File: xlisp.mss

package info (click to toggle)
nyquist 3.05-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 31,144 kB
  • ctags: 22,869
  • sloc: ansic: 149,216; sh: 21,301; lisp: 17,746; cpp: 12,778; java: 8,006; makefile: 4,574; python: 39
file content (4016 lines) | stat: -rw-r--r-- 148,277 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
@define(codef, FaceCode T, size 11)
@comment{In my original scribe conversion of the ascii xlisp documentation, I used
   times roman fonts for xlisp function names and code text in general. To be
   consistent with Nyquist documentation, I have changed the code font to xlcode
   which is defined here. If this turns out to be a problem, redefine xlcode to 
   use the regular FaceCode. -RBD}
@define(xlcode, FaceCode T, size 11)
@textform(pragma=[])
@section(Introduction)
        XLISP is an experimental programming language combining some of
        the features of Common Lisp with an object-oriented extension
        capability.  It was implemented to allow experimentation with
        object-oriented programming on small computers.

        Implementations of XLISP run on virtually every operating system.
        XLISP is completely written in the programming language
        C and is easily extended with user written built-in functions
        and classes.  It is available in source form to non-commercial
        users.

        Many Common Lisp functions are built into XLISP.  In addition,
        XLISP defines the objects Object and Class as primitives.
        Object is the only class that has no superclass and hence is
        the root of the class hierarchy tree.  Class is the class of
        which all classes are instances (it is the only object that is
        an instance of itself).

        This document is a brief description of XLISP.  It assumes some
        knowledge of LISP and some understanding of the concepts of
        object-oriented programming.

        I recommend the book @i(Lisp) by Winston and Horn and published by
        Addison Wesley for learning Lisp.  The first edition of this
        book is based on MacLisp and the second edition is based on
        Common Lisp. 

        You will probably also need a copy of @i(Common Lisp: The
        Language) by Guy L. Steele, Jr., published by Digital Press to
        use as a reference for some of the Common Lisp functions that
        are described only briefly in this document.

        @section(A Note From The Author)

        If you have any problems with XLISP, feel free to contact me [me being David Betz - RBD] for
        help or advice.  Please remember that since XLISP is available
        in source form in a high level language, many users [e.g. that Dannenberg fellow - RBD] have been
        making versions available on a variety of machines.  If you call
        to report a problem with a specific version, I may not be able
        to help you if that version runs on a machine to which I don't
        have access.  Please have the version number of the version that
        you are running readily accessible before calling me.

        If you find a bug in XLISP, first try to fix the bug yourself
        using the source code provided.  If you are successful in fixing
        the bug, send the bug report along with the fix to me.  If you
        don't have access to a C compiler or are unable to fix a bug,
        please send the bug report to me and I'll try to fix it.

        Any suggestions for improvements will be welcomed.  Feel free to
        extend the language in whatever way suits your needs.  However,
        PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT CHECKING WITH ME
        FIRST!!  I would like to be the clearing house for new features
        added to XLISP.  If you want to add features for your own
        personal use, go ahead.  But, if you want to distribute your
        enhanced version, contact me first.  Please remember that the
        goal of XLISP is to provide a language to learn and experiment
        with LISP and object-oriented programming on small computers.  I
        don't want it to get so big that it requires megabytes of memory
        to run.


        @section(XLISP Command Loop)@index(XLISP Command Loop)@index(Command Loop)

        When XLISP is started, it first tries to load the workspace
        @code(xlisp.wks) from the current directory.  If that file doesn't
        exist, XLISP builds an initial workspace, empty except for the
        built-in functions and symbols.

        Then XLISP attempts to load @code(init.lsp) from the current
        directory.  It then loads any files named as parameters on the
        command line (after appending @code(.lsp) to their names).

        XLISP then issues the following prompt:
@begin(example)
        >
@end(example)
        This indicates that XLISP is waiting for an expression to be
        typed.

        When a complete expression has been entered, XLISP attempts to
        evaluate that expression.  If the expression evaluates
        successfully, XLISP prints the result and then returns to the
        initial prompt waiting for another expression to be typed.

        @section(Special Characters)@index(control characters, XLISP)

 When XLISP is running from a console, some control characters invoke operations:
@begin(itemize)
Backspace and Delete characters erase the previous character on the input line (if any).

Control-U erases the entire input line. 

Control-C executes the TOP-LEVEL function.

Control-G executes the CLEAN-UP function.

Control-P executes the CONTINUE function.

Control-B stops execution and enters the break command loop. Execution can be continued by typing Control-P or (CONTINUE).

Control-E turns on character echoing (Linux and Mac OS X only).

Control-F turns off character echoing (Linux and Mac OS X only).

Control-T evaluates the INFO function.
@end(itemize)

        @section(Break Command Loop)@index(break)

        When XLISP encounters an error while evaluating an expression,
        it attempts to handle the error in the following way:

        If the symbol @xlcode(*breakenable*@index(*breakenable*)) is
        true, the message corresponding to the error is printed.  If
        the error is correctable, the correction message is printed.

        If the symbol @xlcode(*tracenable*@index(*tracenable*)) is true, a trace back is printed.
        The number of entries printed depends on the value of the symbol
        @xlcode(*tracelimit*@index(*tracelimit*)).  If this symbol is set to something other than a
        number, the entire trace back stack is printed.

        XLISP then enters a read/eval/print loop to allow the user to
        examine the state of the interpreter in the context of the
        error.  This loop differs from the normal top-level
        read/eval/print loop in that if the user invokes the function
        @xlcode(continue), XLISP will continue from a correctable error.  If
        the user invokes the function @xlcode(clean-up), XLISP will abort the
        break loop and return to the top level or the next lower
        numbered break loop.  When in a break loop, XLISP prefixes the
        break level to the normal prompt.

        If the symbol @xlcode(*breakenable*@index(*breakenable*)) is @xlcode(nil), XLISP looks for a
        surrounding errset function.  If one is found, XLISP examines
        the value of the print flag.  If this flag is true, the error
        message is printed.  In any case, XLISP causes the errset
        function call to return @xlcode(nil).

        If there is no surrounding errset function, XLISP prints the
        error message and returns to the top level.

        @section(Data Types)@index(XLISP Data Types)@index(Data Types)

        There are several different data types available to XLISP
        programmers.

@begin(itemize)
lists

symbols

strings

integers

characters

floats

objects

arrays

streams

subrs (built-in functions)

fsubrs (special forms)

closures (user defined functions)
@end(itemize)




@section(The Evaluator)@index(evaluator)@index(XLISP evaluator)

        The process of evaluation in XLISP:
@begin(itemize)
        Strings, integers, characters, floats, objects, arrays, streams,
        subrs, fsubrs and closures evaluate to themselves.

        Symbols act as variables and are evaluated by retrieving the
        value associated with their current binding.

        Lists are evaluated by examining the first element of the list
        and then taking one of the following actions:
@begin(itemize)
            If it is a symbol, the functional binding of the symbol is
            retrieved.

            If it is a lambda expression, a closure is constructed for
            the function described by the lambda expression.

            If it is a subr, fsubr or closure, it stands for itself.

            Any other value is an error.
@end(itemize)
        Then, the value produced by the previous step is examined:
@begin(itemize)
            If it is a subr or closure, the remaining list elements are
            evaluated and the subr or closure is called with these
            evaluated expressions as arguments.

            If it is an fsubr, the fsubr is called using the remaining
            list elements as arguments (unevaluated).

            If it is a macro, the macro is expanded using the remaining
            list elements as arguments (unevaluated).  The macro
            expansion is then evaluated in place of the original macro
            call.
@end(itemize)
@end(itemize)

@section(Lexical Conventions)@index(Lexical conventions)@index(XLISP Lexical Conventions)

        The following conventions must be followed when entering XLISP
        programs:

        Comments in XLISP code begin with a semi-colon character and
        continue to the end of the line.

        Symbol names in XLISP can consist of any sequence of non-blank
        printable characters except the following:
@begin(example)
                ( ) ' ` , " ;
@end(example)
        Uppercase and lowercase characters are not distinguished within
        symbol names.  All lowercase characters are mapped to uppercase
        on input.

        Integer literals consist of a sequence of digits optionally
        beginning with a @code(+) or @code(-).  The range of values an integer can
        represent is limited by the size of a C @code(long) on the machine on
        which XLISP is running.

        Floating point literals consist of a sequence of digits
        optionally beginning with a @code(+) or @code(-) and including an embedded
        decimal point.  The range of values a floating point number can
        represent is limited by the size of a C @code(float) (@code(double) on
        machines with 32 bit addresses) on the machine on which XLISP is
        running.

