xlstack', 'xlenv', 'xlfenv', 'xldenv', 'xlcontext', 'xlargv', 'xlargc',
'xlfp', and 'xlsp'.] Context records are written by 'xljump.c:xlbegin()' and
read by 'xljump.c:xljump()'. Context records are C structures on the C
program stack. They are not in the dynamic memory pool or on the Lisp
execution or argument stacks.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC06"></a>
<hr>
<h2>What is an environment ?</h2>
<hr>
<p>An environment is basically a store of symbol-value pairs, used to
resolve variable references by the Lisp program. XLISP maintains three
environments, in the global variables 'xlenv', 'xlfenv' and 'xldenv'.</p>
<p>Lisp supports two sorts of binding, 'lexical binding' and 'dynamic
binding'. Lexically bound variables are visible only in code textually
within their binding form. Dynamically bound variables are visible in any
code *called* from the binding form. [Either kind of binding may be shadowed
by other declarations, of course.] Historically, Lisp has been moving from
dynamic binding [which is easy for interpreters to handle], to lexical
binding [which is easy for humans and compilers to handle]. Almost all XLISP
binding forms are lexically scoped. The most important exception is
<a href="../reference/progv.htm">progv</a>.</p>
<p>'xlenv' and 'xlfenv' track lexical bindings. 'xlenv' and 'xlfenf' are
conceptually a single environment, although they are implemented separately.
They are linked-list stacks which are pushed when we enter a function and
popped when we exit it. We also switch 'xlenv+xlfenf' environments entirely
when we begin executing a new closure [user-function written in Lisp].</p>
<p>The 'xlenv' environment is the most heavily used environment. It is used
to resolve everyday data references to local variables. It consists of a
list of frames [and objects]. Each frame is a list of symbol-value pairs. In
the case of an object, we check all the instance and class variables of the
object, then do the same for its superclass, until we run out of
superclasses.</p>
<p>The 'xlfenv' environment is maintained strictly parallel to 'xlenv', but
is used to find function values instead of variable values. The separation
may be partly for lookup speed and partly for historical reasons. Merging
these two lists into a single list [while distinguishing function bindings
from variable bindings, of course] would slightly decrease fn enter/exit
overhead while increasing the overhead of looking up each variable or
function binding.</p>
<p>When we send a message, we set 'xlenv' to the value it had when the
message closure was built, then push on (obj msg-class), where 'msg-class'
is the [super]class defining the method. [We also set 'xlfenv' to the value
'xlfenv' had when the method was built.] This makes the object instance
variables part of the environment, and saves the information needed to
correctly resolve references to class variables, and to implement
<a href="../reference/send-super.htm">send-super</a>.</p>
<p>The 'xldenv' environment tracks dynamic bindings. It is a simple list of
symbol-value pairs, treated as a stack.
<a href="../reference/progv.htm">progv</a> uses it to save the old
values of symbols it binds, and it is also used to save old values of
's_evalhook' and 's_applyhook'
[<a href="../reference/global-evalhook.htm">*evalhook*</a> and
<a href="../reference/global-applyhook.htm">*applyhook*</a>]. These latter
mostly support the debug facilities.</p>
<p>These environments are manipulated in C via the 'xlisp.h' macros
'xlframe(e)', 'xlbind(s,v)', 'xlfbind(s,v)', 'xlpbind(s,v,e)',
'xldbind(s,v)', 'xlunbind(e)'.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC07"></a>
<hr>
<h2>How are XLISP entities stored and identified ?</h2>
<hr>
<p>Conceptually, XLISP manages memory as a single array of fixed-size
objects. Keeping all objects the same size simplifies memory management
enormously, since any object can be allocated anywhere, and complex
compacting schemes aren't needed. Every LVAL pointer points somewhere in
this array. Every XLISP object has the basic format <nobr>'xldmem.h:typdef
struct node':</nobr></p>
<pre class="example">
struct node {
char n_type;
char n_flags;
LVAL car;
LVAL cdr;
}
</pre>
<p>where 'n_type' is one of:</p>
<p><table cellpadding="0" cellspacing="0" style="margin-left:10px"><tbody>
<tr valign="top">
<td><nobr><b>FREE</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a node on the freelist.</td>
</tr>
<tr valign="top">
<td><nobr><b>SUBR</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a function implemented in C. [Needs evaluated arguments.]</td>
</tr>
<tr valign="top">