        Literal strings are sequences of characters surrounded by double
        quotes.  Within quoted strings the ``@code(\)'' character is used to
        allow non-printable characters to be included.  The codes
        recognized are:
@begin(itemize)
@code(\\)        means the character ``@code(\)''

@code(\n)      means newline

@code(\t)       means tab

@code(\r)       means return

@code(\f)       means form feed

@code(\nnn)    means the character whose octal code is nnn
@end(itemize)

@section(Readtables)@index(Readtables)

        The behavior of the reader is controlled by a data structure
        called a @i(readtable).  The reader uses the symbol @xlcode(*readtable*@index(*readtable*)) to
        locate the current readtable.  This table controls the
        interpretation of input characters.  It is an array with 128
        entries, one for each of the ASCII character codes.  Each entry
        contains one of the following things:
@begin(itemize)
                @xlcode(NIL) @itemsep          Indicating an invalid character

                @xlcode(:CONSTITUENT) @itemsep   Indicating a symbol constituent

                @xlcode(:WHITE-SPACE)  @itemsep  Indicating a whitespace character

                @xlcode[(:TMACRO . @i(fun))] @itemsep Terminating readmacro

                @xlcode[(:NMACRO . @i(fun))] @itemsep Non-terminating readmacro

                @xlcode(:SESCAPE) @itemsep       Single escape character ('\')

                @xlcode(:MESCAPE) @itemsep       Multiple escape character ('|')
@end(itemize)

        In the case of @xlcode(:TMACRO) and @xlcode(:NMACRO), the @i(fun) component is a
        function.  This can either be a built-in readmacro function or a
        lambda expression.  The function should take two parameters.
        The first is the input stream and the second is the character
        that caused the invocation of the readmacro.  The readmacro
        function should return @xlcode(NIL) to indicate that the character should
        be treated as white space or a value consed with @xlcode(NIL) to indicate
        that the readmacro should be treated as an occurence of the
        specified value.  Of course, the readmacro code is free to read
        additional characters from the input stream.

        XLISP defines several useful read macros@index(read macros):
@begin(itemize)
                @xlcode(')@i[<expr>]         == @xlcode{(quote} @i[<expr>]@xlcode{)}

                @xlcode(#')@i[<expr>]        == @xlcode{(function} @i[<expr>]@xlcode{)}

                @xlcode{#(}@i[<expr>]...@xlcode{)}    == an array of the specified expressions

                @xlcode(#x)@i[<hdigits>]     == a hexadecimal number (0-9,A-F)

                @xlcode(#o)@i[<odigits>]     == an octal number (0-7)

                @xlcode(#b)@i[<bdigits>]     == a binary number (0-1)

                @xlcode(#\)@i[<char>] == the ASCII code of the character

                @xlcode(#|) ... @xlcode(|#)       == a comment

                @xlcode(#:)@i[<symbol>]      == an uninterned symbol

                @xlcode(`)@i[<expr>]         == @xlcode{(backquote} @i[<expr>]@xlcode{)}

                @xlcode(,)@i[<expr>]         == @xlcode{(comma} @i[<expr>]@xlcode{)}

                @xlcode(,@@)@i[<expr>]        == @xlcode{(comma-at} @i[<expr>]@xlcode{)}

@end(itemize)
@section(Lambda Lists)@index(Lambda Lists)

        There are several forms in XLISP that require that a ``lambda
        list'' be specified.  A lambda list is a definition of the
        arguments accepted by a function.  There are four different
        types of arguments.

        The lambda list starts with required arguments.  Required
        arguments must be specified in every call to the function.

        The required arguments are followed by the @xlcode(&optional) arguments.
        Optional arguments may be provided or omitted in a call.  An
        initialization expression may be specified to provide a default
        value for an @xlcode(&optional) argument if it is omitted from a call.
        If no initialization expression is specified, an omitted
        argument is initialized to @xlcode(NIL).  It is also possible to provide
        the name of a @xlcode(supplied-p) variable that can be used to
        determine if a call provided a value for the argument or if the
        initialization expression was used.  If specified, the supplied-
        p variable will be bound to T if a value was specified in the
        call and @xlcode(NIL) if the default value was used.

        The @xlcode(&optional) arguments are followed by the @xlcode(&rest) argument.  The
        @xlcode(&rest) argument gets bound to the remainder of the argument list
        after the required and @xlcode(&optional) arguments have been removed.

        The @xlcode(&rest) argument is followed by the @xlcode(&key) arguments.  When a
        keyword argument is passed to a function, a pair of values
        appears in the argument list.  The first expression in the pair
        should evaluate to a keyword symbol (a symbol that begins with a
        ``@code(:)'').  The value of the second expression is the value of the
        keyword argument.  Like @xlcode(&optional) arguments, @xlcode(&key) arguments can
        have initialization expressions and supplied-p variables.  In
        addition, it is possible to specify the keyword to be used in a
        function call.  If no keyword is specified, the keyword obtained
        by adding a ``@code(:)'' to the beginning of the keyword argument symbol
        is used.  In other words, if the keyword argument symbol is
        @xlcode(foo), the keyword will be @xlcode(:foo).

        The @xlcode(&key) arguments are followed by the @xlcode(&aux) variables.  These
        are local variables that are bound during the evaluation of the
        function body.  It is possible to have initialization
        expressions for the @xlcode(&aux) variables.

    Here is the complete syntax for lambda lists:
@begin(display)
                (@i<rarg>...
                 [@xlcode(&optional) [@i<oarg> | (@i<oarg> [@i<init> [@i<svar>]])]...]
                 [@xlcode(&rest) @i<rarg>]
                 [@xlcode(&key)
                   [@i<karg> | ([@i<karg> | (@i<key> @i<karg>)] [@i<init> [@i<svar>]])]...
                   @xlcode(&allow)-other-keys]
                 [@xlcode(&aux)
                   [@i<aux> | (@i<aux> [@i<init>])]...])

            where:

                @i<rarg> is a required argument symbol
                @i<oarg> is an @xlcode(&optional) argument symbol
                @i<rarg> is the @xlcode(&rest) argument symbol
                @i<karg> is a @xlcode(&key) argument symbol
                @i<key> is a keyword symbol
                @i<aux> is an auxiliary variable symbol
                @i<init> is an initialization expression
                @i<svar> is a supplied-p variable symbol
@end(display)


@section(Objects)@index(Objects)@label(objects-sec)

        Definitions:
@begin(itemize)
selector @itemsep a symbol used to select an appropriate method

message @itemsep a selector and a list of actual arguments

method @itemsep the code that implements a message
@end(itemize)
        Since XLISP was created to provide a simple basis for
        experimenting with object-oriented programming, one of the
        primitive data types included is @i(object).  In XLISP, an object
        consists of a data structure containing a pointer to the
        object's class as well as an array containing the values of the
        object's instance variables.

        Officially, there is no way to see inside an object (look at the
        values of its instance variables).  The only way to communicate
        with an object is by sending it a message.

        You can send a message to an object using the @xlcode(send) function.
        This function takes the object as its first argument, the
        message selector as its second argument (which must be a symbol)
        and the message arguments as its remaining arguments.

        The @xlcode(send) function determines the class of the receiving object
        and attempts to find a method corresponding to the message
        selector in the set of messages defined for that class.  If the
        message is not found in the object's class and the class has a
        super-class, the search continues by looking at the messages
        defined for the super-class.  This process continues from one
        super-class to the next until a method for the message is found.
        If no method is found, an error occurs.

@begin(comment)
THIS IS WRONG -- I DON'T KNOW IF IT WAS CORRECT IN THE ORIGINAL XLISP. -RBD
        A message can also be sent from the body of a method by using
        the current object, but the method lookup starts with the
        object's superclass rather than its class.  This allows a
        subclass to invoke a standard method in its parent class even
        though it overrides that method with its own specialized
        version.
@end(comment)

        When a method is found, the evaluator binds the receiving object
        to the symbol @xlcode(self) and evaluates the method using the
        remaining elements of the original list as arguments to the
        method.  These arguments are always evaluated prior to being
        bound to their corresponding formal arguments.  The result of
        evaluating the method becomes the result of the expression.

        Within the body of a method, a message can be sent to the current
        object by calling the @xlcode[(send self ...)]. The method lookup
        starts with the object's class regardless of the class containing
        the current method.

        Sometimes it is desirable to invoke a general method in a superclass
        even when it is overridden by a more specific method in a subclass.
        This can be accomplished by calling @xlcode(send-super), which begins
        the method lookup in the superclass of the class defining the current
        method rather than in the class of the current object.

        The @xlcode(send-super) function takes a selector as its first argument
        (which must be a symbol) and the message arguments as its remaining
        arguments. Notice that @xlcode(send-super) can only be sent from within
        a method, and the target of the message is always the current object
        (@xlcode(self)). @xlcode[(send-super ...)] is similar to 
        @xlcode[(send self ...)] except that method lookup begins in the 
        superclass of the class containing the current method
        rather than the class of the current object.

@section(The ``Object'' Class)@index(Object Class)

@xlcode(Object)@index(Object) @itemsep the top of the class hierarchy.

Messages:
@begin(fdescription)
@xlcode(:show@index(:show)) @itemsep show an object's instance variables.
@begin(pdescription)
returns @itemsep  the object
@end(pdescription)
@blankspace(1)

@xlcode{:class@index(:class)} @itemsep return the class of an object
@begin(pdescription)
returns @itemsep  the class of the object
@end(pdescription)
@blankspace(1)

@xlcode{:isa@index(:isa)} @i(class) @itemsep test if object inherits from class
@begin(pdescription)
returns @itemsep @xlcode(t) if object is an instance of @i(class) or a subclass of @i(class), otherwise @xlcode(nil)
@end(pdescription)
@blankspace(1)

@xlcode(:isnew@index(:isnew)) @itemsep the default object initialization routine
@begin(pdescription)
returns @itemsep  the object
@end(pdescription)
@end(fdescription)

@section(The ``Class'' Class)@index(Class class)

@xlcode(Class@index(Class)) @itemsep class of all object classes (including itself)

            Messages:

@begin(fdescription)
                @xlcode(:new@index(:new)) @itemsep create a new instance of a class
@begin(pdescription)
                    returns @itemsep    the new class object
@end(pdescription)
@blankspace(1)

                @xlcode(:isnew@index(:isnew)) @i<ivars> [@i<cvars> [@i<super>]] @itemsep initialize a new class
@begin(pdescription)
                    @i<ivars> @itemsep    the list of instance variable symbols

                    @i<cvars> @itemsep    the list of class variable symbols

                    @i<super> @itemsep    the superclass (default is object)

                    returns @itemsep    the new class object
@end(pdescription)
@blankspace(1)

                @xlcode(:answer@index(:answer)) @i<msg> @i<fargs> @i<code> @itemsep add a message to a class
@begin(pdescription)
                    @i<msg> @itemsep      the message symbol

                @i<fargs> @itemsep    the formal argument list (lambda list)

                    @i<code> @itemsep     a list of executable expressions

                    returns @itemsep    the object
@end(pdescription)
@blankspace(1)
@end(fdescription)

        When a new instance of a class is created by sending the message
        @xlcode(:new) to an existing class, the message @xlcode(:isnew) followed by
        whatever parameters were passed to the @xlcode(:new) message is sent to
        the newly created object.

        When a new class is created by sending the @xlcode(:new) message to the
        object @xlcode(Class), an optional parameter may be specified
        indicating the superclass of the new class.  If this parameter
        is omitted, the new class will be a subclass of @xlcode(Object).  A
        class inherits all instance variables, class variables, and
        methods from its super-class.

@section(Profiling)@index(profiling)
The Xlisp 2.0 release has been extended with a profiling facility, which counts how many times and where @xlcode(eval) is executed.  A separate count is maintained for each named function, closure, or macro, and a count indicates an @xlcode(eval) in the immediately (lexically) enclosing named function, closure, or macro.  Thus, the count gives an indication of the amount of time spent in a function, not counting nested function calls.  The list of all functions executed is maintained on the global @xlcode(*profile*) variable.  These functions in turn have @xlcode(*profile*) properties, which maintain the counts.  The profile system merely increments counters and puts symbols on the @xlcode(*profile*) list.  It is up to the user to initialize data and gather results.  Profiling is turned on or off with the @xlcode(profile) function.  Unfortunately, methods cannot be profiled with this facility.

@label(symbols-sec)
@section(Symbols)@index(symbols)
@begin(itemize)
@codef(self)@pragma(defn)@index(self) @dash the current object (within a method context)

@codef(*obarray*@pragma(defn)@index(*obarray*)) @dash the object hash table

@codef(*standard-input*@pragma(defn)@index(*standard-input*)) @dash the standard input stream

@codef(*standard-output*@pragma(defn)@index(*standard-output*)) @dash the standard output stream

@codef(*error-output*@pragma(defn)@index(*error-output*)) @dash the error output stream

@codef(*trace-output*@pragma(defn)@index(*trace-output*)) @dash the trace output stream

@codef(*debug-io*@pragma(defn)@index(*debug-io*)) @dash the debug i/o stream

@codef(*breakenable*@pragma(defn)@index(*breakenable*)) @dash flag controlling entering break loop on errors

@codef(*tracelist*@pragma(defn)@index(*tracelist*)) @dash list of names of functions to trace

@codef(*tracenable*@pragma(defn)@index(*tracenable*)) @dash enable trace back printout on errors

@codef(*tracelimit*@pragma(defn)@index(*tracelimit*)) @dash number of levels of trace back information

@codef(*evalhook*@pragma(defn)@index(*evalhook*)) @dash user substitute for the evaluator function

@codef(*applyhook*@pragma(defn)@index(*applyhook*)) @dash (not yet implemented)

@codef(*readtable*@pragma(defn)@index(*readtable*)) @dash the current readtable

@codef(*unbound*@pragma(defn)@index(*unbound*)) @dash indicator for unbound symbols

@codef(*gc-flag*@pragma(defn)@index(*gc-flag*)) @dash controls the printing of gc messages

@codef(*gc-hook*@pragma(defn)@index(*gc-hook*)) @dash function to call after garbage collection

@codef(*integer-format*@pragma(defn)@index(*integer-format*)) @dash format for printing integers (``%d'' or ``%ld'')

@codef(*float-format*@pragma(defn)@index(*float-format*)) @dash format for printing floats (``%g'')

@codef(*print-case*@pragma(defn)@index(*print-case*)) @dash symbol output case (:upcase or :downcase)
@end(itemize)

        There are several symbols maintained by the read/eval/print
        loop.  The symbols @code(+), @code(++), and @code(+++) are bound to the most
        recent three input expressions.  The symbols @code(*), @code(**) and @code(***)
        are bound to the most recent three results.  The symbol @code(-) is
        bound to the expression currently being evaluated.  It becomes
        the value of @code(+) at the end of the evaluation.
@section(Evaluation Functions)@index(evaluation functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{eval(@i(expr))} @c{[sal]}

        @xlcode{(eval@pragma(defn)@index(eval) @t(@i(expr)))} @c{[lisp]} @itemsep evaluate an xlisp expression
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expression to be evaluated

            returns @itemsep     the result of evaluating the expression
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{apply(@i(fun), @i(args))} @c{[sal]}

        @xlcode{(apply@pragma(defn)@index(apply) @t(@i(fun)) @t(@i(args)))} @c{[lisp]} @itemsep apply a function to a list of arguments
@end(fgroup)
@begin(pdescription)
            @i<fun> @itemsep      the function to apply (or function symbol)

            @i<args> @itemsep     the argument list

            returns @itemsep    the result of applying the function to the arguments
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{funcall(@i(fun), @i(arg)@r(...))} @c{[sal]}

        @xlcode{(funcall@pragma(defn)@index(funcall) @t(@i(fun)) @t(@i(arg))@r(...))} @c{[lisp]} @itemsep call a function with arguments
@end(fgroup)
@begin(pdescription)
            @i<fun> @itemsep      the function to call (or function symbol)

            @i<arg> @itemsep      arguments to pass to the function

            returns @itemsep    the result of calling the function with the arguments
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{quote(@i(expr))} @c{[sal]}

        @xlcode{(quote@pragma(defn)@index(quote) @t(@i(expr)))} @c{[lisp]} @itemsep  return an expression unevaluated
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to be quoted (quoted)

            returns   @itemsep  @i<expr> unevaluated
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{function(@i(expr))} @c{[sal]}

        @xlcode{(function@pragma(defn)@index(function) @t(@i(expr)))} @c{[lisp]} @itemsep  get the functional interpretation
@end(fgroup)

@begin(pdescription)
            @i<expr> @itemsep     the symbol or lambda expression (quoted)

            returns  @itemsep   the functional interpretation

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{backquote(@i(expr))} @c{[sal]}

        @xlcode{(backquote@pragma(defn)@index(backquote) @t(@i(expr)))} @c{[lisp]} @itemsep fill in a template
@end(fgroup)

@begin(pdescription)
            @i<expr> @itemsep     the template

            returns  @itemsep   a copy of the template with comma and comma-at

             expressions expanded
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{lambda(@i(args), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(lambda@pragma(defn)@index(lambda) @t(@i(args)) @t(@i(expr))@r(...))} @c{[lisp]} @itemsep make a function closure
@end(fgroup)

@begin(pdescription)
            @i<args> @itemsep     formal argument list (lambda list) (quoted)

            @i<expr> @itemsep     expressions of the function body

            returns  @itemsep   the function closure

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{get-lambda-expression(@i(closure))} @c{[sal]}

        @xlcode{(get-lambda-expression@pragma(defn)@index(get-lambda-expression) @t(@i(closure)))} @c{[lisp]} @itemsep get the lambda expression
@end(fgroup)

@begin(pdescription)
            @i<closure> @itemsep  the closure

            returns  @itemsep   the original lambda expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{macroexpand(@i(form))} @c{[sal]}

        @xlcode{(macroexpand@pragma(defn)@index(macroexpand) @t(@i(form)))} @c{[lisp]} @itemsep recursively expand macro calls
@end(fgroup)

@begin(pdescription)
            @i<form> @itemsep     the form to expand

            returns  @itemsep   the macro expansion

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{macroexpand-1(@i(form))} @c{[sal]}

        @xlcode{(macroexpand-1@pragma(defn)@index(macroexpand-1) @t(@i(form)))} @c{[lisp]} @itemsep expand a macro call
@end(fgroup)

@begin(pdescription)
            @i<form> @itemsep     the macro call form

            returns  @itemsep   the macro expansion

@end(pdescription)
@blankspace(1)
@end(fdescription)


@section(Symbol Functions)@index(Symbol Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{set(@i(sym), @i(expr))} @c{[sal]}

        @xlcode{(set@pragma(defn)@index(set) @t(@i(sym)) @t(@i(expr)))} @c{[lisp]} @itemsep  set the value of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>  @itemsep     the symbol being set

            @i<expr> @itemsep     the new value

            returns  @itemsep   the new value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{setq([@i(sym), @i(expr)]@r(...))} @c{[sal]}

        @xlcode{(setq@pragma(defn)@index(setq) [@t(@i(sym)) @t(@i(expr))]@r(...))} @c{[lisp]} @itemsep  set the value of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>  @itemsep     the symbol being set (quoted)

            @i<expr> @itemsep     the new value

            returns  @itemsep   the new value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{psetq([@i(sym), @i(expr)]@r(...))} @c{[sal]}

        @xlcode{(psetq@pragma(defn)@index(psetq) [@t(@i(sym)) @t(@i(expr))]@r(...))} @c{[lisp]}  @itemsep parallel version of setq
@end(fgroup)
@begin(pdescription)
            @i<sym>  @itemsep     the symbol being set (quoted)