<td><nobr><b>FSUBR</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a 'special form' implemented in C. [Needs unevaluated arguments.]</td>
</tr>
<tr valign="top">
<td><nobr><b>CONS</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a regular lisp cons cell.</td>
</tr>
<tr valign="top">
<td><nobr><b>SYMBOL</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a symbol.</td>
</tr>
<tr valign="top">
<td><nobr><b>FIXNUM</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">an integer.</td>
</tr>
<tr valign="top">
<td><nobr><b>FLONUM</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a floating-point number.</td>
</tr>
<tr valign="top">
<td><nobr><b>STRING</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a string.</td>
</tr>
<tr valign="top">
<td><nobr><b>OBJECT</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">any object, including
<a href="../reference/class.htm">class</a> objects.</td>
</tr>
<tr valign="top">
<td><nobr><b>STREAM</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">an input or output file.</td>
</tr>
<tr valign="top">
<td><nobr><b>VECTOR</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a variable-size array of LVALs.</td>
</tr>
<tr valign="top">
<td><nobr><b>CLOSURE</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">result of <a href="../reference/defun.htm">defun</a>
or <a href="../reference/lambda.htm">lambda</a>, a function
written in Lisp.</td>
</tr>
<tr valign="top">
<td><nobr><b>CHAR</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">an ASCII character.</td>
</tr>
<tr valign="top">
<td><nobr><b>USTREAM</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">an internal stream.</td>
</tr>
<tr valign="top">
<td><nobr><b>STRUCT</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a structure.</td>
</tr>
</tbody></table></p>
<p>Messages may be sent only to nodes with a 'n_type' of OBJECT.</p>
<p>Obviously, several of the above types won't fit in a fixed-size two-slot
node. The escape is to have them 'malloc()' some memory and have one of the
slots point to it. VECTOR is the archetype. For example, see
'xldmem.c:newvector()'. To some extent, this 'malloc()' hack simply exports
the memory fragmentation problem to the C 'malloc()/free()' routines.
However, it helps keep XLISP simple, and it has the happy side-effect of
unpinning the body of the vector, so that vectors can easily be expanded and
contracted.</p>
<p>The garbage collector has special-case code for each of the above node
types, so it can find all LVAL slots and recycle any 'malloc()'-ed ram when
a node is garbage-collected.</p>
<p>XLISP pre-allocates nodes for all ASCII characters, and for small
integers. These nodes are never garbage-collected.</p>
<p>As a practical matter, allocating all nodes in a single array is not very
sensible. Instead, nodes are allocated as needed, in segments of one or two
thousand nodes, and the segments linked by a pointer chain rooted at
'xldmem.c:segs'.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC08"></a>
<hr>
<h2>How are vectors implemented ?</h2>
<hr>
<p>An XLISP vector is a generic array of LVAL slots. Vectors are also the
canonical illustration of XLISP's escape mechanism for node types which need
more than two LVAL slots [the maximum possible in the fixed-size nodes in
the dynamic memory pool]. The node CAR/CDR slots for a vector hold a size
field plus a pointer to a 'malloc()'-ed ram chunk, which is automatically
'free()'-ed when the vector is garbage-collected.</p>
<p>'xldmem.h' defines macros for reading and writing vector fields and
slots, 'getsize()', 'getelement()' and 'setelement()'. It also defines
macros for accessing each of the other types of XLISP nodes.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC09"></a>
<hr>
<h2>How are strings implemented ?</h2>
<hr>
<p>Strings work much like vectors. The node has a pointer to a 'malloc()'-ed
ram chunk which is automatically 'free()'-ed when the string gets
garbage-collected.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC10"></a>
<hr>
<h2>How are symbols implemented ?</h2>
<hr>
<p>A symbol is a generic user-visible Lisp variable, with separate slots for
print name, value, function, and property list. Any or all of these slots
[including name] may be NIL.</p>
<p>You create an XLISP symbol from C by calling 'xlmakesym(name)' or
'xlenter(name)' [to make a symbol and enter it in the obarray].</p>
<p>You may create symbols from XLISP by explicitly calling
<a href="../reference/gensym.htm">gensym</a>,
<a href="reference/make-symbol.htm">make-symbol</a> [uninterned symbols],
or <a href="../reference/intern.htm">intern</a> [interned symbol].
However, the Lisp reader will create symbols on sight, so most Lisp symbols
are created as side-effects of expressions like:</p>
<pre class="example">
'name
</pre>
<p>A symbol is <a href="../reference/intern.htm">intern</a>ed if it
is listed in the <a href="../reference/global-obarray.htm">*obarray*</a>.
Various parts of the system, like the Lisp reader, treat the
<a href="../reference/global-obarray.htm">*obarray*</a>
essentially as the list of all known symbols. It is unusual but occasionally
useful to create uninterned symbols. You can make
<a href="../reference/read.htm">read</a> create an uninterned
symbol by preceding it with '#:'. In XLISP, a newly created symbol has no
value unless its name begins with a ':', in which case it has itself for its
value. Handy for keywords and message selectors.]</p>
<p>Most of the symbol-specific code in the interpreter is in 'xlsym.c'.</p>
<p>Physically, a symbol is implemented like a four-slot vector [print name,
value, function, and property list].</p>
<p>Random musing: Abstractly, the Lisp symbols plus cons cells [etc.]
constitute a single directed graph, and the symbols mark spots where normal
recursive evaluation should stop. Normal Lisp programming practice is to
have a symbol in every cycle in the graph, so that recursive traversal can
be done without mark bits.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC11"></a>
<hr>
<h2>How are closures implemented ?</h2>
<hr>
<p>A closure, the return value from a
<a href="../reference/lambda.htm">lambda</a>, is a regular
coded-in-lisp function. Physically, it is implemented like an eleven-slot
vector, with the node 'n_type' field hacked to contain CLOSURE instead of
VECTOR. The vector slots contain:</p>
<p><table cellpadding="0" cellspacing="0" style="margin-left:10px"><tbody>
<tr valign="top">
<td><nobr><b>name</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">a symbol, the first argument of
<a href="../reference/defun.htm">defun</a>.
<a href="../reference/nil.htm">nil</a> for
<a href="../reference/lambda.htm">lambda</a> closures.</td>
</tr>
<tr valign="top">
<td><nobr><b>type</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">'s_lambda' or 's_macro'. Must be 's_lambda' to be
executable.</td>
</tr>
<tr valign="top">
<td><nobr><b>args</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">list of required formal arguments [as symbols].</td>
</tr>
<tr valign="top">
<td><nobr><b>oargs</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">list of
<a href="../reference/lambda-keyword-optional.htm">&optional</a> arguments,
each like <nobr>(name (default specified-p)).</nobr></td>
</tr>
<tr valign="top">
<td><nobr><b>rest</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">name of '&rest' formal arguments, else
<a href="../reference/nil.htm">nil</a>.</td>
</tr>
<tr valign="top">
<td><nobr><b>kargs</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><a href="../reference/lambda-keyword-key.htm">&key</a>-word
arguments, each like <nobr>((':foo 'bar default specified-p))</nobr></td>
</tr>
<tr valign="top">
<td><nobr><b>aargs</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><a href="../reference/lambda-keyword-aux.htm">&aux</a>
variables, each like <nobr>(('arg default)).</nobr></td>
</tr>
<tr valign="top">
<td><nobr><b>body</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">actual code [as a Lisp list] for the function.</td>
</tr>
<tr valign="top">
<td><nobr><b>env</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">value of 'xlenv' when the closure was built.</td>
</tr>
<tr valign="top">
<td><nobr><b>fenv</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">value of 'xlfend' when the closure was built.</td>
</tr>
<tr valign="top">
<td><nobr><b>lambda</b></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%">the original formal args list in the
<a href="../reference/defun.htm">defun</a> or
<a href="../reference/lambda.htm">lambda</a>.</td>
</tr>
</tbody></table></p>
<p>The lambda field is for printout purposes. The remaining fields store a
predigested version of the formal arguments list. This is a limited form of
compilation. By processing the arguments list at closure-creation time, we
reduce the work needed during calls to the closure.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC12"></a>
<hr>
<h2>How are objects implemented ?</h2>
<hr>
<p>An object is implemented like a vector, with the size determined by the
number of instance variables. The first slot in the vector points to the
class of the object, the remaining slots hold the instance variables for the
object. An object needs enough slots to hold all the instance variables
defined by its class, *plus* all the instance variables defined by all of
its superclasses.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="SEC13"></a>
<hr>
<h2>How are classes implemented ?</h2>
<hr>
<p>A class is a specific kind of object, hence has a class pointer plus
instance variables. All classes have the following instance variables:</p>
<pre>
MESSAGES a list of <nobr>(interned-symbol method-closure)</nobr> pairs.