            @i<expr> @itemsep     the new value

            returns  @itemsep   the new value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{setf([@i(place), @i(expr)]@r(...))} @c{[sal]}

        @xlcode{(setf@pragma(defn)@index(setf) [@t(@i(place)) @t(@i(expr))]@r(...))} @c{[lisp]}  @itemsep set the value of a field
@end(fgroup)
@begin(pdescription)
            @i<place> @itemsep     the field specifier (quoted):

@begin(pdescription)
  @i<sym> @itemsep                  set value of a symbol

  (car @i<expr>)  @itemsep          set car of a cons node

  (cdr @i<expr>)  @itemsep          set cdr of a cons node

  (nth @i<n> @i<expr>) @itemsep       set nth car of a list

  (aref @i<expr> @i<n>) @itemsep       set nth element of an array

  (get @i<sym> @i<prop>) @itemsep      set value of a property

  (symbol-value @i<sym>) @itemsep   set value of a symbol

  (symbol-function @i<sym>) @itemsep set functional value of a symbol

  (symbol-plist @i<sym>) @itemsep    set property list of a symbol

@end(pdescription)@pragma(stopcodef)
        @i<expr> @itemsep     the new value

        returns  @itemsep   the new value

@end(pdescription)
@blankspace(1)
@begin(fgroup)
        @xlcode{(defun@pragma(defn)@index(defun) @t(@i(sym)) @t(@i(fargs)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep define a function

@pragma(startcodef)
        @xlcode{(defmacro@pragma(defn)@index(defmacro) @t(@i(sym)) @t(@i(fargs)) @t(@i(expr))@r(...))} @c{[lisp]} @itemsep  define a macro
@end(fgroup)
@begin(pdescription)
            @i<sym> @itemsep      symbol being defined (quoted)

            @i<fargs> @itemsep     formal argument list (lambda list) (quoted)

            @i<expr>  @itemsep    expressions constituting the body of the

                        function (quoted)
            returns   @itemsep  the function symbol

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{gensym([@i(tag)])} @c{[sal]}

        @xlcode{(gensym@pragma(defn)@index(gensym) [@t(@i(tag))])} @c{[lisp]}  @itemsep generate a symbol
@end(fgroup)
@begin(pdescription)
            @i<tag>   @itemsep    string or number

            returns   @itemsep  the new symbol

@end(pdescription)
@blankspace(1)

@begin(fgroup)@xlcode{intern(@i(pname))} @c{[sal]}

        @xlcode{(intern@pragma(defn)@index(intern) @t(@i(pname)))} @c{[lisp]}  @itemsep make an interned symbol
@end(fgroup)
@begin(pdescription)
            @i<pname> @itemsep    the symbol's print name string

            returns   @itemsep  the new symbol

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{make-symbol(@i(pname))} @c{[sal]}

        @xlcode{(make-symbol@pragma(defn)@index(make-symbol) @t(@i(pname)))} @c{[lisp]}  @itemsep make an uninterned symbol
@end(fgroup)
@begin(pdescription)
            @i<pname> @itemsep    the symbol's print name string

            returns   @itemsep  the new symbol

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{symbol-name(@i(sym))} @c{[sal]}

        @xlcode{(symbol-name@pragma(defn)@index(symbol-name) @t(@i(sym)))} @c{[lisp]}  @itemsep get the print name of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep  the symbol's print name

@end(pdescription)
@blankspace(1)

    @begin(fgroup)@xlcode{symbol-value(@i(sym))} @c{[sal]}

        @xlcode{(symbol-value@pragma(defn)@index(symbol-value) @t(@i(sym)))} @c{[lisp]}  @itemsep get the value of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep  the symbol's value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{symbol-function(@i(sym))} @c{[sal]}

        @xlcode{(symbol-function@pragma(defn)@index(symbol-function) @t(@i(sym)))} @c{[lisp]}  @itemsep get the functional value of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep  the symbol's functional value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{symbol-plist(@i(sym))} @c{[sal]}

        @xlcode{(symbol-plist@pragma(defn)@index(symbol-plist) @t(@i(sym)))} @c{[lisp]}  @itemsep get the property list of a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep  the symbol's property list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{hash(@i(sym), @i(n))} @c{[sal]}

        @xlcode{(hash@pragma(defn)@index(hash) @t(@i(sym)) @t(@i(n)))} @c{[lisp]}  @itemsep compute the hash index for a symbol
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol or string

            @i<n>     @itemsep    the table size (integer)

            returns   @itemsep  the hash index (integer)

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Property List Functions)@index(Property List Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{get(@i(sym), @i(prop))} @c{[sal]}

        @xlcode{(get@pragma(defn)@index(get) @t(@i(sym)) @t(@i(prop)))} @c{[lisp]}  @itemsep get the value of a property
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            @i<prop>  @itemsep    the property symbol

            returns   @itemsep  the property value or @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{putprop(@i(sym), @i(val), @i(prop))} @c{[sal]}

        @xlcode{(putprop@pragma(defn)@index(putprop) @t(@i(sym)) @t(@i(val)) @t(@i(prop)))} @c{[lisp]}  @itemsep put a property onto a property list
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            @i<val>   @itemsep    the property value

            @i<prop>  @itemsep    the property symbol

            returns   @itemsep  the property value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{remprop(@i(sym), @i(prop))} @c{[sal]}

        @xlcode{(remprop@pragma(defn)@index(remprop) @t(@i(sym)) @t(@i(prop)))} @c{[lisp]}  @itemsep remove a property
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            @i<prop>  @itemsep    the property symbol

            returns   @itemsep  @xlcode(nil)

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Array Functions)@index(Array Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{aref(@i(array), @i(n))} @c{[sal]}

        @xlcode{(aref@pragma(defn)@index(aref) @t(@i(array)) @t(@i(n)))} @c{[lisp]}  @itemsep get the nth element of an array
@end(fgroup)
@begin(pdescription)
            @i<array> @itemsep    the array

            @i<n>     @itemsep    the array index (integer)

            returns   @itemsep  the value of the array element

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{make-array(@i(size))} @c{[sal]}

        @xlcode{(make-array@pragma(defn)@index(make-array) @t(@i(size)))} @c{[lisp]}  @itemsep make a new array
@end(fgroup)
@begin(pdescription)
            @i<size>  @itemsep    the size of the new array (integer)

            returns   @itemsep  the new array

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{vector(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(vector@pragma(defn)@index(vector) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep make an initialized vector
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the vector elements

            returns   @itemsep  the new vector

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(List Functions)@index(List Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{car(@i(expr))} @c{[sal]}

        @xlcode{(car@pragma(defn)@index(car) @t(@i(expr)))} @c{[lisp]} @itemsep  return the car of a list node
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the list node

            returns   @itemsep  the car of the list node

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{cdr(@i(expr))} @c{[sal]}

        @xlcode{(cdr@pragma(defn)@index(cdr) @t(@i(expr)))} @c{[lisp]}  @itemsep return the cdr of a list node
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the list node

            returns   @itemsep  the cdr of the list node

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{c@i(xx)r(@i(expr))} @c{[sal]}

        @xlcode{(c@i(xx)r@index(cxxr) @t(@i(expr)))} @c{[lisp]}  @itemsep all c@i(xx)r combinations
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{c@i(xxx)r(@i(expr))} @c{[sal]}

        @xlcode{(c@i(xxx)r@index(cxxxr) @t(@i(expr)))} @c{[lisp]}  @itemsep all c@i(xxx)r combinations
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{c@i(xxxx)r(@i(expr))} @c{[sal]}

        @xlcode{(c@i(xxxx)r@index(cxxxxr) @t(@i(expr)))} @c{[lisp]}  @itemsep all c@i(xxxx)r combinations
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{first(@i(expr))} @c{[sal]}

        @xlcode{(first@pragma(defn)@index(first) @t(@i(expr)))} @c{[lisp]}  @itemsep  a synonym for car
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{second(@i(expr))} @c{[sal]}

        @xlcode{(second@pragma(defn)@index(second) @t(@i(expr)))} @c{[lisp]}  @itemsep a synonym for cadr
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{third(@i(expr))} @c{[sal]}

        @xlcode{(third@pragma(defn)@index(third) @t(@i(expr)))} @c{[lisp]}  @itemsep  a synonym for caddr
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{fourth(@i(expr))} @c{[sal]}

        @xlcode{(fourth@pragma(defn)@index(fourth) @t(@i(expr)))} @c{[lisp]}  @itemsep a synonym for cadddr
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{rest(@i(expr))} @c{[sal]}

        @xlcode{(rest@pragma(defn)@index(rest) @t(@i(expr)))} @c{[lisp]}  @itemsep   a synonym for cdr
@end(fgroup)
@begin(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{cons(@i(expr1), @i(expr2))} @c{[sal]}

        @xlcode{(cons@pragma(defn)@index(cons) @t(@i(expr1)) @t(@i(expr2)))} @c{[lisp]}  @itemsep construct a new list node
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the car of the new list node

            @i<expr2> @itemsep    the cdr of the new list node

            returns   @itemsep  the new list node

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{list(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(list@pragma(defn)@index(list) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep create a list of values
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    expressions to be combined into a list

            returns   @itemsep  the new list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{append(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(append@pragma(defn)@index(append) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep append lists
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    lists whose elements are to be appended

            returns   @itemsep  the new list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{reverse(@i(expr))} @c{[sal]}