IVARS instance variable names, a list of interned symbols.
CVARS class variable names, a list of interned symbols.
CVALS class variable values, a vector of values.
SUPERCLASS a pointer to the superclass.
IVARCNT the number of class instance variables, a fixnum.
IVARTOTAL the total number of instance variables, a fixnum.
</pre>
<p>IVARCNT is the count of the number of instance variables defined by our
class. IVARTOTAL is the total number of instance variables in an object of this
class -- IVARCNT for this class plus the IVARCNTs from all of our
superclasses.</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC14">How is the class hierarchy laid out ?</a></h3>
<p>The fundamental objects are the OBJECT and CLASS class objects. (Both are
instances of class CLASS, and since CLASSes are a particular kind of OBJECT,
both are also objects, with n_type==OBJECT. Bear with me!)</p>
<p>OBJECT is the root of the class hierarchy: everything you can send a message
to has OBJECT as its class or super*class. (Vectors, chars, integers and so
forth stand outside the object hierarchy -- you can't send messages to them. I'm
not sure why Dave did it this way.) OBJECT defines the messages:</p>
<pre>
:isnew -- Does nothing but return the object.
:class -- Returns contents of class-pointer slot.
:show -- Prints names of obj, obj->class and instance vars.
</pre>
<p>Since a CLASS is a specialized type of OBJECT (with instance variables like
MESSAGES which generic OBJECTs lack), class CLASS has class OBJECT as its
superclass. The CLASS object defines the messages:</p>
<pre>
:new -- Create new object with self.IVARTOTAL LVAR slots, plus
one for the class pointer. Point class slot to self.
Set new.n_type char to OBJECT.
:isnew -- Fill in IVARS, CVARS, CVALS, SUPERCLASS, IVARCNT and
IVARTOTAL, using parameters from :new call. (The
:isnew msg inherits the :new msg parameters because
the :isnew msg is generated automatically after
each :new msg, courtesy of a special hack in
xlobj.c:sendmsg().)
:answer -- Add a (msg closure) pair to self.MESSAGES.
</pre>
<p>Here's a figure to summarize the above, with a generic object thrown in for
good measure. Note that all instances of CLASS will have a SUPERCLASS pointer,
but no normal object will. Note also that the messages known to an object are
those which can be reached by following exactly one Class Ptr and then zero or
more Superclass Ptrs. For example, the generic object can respond to :ISNEW,
:CLASS and :SHOW, but not to :NEW or :ANSWER. (The functions implementing the
given messages are shown in parentheses.)</p>
<pre>
NIL
^
|
|Superclass Ptr
|
Msg+--------+
:isnew (xlobj.c:obisnew) <----| class |Class Ptr
:class (xlobj.c:obclass) <----| OBJECT |------------------------------>+
:show (xlobj.c:objshow) <----| | |
+--------+ |
^ ^ ^ |
+---------+ | | | |
| generic |Class Ptr | | +<---------------+ |
| object |-------------->+ |Superclass Ptr ^Superclass Ptr |
+---------+ | | |
Msg+--------+ +---------+ |
:isnew (xlobj.c:clnew) <----| class |Class Ptr | generic |Class Ptr |
:new (xlobj.c:clisnew) <----| CLASS |------->+ | CLASS |------->+ |
:answer(xlobj.c:clanswer)<----| | | | | | |
+--------+ | +---------+ | |
^ ^ | | |
| | v v |
| +-----------+ <------------------+ v
+<------------------------------------+
</pre>
<p>Thus, class CLASS inherits the :CLASS and :SHOW messages from class OBJECT,
overrides the default :ISNEW message, and provides new messages :NEW and
:ANSWER.</p>
<p>New classes are created by (send CLASS :NEW ...) messages. Their Class Ptr
will point to CLASS. By default, they will have OBJECT as their superclass, but
this can be overridden by the second optional argument to :NEW.</p>
<p>The above basic structure is set up by xlobj.c:xloinit().</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC15">How do we look up the value of a variable ?</a></h3>
<p>When we're cruising along evaluating an expression and encounter a symbol,
the symbol might refer to a global variable, an instance variable, or a class
variable in any of our superclasses. Figuring out which means digging through
the environment. The canonical place this happens is in xleval.c:xleval(), which
simply passes the buck to xlsym.c:xlgetvalue(), which in turn passes the buck to
xlxsym.c:xlxgetvalue(), where the fun of scanning down xlenv begins. The xlenv
environment looks something like</p>
<pre>
Backbone Environment frame contents
-------- --------------------------
xlenv --> frame ((sym val) (sym val) (sym val) ... )
frame ...
object (obj msg-class)
frame ...
object ...
frame ...
...
</pre>
<p>The "frame" lines are due to everyday nested constructs like LET expressions,
while the "object" lines represent an object environment entered via a message
send. xlxgetvalue scans the enviroment left to right, and then top to bottom. It
scans down the regular environment frames itself, and calls
xlobj.c:xlobjgetvalue() to search the object environment frames.</p>
<p>xlobjgetvalue() first searches for the symbol in the msg-class, then in all
the successive superclasses of msg-class. In each class, it first checks the
list of instance-variable names in the IVARS slot, then the list of
class-variables name in the CVARS slot.</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC16">How are function calls implemented ?</a></h3>
<p>xleval.c contains the central expression-evaluation code. xleval.c:xleval()
is the standard top-level entrypoint. The two central functions are
xleval.c:xlevform() and xleval.c:evfun(). xlevform() can evaluate four kinds of
expression nodes:</p>
<p><b>SUBR:</b> A normal primitive fn coded in C. We call evpushargs() to
evaluate and push the arguments, then call the primitive.</p>
<p><b>FSUBR:</b> A special primitive fn coded in C, which (like IF) wants its
arguments unevaluated. We call pushargs() (instead of evpushargs()) and then the
C fn.</p>
<p><b>CLOSURE:</b> A preprocessed written-in-lisp fn from a DEFUN or LAMBDA. We
call evpushargs() and then evfun().</p>
<p><b>CONS:</b> We issue an error if CONS.car isn't a LAMBDA, otherwise we call
xleval.c:xlclose() to build a CLOSURE from the LAMBDA, and fall into the CLOSURE
code.</p>
<p>The common thread in all the above cases is that we call evpushargs() or
pushargs() to push all the arguments on the evaluation stack, leaving the number
and location of the arguments in the global variables xlargc and xlargv. The
primitive C functions consume their arguments directly from the argument
stack.</p>
<p>xleval.c:evfun() evaluates a CLOSURE by:</p>
<p>(1) Switching xlenv and xlfenv to the values they had when the CLOSURE was
built. (These values are recorded in the CLOSURE.)</p>
<p>(2) Binding the arguments to the environment. This involves scanning through
the section of the argument stack indicated by xlargc/xlargv, using information
from the CLOSURE to resolve keyword arguments correctly and assign appropriate
default values to optional arguments, among other things.</p>
<p>(3) Evaluating the body of the function via xleval.c:xleval().</p>
<p>(4) Cleaning up and restoring the original environment.</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC17">How are message-sends implemented ?</a></h3>
<p>We scan the MESSAGES list in the CLASS object of the recipient, looking for a
(message-symbol method) pair that matches our message symbol. If necessary, we
scan the MESSAGES lists of the recipient's superclasses too.
(xlobj.c:sendmsg().) Once we find it, we basically do a normal function
evaluation. (xlobjl.c:evmethod().)</p>
<p>Two differences between message-send and normal function invocation:</p>
<p>1) We need to replace the message-symbol by the recipient on the argument
stack to make "self" available in the method closure.</p>
<p>2) We need to push an 'object' stack entry on the xlenv environment to record
which class is handling the message (so that, for example, SEND-SUPER can find
our superclass).</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC18">How is garbage collection implemented ?</a></h3>
<p>The dynamic memory pool managed by xlisp consists of a chain of memory
segments (xldmem.h:struct segment) rooted at global C variable "segs". Each
segment contains an array of "struct node"s plus a pointer to the next segment.