        @xlcode{(reverse@pragma(defn)@index(reverse) @t(@i(expr)))} @c{[lisp]}  @itemsep reverse a list
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the list to reverse

            returns   @itemsep  a new list in the reverse order

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{last(@i(list))} @c{[sal]}

        @xlcode{(last@pragma(defn)@index(last) @t(@i(list)))} @c{[lisp]}  @itemsep return the last list node of a list
@end(fgroup)
@begin(pdescription)
            @i<list>  @itemsep    the list

            returns   @itemsep  the last list node in the list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{member(@i(expr), @i(list), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(member@pragma(defn)@index(member) @t(@i(expr)) @t(@i(list)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep find an expression in a list
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to find

            @i<list>  @itemsep    the list to search

            :test     @itemsep  the test function (defaults to eql)

            :test-not @itemsep  the test function (sense inverted)      

            returns   @itemsep  the remainder of the list starting with the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{assoc(@i(expr), @i(alist), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(assoc@pragma(defn)@index(assoc) @t(@i(expr)) @t(@i(alist)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep find an expression in an a-list
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to find

            @i<alist> @itemsep    the association list

            :test     @itemsep  the test function (defaults to eql)

            :test-not @itemsep  the test function (sense inverted)      

            returns   @itemsep  the alist entry or @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{remove(@i(expr), @i(list), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(remove@pragma(defn)@index(remove) @t(@i(expr)) @t(@i(list)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep remove elements from a list
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the element to remove

            @i<list>  @itemsep    the list

            :test     @itemsep  the test function (defaults to eql)

            :test-not @itemsep  the test function (sense inverted)      

            returns   @itemsep  copy of list with matching expressions removed

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{remove-if(@i(test), @i(list))} @c{[sal]}

        @xlcode{(remove-if@pragma(defn)@index(remove-if) @t(@i(test)) @t(@i(list)))} @c{[lisp]}  @itemsep remove elements that pass test
@end(fgroup)
@begin(pdescription)
            @i<test>  @itemsep    the test predicate

            @i<list>  @itemsep    the list

            returns   @itemsep  copy of list with matching elements removed

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{remove-if-not(@i(test), @i(list))} @c{[sal]}

        @xlcode{(remove-if-not@pragma(defn)@index(remove-if-not) @t(@i(test)) @t(@i(list)))} @c{[lisp]}  @itemsep remove elements that fail test
@end(fgroup)
@begin(pdescription)
            @i<test>  @itemsep    the test predicate

            @i<list>  @itemsep    the list

            returns   @itemsep  copy of list with non-matching elements removed

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{length(@i(expr))} @c{[sal]}

        @xlcode{(length@pragma(defn)@index(length) @t(@i(expr)))} @c{[lisp]}  @itemsep find the length of a list, vector or string
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the list, vector or string

            returns   @itemsep  the length of the list, vector or string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{nth(@i(n), @i(list))} @c{[sal]}

        @xlcode{(nth@pragma(defn)@index(nth) @t(@i(n)) @t(@i(list)))} @c{[lisp]}  @itemsep return the nth element of a list
@end(fgroup)
@begin(pdescription)
            @i<n>     @itemsep    the number of the element to return (zero origin)

            @i<list>  @itemsep    the list

            returns   @itemsep  the nth element or @xlcode(nil) if the list isn't that long

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{nthcdr(@i(n), @i(list))} @c{[sal]}

        @xlcode{(nthcdr@pragma(defn)@index(nthcdr) @t(@i(n)) @t(@i(list)))} @c{[lisp]}  @itemsep return the nth cdr of a list
@end(fgroup)
@begin(pdescription)
            @i<n>     @itemsep    the number of the element to return (zero origin)

            @i<list>  @itemsep    the list

            returns   @itemsep  the nth cdr or @xlcode(nil) if the list isn't that long

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{mapc(@i(fcn), @i(list1), @i(list)@r(...))} @c{[sal]}

        @xlcode{(mapc@pragma(defn)@index(mapc) @t(@i(fcn)) @t(@i(list1)) @t(@i(list))@r(...))} @c{[lisp]}  @itemsep apply function to successive cars
@end(fgroup)
@begin(pdescription)
            @i<fcn>   @itemsep    the function or function name

            @i<listn> @itemsep    a list for each argument of the function

            returns   @itemsep  the first list of arguments

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{mapcar(@i(fcn), @i(list1), @i(list)@r(...))} @c{[sal]}

        @xlcode{(mapcar@pragma(defn)@index(mapcar) @t(@i(fcn)) @t(@i(list1)) @t(@i(list))@r(...))} @c{[lisp]}  @itemsep apply function to successive cars
@end(fgroup)
@begin(pdescription)
            @i<fcn>   @itemsep    the function or function name

            @i<listn> @itemsep    a list for each argument of the function

            returns   @itemsep  a list of the values returned

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{mapl(@i(fcn), @i(list1), @i(list)@r(...))} @c{[sal]}

        @xlcode{(mapl@pragma(defn)@index(mapl) @t(@i(fcn)) @t(@i(list1)) @t(@i(list))@r(...))} @c{[lisp]}  @itemsep apply function to successive cdrs
@end(fgroup)
@begin(pdescription)
            @i<fcn>   @itemsep    the function or function name

            @i<listn> @itemsep    a list for each argument of the function

            returns   @itemsep  the first list of arguments

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{maplist(@i(fcn), @i(list1), @i(list)@r(...))} @c{[sal]}

        @xlcode{(maplist@pragma(defn)@index(maplist) @t(@i(fcn)) @t(@i(list1)) @t(@i(list))@r(...))} @c{[lisp]}  @itemsep apply function to successive cdrs
@end(fgroup)
@begin(pdescription)
            @i<fcn>   @itemsep    the function or function name

            @i<listn> @itemsep    a list for each argument of the function

            returns   @itemsep  a list of the values returned

@end(pdescription)
@blankspace(1)

       @begin(fgroup)@xlcode{subst(@i(to), @i(from), @i(expr), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(subst@pragma(defn)@index(subst) @t(@i(to)) @t(@i(from)) @t(@i(expr)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep substitute expressions
@end(fgroup)
@begin(pdescription)
            @i<to>    @itemsep    the new expression

            @i<from>  @itemsep    the old expression

            @i<expr>  @itemsep    the expression in which to do the substitutions

            :test     @itemsep  the test function (defaults to eql)

            :test-not @itemsep  the test function (sense inverted)      

            returns   @itemsep  the expression with substitutions

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{sublis(@i(alist), @i(expr), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(sublis@pragma(defn)@index(sublis) @t(@i(alist)) @t(@i(expr)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep substitute with an a-list
@end(fgroup)
@begin(pdescription)
            @i<alist> @itemsep    the association list

            @i<expr>  @itemsep    the expression in which to do the substitutions

            :test     @itemsep  the test function (defaults to eql)

            :test-not @itemsep  the test function (sense inverted)      

            returns   @itemsep  the expression with substitutions

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Destructive List Functions)@index(Destructive List Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{rplaca(@i(list), @i(expr))} @c{[sal]}

        @xlcode{(rplaca@pragma(defn)@index(rplaca) @t(@i(list)) @t(@i(expr)))} @c{[lisp]}  @itemsep replace the car of a list node
@end(fgroup)
@begin(pdescription)
            @i<list> @itemsep     the list node

            @i<expr> @itemsep     the new value for the car of the list node

            returns  @itemsep   the list node after updating the car

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{rplacd(@i(list), @i(expr))} @c{[sal]}

        @xlcode{(rplacd@pragma(defn)@index(rplacd) @t(@i(list)) @t(@i(expr)))} @c{[lisp]}  @itemsep replace the cdr of a list node
@end(fgroup)
@begin(pdescription)
            @i<list> @itemsep     the list node

            @i<expr> @itemsep     the new value for the cdr of the list node

            returns  @itemsep   the list node after updating the cdr

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{nconc(@i(list)@r(...))} @c{[sal]}

        @xlcode{(nconc@pragma(defn)@index(nconc) @t(@i(list))@r(...))} @c{[lisp]}  @itemsep destructively concatenate lists
@end(fgroup)
@begin(pdescription)
            @i<list> @itemsep     lists to concatenate

            returns  @itemsep   the result of concatenating the lists

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{delete(@i(expr), test: @i(test), test-not: @i(test-not))} @c{[sal]}

        @xlcode{(delete@pragma(defn)@index(delete) @t(@i(expr)) @t(&key )@t(:test) @t(:test-not))} @c{[lisp]}  @itemsep delete elements from a list
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the element to delete

            @i<list> @itemsep     the list

            :test    @itemsep   the test function (defaults to eql)

            :test-not @itemsep   the test function (sense inverted)      

            returns   @itemsep  the list with the matching expressions deleted

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{delete-if(@i(test), @i(list))} @c{[sal]}

        @xlcode{(delete-if@pragma(defn)@index(delete-if) @t(@i(test)) @t(@i(list)))} @c{[lisp]}  @itemsep delete elements that pass test
@end(fgroup)
@begin(pdescription)
            @i<test>  @itemsep    the test predicate

            @i<list>  @itemsep    the list

            returns   @itemsep  the list with matching elements deleted

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{delete-if-not(@i(test), @i(list))} @c{[sal]}

        @xlcode{(delete-if-not@pragma(defn)@index(delete-if-not) @t(@i(test)) @t(@i(list)))} @c{[lisp]}  @itemsep delete elements that fail test
@end(fgroup)
@begin(pdescription)
            @i<test>  @itemsep    the test predicate

            @i<list>  @itemsep    the list

            returns   @itemsep  the list with non-matching elements deleted

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{sort(@i(list), @i(test))} @c{[sal]}

        @xlcode{(sort@pragma(defn)@index(sort) @t(@i(list)) @t(@i(test)))} @c{[lisp]}  @itemsep sort a list
@end(fgroup)
@begin(pdescription)
            @i<list>  @itemsep    the list to sort

            @i<test>  @itemsep    the comparison function

            returns   @itemsep  the sorted list

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Predicate Functions)@index(Predicate Functions)
@begin(fdescription)
	@begin(fgroup)@xlcode{atom(@i(expr))} @c{[sal]}

        @xlcode{(atom@pragma(defn)@index(atom) @t(@i(expr)))} @c{[lisp]}  @itemsep is this an atom?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is an atom, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{symbolp(@i(expr))} @c{[sal]}

        @xlcode{(symbolp@pragma(defn)@index(symbolp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a symbol?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the expression is a symbol, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{numberp(@i(expr))} @c{[sal]}

        @xlcode{(numberp@pragma(defn)@index(numberp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a number?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the expression is a number, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{null(@i(expr))} @c{[sal]}

        @xlcode{(null@pragma(defn)@index(null) @t(@i(expr)))} @c{[lisp]}  @itemsep is this an empty list?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the list to check

            returns   @itemsep @xlcode(t) if the list is empty, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{not(@i(expr))} @c{[sal]}

        @xlcode{(not@pragma(defn)@index(not) @t(@i(expr)))} @c{[lisp]}  @itemsep is this false?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            return    @itemsep @xlcode(t) if the value is @xlcode(nil), @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{listp(@i(expr))} @c{[sal]}

        @xlcode{(listp@pragma(defn)@index(listp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a list?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a cons or @xlcode(nil), @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{endp(@i(list))} @c{[sal]}

        @xlcode{(endp@pragma(defn)@index(endp) @t(@i(list)))} @c{[lisp]}  @itemsep is this the end of a list
@end(fgroup)
@begin(pdescription)
            @i<list>  @itemsep    the list

            returns   @itemsep @xlcode(t) if the value is @xlcode(nil), @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{consp(@i(expr))} @c{[sal]}

        @xlcode{(consp@pragma(defn)@index(consp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a non-empty list?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a cons, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{integerp(@i(expr))} @c{[sal]}

        @xlcode{(integerp@pragma(defn)@index(integerp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this an integer?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is an integer, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{floatp(@i(expr))} @c{[sal]}

        @xlcode{(floatp@pragma(defn)@index(floatp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a float?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a float, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{stringp(@i(expr))} @c{[sal]}

        @xlcode{(stringp@pragma(defn)@index(stringp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a string?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a string, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{characterp(@i(expr))} @c{[sal]}

        @xlcode{(characterp@pragma(defn)@index(characterp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a character?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a character, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{arrayp(@i(expr))} @c{[sal]}

        @xlcode{(arrayp@pragma(defn)@index(arrayp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this an array?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is an array, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{streamp(@i(expr))} @c{[sal]}

        @xlcode{(streamp@pragma(defn)@index(streamp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this a stream?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is a stream, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{objectp(@i(expr))} @c{[sal]}

        @xlcode{(objectp@pragma(defn)@index(objectp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this an object?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is an object, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{filep(@i(expr))} @c{[sal]}

        @xlcode{(filep@pragma(defn)@index(filep) @t(@i(expr)))} @c{[lisp]}@foot(This is not part of standard XLISP nor is it built-in. Nyquist defines it though.)  @itemsep is this a file? 
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression to check

            returns   @itemsep @xlcode(t) if the value is an object, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{boundp(@i(sym))} @c{[sal]}

        @xlcode{(boundp@pragma(defn)@index(boundp) @t(@i(sym)))} @c{[lisp]}  @itemsep is a value bound to this symbol?
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep @xlcode(t) if a value is bound to the symbol, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{fboundp(@i(sym))} @c{[sal]}

        @xlcode{(fboundp@pragma(defn)@index(fboundp) @t(@i(sym)))} @c{[lisp]}  @itemsep is a functional value bound to this symbol?
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the symbol

            returns   @itemsep @xlcode(t) if a functional value is bound to the symbol,

                        @xlcode(nil) otherwise
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{minusp(@i(expr))} @c{[sal]}

        @xlcode{(minusp@pragma(defn)@index(minusp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this number negative?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number to test

            returns   @itemsep @xlcode(t) if the number is negative, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{zerop(@i(expr))} @c{[sal]}

        @xlcode{(zerop@pragma(defn)@index(zerop) @t(@i(expr)))} @c{[lisp]}  @itemsep is this number zero?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number to test

            returns   @itemsep @xlcode(t) if the number is zero, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{plusp(@i(expr))} @c{[sal]}

        @xlcode{(plusp@pragma(defn)@index(plusp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this number positive?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number to test

            returns   @itemsep @xlcode(t) if the number is positive, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{evenp(@i(expr))} @c{[sal]}

        @xlcode{(evenp@pragma(defn)@index(evenp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this integer even?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the integer to test

            returns   @itemsep @xlcode(t) if the integer is even, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{oddp(@i(expr))} @c{[sal]}

        @xlcode{(oddp@pragma(defn)@index(oddp) @t(@i(expr)))} @c{[lisp]}  @itemsep is this integer odd?
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the integer to test

            returns   @itemsep @xlcode(t) if the integer is odd, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{eq(@i(expr1), @i(expr2))} @c{[sal]}

        @xlcode{(eq@pragma(defn)@index(eq) @t(@i(expr1)) @t(@i(expr2)))} @c{[lisp]}  @itemsep are the expressions identical?
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the first expression

            @i<expr2> @itemsep    the second expression

            returns   @itemsep @xlcode(t) if they are equal, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

@begin(fgroup)@xlcode{eql(@i(expr1), @i(expr2))} @c{[sal]}

        @xlcode{(eql@pragma(defn)@index(eql) @t(@i(expr1)) @t(@i(expr2)))} @c{[lisp]}  @itemsep are the expressions identical? (works with all numbers)
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the first expression

            @i<expr2> @itemsep    the second expression

            returns   @itemsep @xlcode(t) if they are equal, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{equal(@i(expr1), @i(expr2))} @c{[sal]}

        @xlcode{(equal@pragma(defn)@index(equal) @t(@i(expr1)) @t(@i(expr2)))} @c{[lisp]}  @itemsep are the expressions equal?
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the first expression

            @i<expr2> @itemsep    the second expression

            returns   @itemsep @xlcode(t) if they are equal, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Control Constructs)@index(Control Constructs)
@begin(fdescription)
        @xlcode{(cond@pragma(defn)@index(cond) @t(@i(pair))@r(...))} @c{[lisp]}  @itemsep evaluate conditionally
@begin(pdescription)
            @i<pair>  @itemsep    pair consisting of:

@begin(pdescription)
                            (@i<pred> @i<expr>...)
@end(pdescription)@pragma(stopcodef)
                          where:
@begin(pdescription)
                            @i<pred> @itemsep     is a predicate expression

                            @i<expr> @itemsep     evaluated if the predicate
 is not @xlcode(nil)
@end(pdescription)@pragma(stopcodef)
returns  @itemsep   the value of the first expression whose predicate is not
@xlcode(nil)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{and(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(and@pragma(defn)@index(and) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the logical and of a list of expressions
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expressions to be anded

            returns  @itemsep   @xlcode(nil) if any expression evaluates to @xlcode(nil),
                        otherwise the value of the last expression
                        (evaluation of expressions stops after the first
                         expression that evaluates to @xlcode(nil))
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{or(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(or@pragma(defn)@index(or) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the logical or of a list of expressions
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expressions to be ored

            returns  @itemsep   @xlcode(nil) if all expressions evaluate to @xlcode(nil),
                  otherwise the value of the first non-@xlcode(nil) expression
                        (evaluation of expressions stops after the first
                         expression that does not evaluate to @xlcode(nil))
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{if(@i(texpr), @i(expr1)[, @i(expr2)])} @c{[sal]}

        @xlcode{(if@pragma(defn)@index(if) @t(@i(texpr)) @t(@i(expr1)) [@t(@i(expr2))])} @c{[lisp]}  @itemsep evaluate expressions conditionally
@end(fgroup)
@begin(pdescription)
            @i<texpr> @itemsep    the test expression

            @i<expr1> @itemsep    the expression to be evaluated if texpr is non-@xlcode(nil)

            @i<expr2> @itemsep    the expression to be evaluated if texpr is @xlcode(nil)

            returns   @itemsep  the value of the selected expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{when(@i(texpr), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(when@pragma(defn)@index(when) @t(@i(texpr)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep evaluate only when a condition is true
@end(fgroup)
@begin(pdescription)
            @i<texpr> @itemsep    the test expression

            @i<expr>  @itemsep    the expression(s) to be evaluated if texpr is non-@xlcode(nil)

            returns @itemsep the value of the last expression or @xlcode(nil)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{unless(@i(texpr), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(unless@pragma(defn)@index(unless) @t(@i(texpr)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep evaluate only when a condition is false
@end(fgroup)
@begin(pdescription)
            @i<texpr> @itemsep    the test expression