Each node contains a n_type field and a MARK bit, which is zero except during
garbage collection.</p>
<p>Xlisp uses a simple, classical mark-and-sweep garbage collector. When it runs
out of memory (fnodes==NIL), it does a recursive traversal setting the MARK flag
on all nodes reachable from the obarray, the three environments
xlenv/xlfenv/xldenv, and the evaluation and argument stacks. (A "switch" on the
n_type field tells us how to find all the LVAL slots in the node (plus
associated storage), and a pointer-reversal trick lets us avoid using too much
stack space during the traversal.) sweep() then adds all un-MARKed LVALs to
fnodes, and clears the MARK bit on the remaining nodes. If this fails to produce
enough free nodes, a new segment is malloc()ed.</p>
<p>The code to do this stuff is mostly in xldmem.c.</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC19">How are the source files laid out ?</a></h3>
<p>To really understand the source, of course, you simply have to sit down and
read it. There's no royal road to hacking! So this is a map of the source, not a
picture of it.</p>
<p>The core portable xlisp files have the prefix 'xl' (for 'xlisp').</p>
<p>The best place to start reading the code is in the two main header files,
xlisp.h and xldmem.h.</p>
<p>The xldmem.h file ('dmem' for 'dynamic memory') defines the actual structure
in memory of all the primitive xlisp data types. This is the file you will most
likely refer to most often.</p>
<p>The xlisp.h file defines essentially all global constants and macros which
don't need to know about the structures in xldmem.h, mainly manifest constants
sizing various arrays for different machines, and macros to test for the type of
a list object and to help parse xlisp argument lists.</p>
<p>The central code files to understand are xlmain.c, xleval.c, xlbfun.c, and
xlsym.c.</p>
<p><b>xlmain.c</b> contains both main() and the central read-eval-print loop, so
it is the place from which to begin tracing flow of control.</p>
<p><b>xleval.c</b> (with some support from xlbfun.) contains the heart of xlisp,
the code to evaluate functions and macros.</p>
<p><b>xlsym.c</b> contains the code to find the value of a symbol.</p>
<p>Once you understand the above three, you know where xlisp decides to evaluate
an s-expression, how it evaluates it, and how it finds the values needed by the
expression.</p>
<p>A good file to tackle next is xlobj.c, which handles much of the
object-oriented support, and has much of the flavor of xleval.c.</p>
<p>Most of the other files are just libraries of functions to handle particular
types of processing, and are easily understood once the central code is
grokked.</p>
<p>One of the charms of xlisp *is* that it is small enough to easily read and
comprehend. I hope it stays that way!</p>
<p>Here's a very brief file-by-file overview of the source. Your files will
probably be laid out just a little differently. In particular, if you're not
running on unix, instead of 'unixstuff.c' you'll have something like
'dosstuff.c'.</p>
<pre>
Size Name Contains
----- -------- --------
2054 osdefs.h System specific declarations. Empty file in my case.
2050 osptrs.h System specific pointers. Empty file in my case.
14172 unixstuff.c Isolates I/O fns, which tend to be OS-specific. Unix version.
19049 xlbfun.c 'Basic FUNctions': highlevel eval stuff + random support.
30229 xlcont.c 'CONTrol': case, do, while, dotimes, other special forms.
6380 xldbug.c 'DeBUG': break, abort, error, baktrace...
18006 xldmem.c 'Dynamic MEMory': ram allocation, garbage collector.
9431 xldmem.h Declaration of LVAL, scads of useful macros.
21220 xleval.c 'EVALuation': eval, apply, macroexpand and support for them.
11935 xlfio.c 'File I/O': OPEN, READ-CHAR, WRITE-CHAR ...
18481 xlftab.c 'Function TABle': Array of all xlisp primitives.
4866 xlglob.c 'GLOBal variables': Boring list of declarations.
11048 xlimage.c 'memory IMAGE': Code to save/restore contents of xlisp.
10579 xlinit.c 'INITialization': Start-of-the-world setup code.
6016 xlio.c 'Input/Output': misc I/O stuff, some called by xlfio.c.
12664 xlisp.h consp() ..., xlgetarg() ..., misc types.
5853 xljump.c catch, throw, return ...
20723 xllist.c car, cdr, append, map ... basic list manipulation.
11975 xlmath.c Arithmetic functions -- addition, multiplication ...
16425 xlobj.c Object support -- create objects & classes, send msgs...
4134 xlpp.c A little prettyprinter.
9487 xlprin.c Print an arbitrary lisp value in ascii.
19535 xlread.c Read in an arbitrary ascii lisp expression.
15062 xlstr.c Manipulation of characters and strings.
12889 xlstruct.c Lisp structures -- defstruct and kin.
5957 xlsubr.c eq, equal, some internal utility fns.
7019 xlsym.c Symbols and obarrays ... maksym, getvalue, getprop...
5566 xlsys.c Misc stuff -- read file, print backtrace, peek/poke...
3926 xmain.c main(), with top read-eval-print loop.