            @i<expr>  @itemsep    the expression(s) to be evaluated if texpr is @xlcode(nil)

            returns   @itemsep  the value of the last expression or @xlcode(nil)

@end(pdescription)
@blankspace(1)

          @xlcode{(case@pragma(defn)@index(case) @t(@i(expr)) @t(@i(case))@r(...))} @c{[lisp]}  @itemsep select by case
@begin(pdescription)
            @i<expr>  @itemsep    the selection expression

            @i<case>  @itemsep    pair consisting of:

@begin(pdescription)
                            (@i<value> @i<expr>...)
@end(pdescription)@pragma(stopcodef)
                          where:
@begin(pdescription)
                            @i<value> @itemsep     is a single expression or a list of
                                        expressions (unevaluated)

                            @i<expr>  @itemsep    are expressions to execute if the
                                        case matches
@end(pdescription)@pragma(stopcodef)
            returns @itemsep     the value of the last expression of the matching case

@end(pdescription)
@blankspace(1)
@begin(fgroup)
       @xlcode{(let@pragma(defn)@index(let) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep create local bindings

@pragma(startcodef)
        @xlcode{(let*@pragma(defn)@index(let*) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep let with sequential binding
@end(fgroup)
@begin(pdescription)
            @i<binding> @itemsep   the variable bindings each of which is either:

@begin(pdescription)
                        1)  a symbol (which is initialized to @xlcode(nil))

                        2)  a list whose car is a symbol and whose cadr
                                is an initialization expression
@end(pdescription)@pragma(stopcodef)
            @i<expr> @itemsep     the expressions to be evaluated

            returns  @itemsep   the value of the last expression

@end(pdescription)
@blankspace(1)
@begin(fgroup)
        @xlcode{(flet@pragma(defn)@index(flet) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep create local functions

@pragma(startcodef)
        @xlcode{(labels@pragma(defn)@index(labels) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]} @itemsep  flet with recursive functions

@pragma(startcodef)
        @xlcode{(macrolet@pragma(defn)@index(macrolet) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]} @itemsep  create local macros
@end(fgroup)
@begin(pdescription)
            @i<binding> @itemsep  the function bindings each of which is:

@begin(pdescription)
                          (@i<sym> @i<fargs> @i<expr>...)
@end(pdescription)@pragma(stopcodef)
                        where:
@begin(pdescription)
                            @i<sym> @itemsep      the function/macro name

                            @i<fargs> @itemsep     formal argument list (lambda list)

                            @i<expr>  @itemsep    expressions constituting the body of
                                        the function/macro
@end(pdescription)@pragma(stopcodef)
            @i<expr> @itemsep     the expressions to be evaluated

            returns  @itemsep   the value of the last expression
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{catch(@i(sym), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(catch@pragma(defn)@index(catch) @t(@i(sym)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep evaluate expressions and catch throws
@end(fgroup)
@begin(pdescription)
            @i<sym>  @itemsep     the catch tag

            @i<expr> @itemsep     expressions to evaluate

            returns  @itemsep   the value of the last expression the throw expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{throw(@i(sym)[, @i(expr)])} @c{[sal]}

        @xlcode{(throw@pragma(defn)@index(throw) @t(@i(sym)) [@t(@i(expr))])} @c{[lisp]}  @itemsep throw to a catch
@end(fgroup)
@begin(pdescription)
            @i<sym>  @itemsep     the catch tag

            @i<expr> @itemsep     the value for the catch to return (defaults to @xlcode(nil))

            returns  @itemsep   never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{unwind-protect(@i(expr), @i(cexpr)@r(...))} @c{[sal]}

        @xlcode{(unwind-protect@pragma(defn)@index(unwind-protect) @t(@i(expr)) @t(@i(cexpr))@r(...))} @c{[lisp]}  @itemsep protect evaluation of an expression
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expression to protect

            @i<cexpr> @itemsep     the cleanup expressions

            returns   @itemsep  the value of the expression@*

          Note:  unwind-protect guarantees to execute the cleanup expressions
                 even if a non-local exit terminates the evaluation of the
                 protected expression
@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Looping Constructs)@index(Looping Constructs)
@begin(fdescription)
        @xlcode{(loop@pragma(defn)@index(loop) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep basic looping form
@begin(pdescription)
            @i<expr> @itemsep     the body of the loop

            returns  @itemsep   never returns (must use non-local exit)

@end(pdescription)
@blankspace(1)
@begin(fgroup)
        @xlcode{(do@pragma(defn)@index(do) (@t(@i(binding))@r(...)) (@t(@i(texpr)) @t(@i(rexpr))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}
@pragma(endcodef)
        @xlcode{(do*@pragma(defn)@index(do*) (@t(@i(binding))@r(...)) (@t(@i(texpr)) @t(@i(rexpr))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}
@end(fgroup)
@begin(pdescription)
            @i<binding> @itemsep  the variable bindings each of which is either:

@begin(pdescription)
                        1)  a symbol (which is initialized to @xlcode(nil))

                        2)  a list of the form: (@i<sym> @i<init> [@i<step>])
                            where:
@begin(pdescription)
                                @i<sym> @itemsep is the symbol to bind

                                @i<init> @itemsep is the initial value of the symbol

                                @i<step> @itemsep is a step expression

@end(pdescription)
@end(pdescription)@pragma(stopcodef)
            @i<texpr> @itemsep    the termination test expression

            @i<rexpr> @itemsep    result expressions (the default is @xlcode(nil))

            @i<expr>  @itemsep    the body of the loop (treated like an implicit prog)

            returns   @itemsep  the value of the last result expression

@end(pdescription)
@blankspace(1)

    @xlcode{(dolist@pragma(defn)@index(dolist) (@t(@i(sym)) @t(@i(expr)) [@t(@i(rexpr))]) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep loop through a list
@begin(pdescription)
            @i<sym>   @itemsep    the symbol to bind to each list element

            @i<expr>  @itemsep    the list expression

            @i<rexpr> @itemsep    the result expression (the default is @xlcode(nil))

            @i<expr>  @itemsep    the body of the loop (treated like an implicit prog)

@end(pdescription)
@blankspace(1)

        @xlcode{(dotimes@pragma(defn)@index(dotimes) (@t(@i(sym)) @t(@i(expr)) [@t(@i(rexpr))]) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep loop from zero to n-1
@begin(pdescription)
            @i<sym>   @itemsep    the symbol to bind to each value from 0 to n-1

            @i<expr>  @itemsep    the number of times to loop

            @i<rexpr> @itemsep    the result expression (the default is @xlcode(nil))

            @i<expr>  @itemsep    the body of the loop (treated like an implicit prog)

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(The Program Feature)@index(The Program Feature)
@begin(fdescription)
@begin(fgroup)
@xlcode{(prog@pragma(defn)@index(prog) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the program feature

@pragma(startcodef)
@xlcode{(prog*@pragma(defn)@index(prog*) (@t(@i(binding))@r(...)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep prog with sequential binding
@end(fgroup)
@begin(pdescription)
            @i<binding> @itemsep  the variable bindings each of which is either:

@begin(pdescription)
                        1)  a symbol (which is initialized to @xlcode(nil))

                        2)  a list whose car is a symbol and whose cadr
                                is an initialization expression
@end(pdescription)@pragma(stopcodef)
            @i<expr>  @itemsep    expressions to evaluate or tags (symbols)

            returns   @itemsep  @xlcode(nil) or the argument passed to the return function

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{block(@i(name), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(block@pragma(defn)@index(block) @t(@i(name)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep named block
@end(fgroup)
@begin(pdescription)
            @i<name>  @itemsep    the block name (symbol)

            @i<expr>  @itemsep    the block body

            returns   @itemsep  the value of the last expression

@end(pdescription)
@blankspace(1)

        @xlcode{(return@pragma(defn)@index(return) [@t(@i(expr))])} @c{[lisp]}  @itemsep cause a prog construct to return a value
@begin(pdescription)
            @i<expr>  @itemsep    the value (defaults to @xlcode(nil))

            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{return-from(@i(name)[, @i(value)])} @c{[sal]}

        @xlcode{(return-from@pragma(defn)@index(return-from) @t(@i(name)) [@t(@i(value))])} @c{[lisp]}  @itemsep return from a named block
@end(fgroup)
@begin(pdescription)
            @i<name>  @itemsep    the block name (symbol)

            @i<value> @itemsep    the value to return (defaults to @xlcode(nil))

            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{tagbody(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(tagbody@pragma(defn)@index(tagbody) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep block with labels
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    expression(s) to evaluate or tags (symbols)

            returns   @itemsep  @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{go(@i(sym))} @c{[sal]}

        @xlcode{(go@pragma(defn)@index(go) @t(@i(sym)))} @c{[lisp]}  @itemsep go to a tag within a tagbody or prog
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the tag (quoted)

            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @xlcode{(progv@pragma(defn)@index(progv) @t(@i(slist)) @t(@i(vlist)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep dynamically bind symbols
@begin(pdescription)
            @i<slist> @itemsep    list of symbols

            @i<vlist> @itemsep    list of values to bind to the symbols

            @i<expr>  @itemsep    expression(s) to evaluate

            returns   @itemsep  the value of the last expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{prog1(@i(expr1), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(prog1@pragma(defn)@index(prog1) @t(@i(expr1)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep execute expressions sequentially
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the first expression to evaluate

            @i<expr>  @itemsep    the remaining expressions to evaluate

            returns   @itemsep  the value of the first expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{prog2(@i(expr1), @i(expr2), @i(expr)@r(...))} @c{[sal]}