</pre>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC20">How do I add a new primitive fn to xlisp ?</a></h3>
<p>A preliminary comment: You should have a copy of Guy L Steele's "Common Lisp:
The Language" (2nd Edition), and make your new primitives compatible with the
standard whenever practical.</p>
<p>Add a line to the end of xlftab.c:funtab[]. This table contains a list of
triples:</p>
<p>The first element of each triple is the function name as it will appear to
the programmer. Make it all upper case.</p>
<p>The second element is S (for SUBR) if (like most fns) your function wants its
arguments pre-evaluated, else F (for FSUBR).</p>
<p>The third element is the name of the C function to call.</p>
<p>Remember that your arguments arrive on the xlisp argument stack rather than
via the usual C parameter mechanism.</p>
<p>CAUTION: Try to keep your files separate from generic xlisp files, and to
minimize the number of changes you make in the generic xlisp files. This way,
you'll have an easier time re-installing your changes when new versions of xlisp
come out. For example, if you are going to add many primitive functions to your
xlisp, use an #include file rather than putting them all in xlftab.c. It's a
good idea to put a marker (like a comment with your initials) on each line you
change or insert in the generic xlisp fileset.</p>
<p>CAUTION: Remember that you usually need to protect the LVAL variables in your
function from the garbage-collector. It never hurts to do this, and often
produces obscure bugs if you do not. You protect uninitialized local variables
with xlsave1() and initialized local variables with xlprot1().</p>
<p>BE CAREFUL NOT TO PROTECT UNINITIALIZED LOCAL VARIABLES WITH XLPROT1() OR
XLPROTECT()! This will appear to work fine until garbage collection happens at
an inconvenient moment, at which point the garbage collector will wind up
following your uninitialized pointer off to never-never land.</p>
<p>Note: If you have several pointers to protect, you can save a little runtime
and codespace by using xlstkcheck(number-of-variables-to-protect) followed by
xlsave()s and xlprotect()s instead of the more expensive xlsave1()s and
xlprot1()s.</p>
<p>Generic code for a new primitive fn:</p>
<pre>
/* xlsamplefun - do useless stuff. */
/* Called like (samplefun '(a c b) 1 2.0) */
LVAL xlsamplefun()
{
/* Variables to hold the arguments: */
LVAL list_arg, integer_arg, float_arg;
/* Get the arguments, with appropriate errors */
/* if any are of the wrong type. Look in */
/* xlisp.h for macros to read other types of */
/* arguments. Look in xlmath.c for examples */
/* of functions which can handle an argument */
/* which may be either int or float: */
list_arg = xlgalist() ; /* "XLisp Get A LIST" */
integer_arg = xlgafixnum(); /* "XLisp Get A FIXNUM" */
float_arg = xlgaflonum(); /* "XLisp Get A FLONUM" */
/* Issue an error message if there are any extra arguments: */
xllastarg();
/* Call a separate C function to do the actual */
/* work. This way, the main function can */
/* be called from both xlisp code and C code. */
/* By convention, the name of the xlisp wrapper */
/* starts with "xl", and the native C function */
/* has the same name minus the "xl" prefix: */
return samplefun( list_arg, integer_arg, float_arg );
}
LVAL samplefun( list_arg, integer_arg, float_arg )
LVAL list_arg, integer_arg, float_arg;
{
FIXTYPE val_of_integer_arg;
FLOTYPE val_of_float_arg;
/* Variables which will point to LISP objects: */
LVAL result;
LVAL list_ptr;
LVAL float_ptr;
LVAL int_ptr;
/* Protect our internal pointers by */
/* pushing them on the evaluation */
/* stack so the garbage collector */
/* can't recycle them in the middle */
/* of the routine: */
xlstkcheck(4); /* Make sure following xlsave */
/* calls won't overrun stack. */
xlsave(list_ptr); /* Use xlsave1() if you don't */
xlsave(float_ptr);/* do an xlstkcheck(). */
xlsave(int_ptr);
xlsave(result);
/* Semantic check, illustrating use of xlfail(): */
if (list_ptr == NIL) {
xlfail("null list");
/* Won't return. */
}
/* Create an internal list structure, protected */
/* against garbage collection until we exit fn: */
list_ptr = cons(list_arg,list_arg);
/* Get the actual values of our fixnum and flonum: */
val_of_integer_arg = getfixnum( integer_arg );
val_of_float_arg = getflonum( float_arg );
/* Semantic check, illustrating use of xlerror(): */
if (val_of_integer_arg < -2) {
xlerror("bad integer",cvfixnum(val_of_integer_arg));
/* Won't return. */
}
/*******************************************/
/* You can have any amount of intermediate */
/* computations at this point in the fn... */
/*******************************************/
/* Make new numeric values to return: */
integer_ptr = cvfixnum( val_of_integer_arg * 3 );
float_ptr = cvflonum( val_of_float_arg * 3.0 );
/* Cons it all together to produce a return value: */
result = cons( float_ptr, NIL );
result = cons( integer_ptr, result );
result = cons( list_ptr, result );
/* Restore the stack, canceling the xlsave()s: */
xlpopn(4); /* Use xlpop() for a single argument.*/
return result;
}
</pre>
<p><b>Example of what NOT to do:</b></p>
<p>Here's a function I wrote which does *NOT* correctly prevent the garbage
collector from stealing its dynamically allocated cells:</p>
<pre>
LVAL incorrect_Point_To_List( p )/*DON'T USE THIS CODE! */
geo_point* p;
/*-
Convert point to (x y z) list.
-*/
{
LVAL result;
xlsave1(result);
result = cons( /* THIS CODE IS BROKEN! */
cvflonum( p->x), /* THIS CODE IS BROKEN! */
cons( /* THIS CODE IS BROKEN! */
cvflonum( p->y), /* THIS CODE IS BROKEN! */
cons( /* THIS CODE IS BROKEN! */
cvflonum(p->z), /* THIS CODE IS BROKEN! */
NIL /* THIS CODE IS BROKEN! */
) /* THIS CODE IS BROKEN! */
) /* THIS CODE IS BROKEN! */
); /* THIS CODE IS BROKEN! */
xlpop();
return result;
}
</pre>
<p>The problem with the above function is that the "z" cell will be allocated
first, and is not protected during the allocation of the "y" flonum (or vice
versa, depending on the order the compiler chooses to evaluate these arguments).
Similarly, the "y" cell is not protected during allocation of the "x" flonum.
Here is a correct version, in which "result" always protects the
list-to-date:</p>
<pre>
LVAL correct_Point_To_List( p )
geo_point* p;
/*-
Convert point to (x y z) list.
-*/
{
LVAL result;
xlsave1(result);
result = cons( cvflonum(p->z), NIL );
result = cons( cvflonum(p->y), result );
result = cons( cvflonum(p->x), result );
xlpop();
return result;
}
</pre>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC21">Minor Observations:</a></h3>
<p>xlapply, xlevform and sendmsg will issue an error if they encounter a s_macro
CLOSURE. You are not allowed to use APPLY or FUNCALL with macros in Common Lisp.
There is no way provided to declare macro methods, nor do they make much
sense...</p>
<p>Neither xlapply nor sendmsg will handle FSUBRs. Common Lisp does not allow
APPLYing a special form (FSUBR), and since SEND is a SUBR, all of its arguments
are already evaluated, so it is not possible to have FSUBR methods.</p>
<p>Since xlisp tracks the three most recent input expressions (in variables +,
++ and +++) and three most recent results (in variables *, ** and ***), things
may occasionally not get garbage-collected as soon as you expect!</p>
<p>Both xlobj.c:xloinit() and xlobj.c:obsymvols() initialize the "object" and
"class" variables. This is neither redundant nor a bug:</p>
<p>xloinit creates the classes class and object, as well as the symbols, but
sets the C variables class and object to point to the class and object.</p>
<p>obsymbols just sets the C variables by looking up the symbols. It is needed
because when you restore a workspace you don't create new objects but still need
to know where the existing objects are (they might be in a different location in
the saved workspace). Notice that obsymbols is called by xlsymbols which is
called both when initializing a new workspace and when restoring an old
workspace.</p>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<h3><a name="SEC22">Acknowledgements</a></h3>
<p>This document is considerably improved thanks to careful reading and
thoughtful suggestions from Ken Whedbee (kcw@beach.cis.ufl.edu) and (especially)
Tom Almy (toma@sail.labs.tek.com).</p> </pre>
<table cellpadding="0"><tbody><tr><td> </td><td bgcolor="eeeeee">
<a href="xlisp-internals.html#SEC00">Back to Top</a></nobr></li>
</tr></tbody></table>
<br><hr>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="../tutorials/tutorials.htm">Tutorials</a> |
<a href="../examples/examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
</body></html>
|