        @xlcode{(prog2@pragma(defn)@index(prog2) @t(@i(expr1)) @t(@i(expr2)) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep execute expressions sequentially
@end(fgroup)
@begin(pdescription)
            @i<expr1> @itemsep    the first expression to evaluate

            @i<expr2> @itemsep    the second expression to evaluate

            @i<expr>  @itemsep    the remaining expressions to evaluate

            returns   @itemsep  the value of the second expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{progn(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(progn@pragma(defn)@index(progn) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep execute expressions sequentially
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expressions to evaluate

            returns   @itemsep  the value of the last expression (or @xlcode(nil))

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Debugging and Error Handling)@index(Debugging)@index(Error Handling)
@begin(fdescription)
        @begin(fgroup)@xlcode{trace(@i(sym))} @c{[sal]}

        @xlcode{(trace@pragma(defn)@index(trace) @t(@i(sym)))} @c{[lisp]}  @itemsep add a function to the trace list
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the function to add (quoted)

            returns   @itemsep  the trace list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{untrace(@i(sym))} @c{[sal]}

        @xlcode{(untrace@pragma(defn)@index(untrace) @t(@i(sym)))} @c{[lisp]}  @itemsep remove a function from the trace list
@end(fgroup)
@begin(pdescription)
            @i<sym>   @itemsep    the function to remove (quoted)

            returns   @itemsep  the trace list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{error(@i(emsg)[, @i(arg)])} @c{[sal]}

        @xlcode{(error@pragma(defn)@index(error) @t(@i(emsg)) [@t(@i(arg))])} @c{[lisp]}  @itemsep signal a non-correctable error
@end(fgroup)
@begin(pdescription)
            @i<emsg>  @itemsep    the error message string

            @i<arg>   @itemsep    the argument expression (printed after the message)

            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{cerror(@i(cmsg), @i(emsg)[, @i(arg)])} @c{[sal]}

        @xlcode{(cerror@pragma(defn)@index(cerror) @t(@i(cmsg)) @t(@i(emsg)) [@t(@i(arg))])} @c{[lisp]}  @itemsep signal a correctable error
@end(fgroup)
@begin(pdescription)
            @i<cmsg>  @itemsep    the continue message string

            @i<emsg>  @itemsep    the error message string

            @i<arg>   @itemsep    the argument expression (printed after the message)

            returns   @itemsep  @xlcode(nil) when continued from the break loop

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{break([@i(bmsg)[, @i(arg)]])} @c{[sal]}

        @xlcode{(break@pragma(defn)@index(break) [@t(@i(bmsg)) [@t(@i(arg))]])} @c{[lisp]}  @itemsep enter a break loop
@end(fgroup)
@begin(pdescription)
            @i<bmsg>  @itemsep    the break message string (defaults to @xlcode(**break**))

            @i<arg>   @itemsep    the argument expression (printed after the message)

            returns   @itemsep  @xlcode(nil) when continued from the break loop

@end(pdescription)
@blankspace(1)

        @xlcode{(clean-up@pragma(defn)@index(clean-up))} @c{[lisp]}  @itemsep clean-up after an error
@begin(pdescription)
            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @xlcode{(top-level@pragma(defn)@index(top-level))} @c{[lisp]}  @itemsep clean-up after an error and return to the top level
@begin(pdescription)
            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @xlcode{(continue@pragma(defn)@index(continue))} @c{[lisp]}  @itemsep continue from a correctable error
@begin(pdescription)
            returns   @itemsep  never returns

@end(pdescription)
@blankspace(1)

        @xlcode{(errset@pragma(defn)@index(errset) @t(@i(expr)) [@t(@i(pflag))])} @c{[lisp]}  @itemsep trap errors
@begin(pdescription)
            @i<expr>  @itemsep    the expression to execute

            @i<pflag> @itemsep    flag to control printing of the error message

            returns   @itemsep  the value of the last expression consed with @xlcode(nil)

                        or @xlcode(nil) on error
@end(pdescription)
@blankspace(1)

        @xlcode{(baktrace@pragma(defn)@index(baktrace)@index(debugging)@index(stack trace) [@t(@i(n))])} @c{[lisp]}  @itemsep print n levels of trace back information
@begin(pdescription)
            @i<n>     @itemsep    the number of levels (defaults to all levels)

            returns   @itemsep  @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @xlcode{(evalhook@pragma(defn)@index(evalhook) @t(@i(expr)) @t(@i(ehook)) @t(@i(ahook)) [@t(@i(env))])} @c{[lisp]}  @itemsep evaluate with hooks
@begin(pdescription)
            @i<expr>  @itemsep    the expression to evaluate

            @i<ehook> @itemsep    the value for @xlcode(*evalhook*)

            @i<ahook> @itemsep    the value for @xlcode(*applyhook*)

            @i<env>   @itemsep    the environment (default is @xlcode(nil))

            returns   @itemsep  the result of evaluating the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{profile(@i(flag))} @c{[sal]}

        @xlcode{(profile@pragma(defn)@index(profile) @t(@i(flag)))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.)  @itemsep turn profiling on or off.
@end(fgroup)
@begin(pdescription)
            @i<flag>   @itemsep    @xlcode(nil) turns profiling off, otherwise on

            returns   @itemsep  the previous state of profiling.

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Arithmetic Functions)@index(Arithmetic Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{truncate(@i(expr))} @c{[sal]}

        @xlcode{(truncate@pragma(defn)@index(truncate) @t(@i(expr)))} @c{[lisp]}  @itemsep truncates a floating point number to an integer
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the result of truncating the number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{float(@i(expr))} @c{[sal]}

        @xlcode{(float@pragma(defn)@index(float) @t(@i(expr)))} @c{[lisp]}  @itemsep converts an integer to a floating point number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the result of floating the integer

@end(pdescription)
@blankspace(1)

        @xlcode{(+@pragma(defn)@index(+) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep add a list of numbers
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the addition

@end(pdescription)
@blankspace(1)

        @xlcode{(-@pragma(defn)@index(-) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep subtract a list of numbers or negate a single number
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the subtraction

@end(pdescription)
@blankspace(1)

        @xlcode{(*@pragma(defn)@index(*) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep multiply a list of numbers
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the multiplication

@end(pdescription)
@blankspace(1)

        @xlcode{(/@pragma(defn)@index(/) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep divide a list of numbers
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the division

@end(pdescription)
@blankspace(1)

        @xlcode{(1+@pragma(defn)@index(1+) @t(@i(expr)))} @c{[lisp]}  @itemsep add one to a number
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the number plus one

@end(pdescription)
@blankspace(1)

        @xlcode{(1-@pragma(defn)@index(1-) @t(@i(expr)))} @c{[lisp]}  @itemsep subtract one from a number
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the number minus one

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{rem(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(rem@pragma(defn)@index(rem)@index(remainder)@index(modulo (rem) function) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep remainder of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the remainder operation

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{min(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(min@pragma(defn)@index(min)@index(minimum) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the smallest of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expressions to be checked

            returns   @itemsep  the smallest number in the list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{max(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(max@pragma(defn)@index(max)@index(maximum) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the largest of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expressions to be checked

            returns   @itemsep  the largest number in the list

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{abs(@i(expr))} @c{[sal]}

        @xlcode{(abs@pragma(defn)@index(abs) @t(@i(expr)))} @c{[lisp]}  @itemsep the absolute value of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the absolute value of the number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{gcd(@i(n1), @i(n2)@r(...))} @c{[sal]}

        @xlcode{(gcd@pragma(defn)@index(gcd) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]}  @itemsep compute the greatest common divisor
@end(fgroup)
@begin(pdescription)
            @i<n1>    @itemsep    the first number (integer)

            @i<n2>    @itemsep    the second number(s) (integer)

            returns   @itemsep  the greatest common divisor

@end(pdescription)
@blankspace(1)

       @begin(fgroup)@xlcode{random(@i(n))} @c{[sal]}

        @xlcode{(random@pragma(defn)@index(random) @t(@i(n)))} @c{[lisp]}  @itemsep compute a random number between 0 and n-1 inclusive
@end(fgroup)
@begin(pdescription)
            @i<n>     @itemsep    the upper bound (integer)

            returns   @itemsep  a random number

@end(pdescription)
@blankspace(1)

       @begin(fgroup)@xlcode{rrandom()} @c{[sal]}

        @xlcode{(rrandom@pragma(defn)@index(rrandom)@index(uniform random))} @c{[lisp]}  @itemsep compute a random real number between 0 and 1 inclusive
@end(fgroup)
@begin(pdescription)
            returns   @itemsep  a random floating point number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{sin(@i(expr))} @c{[sal]}

        @xlcode{(sin@pragma(defn)@index(sin) @t(@i(expr)))} @c{[lisp]}  @itemsep compute the sine of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the floating point number

            returns   @itemsep  the sine of the number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{cos(@i(expr))} @c{[sal]}

        @xlcode{(cos@pragma(defn)@index(cos) @t(@i(expr)))} @c{[lisp]}  @itemsep compute the cosine of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the floating point number

            returns   @itemsep  the cosine of the number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{tan(@i(expr))} @c{[sal]}

        @xlcode{(tan@pragma(defn)@index(tan) @t(@i(expr)))} @c{[lisp]}  @itemsep compute the tangent of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the floating point number

            returns   @itemsep  the tangent of the number

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{atan(@i(expr)[, @i(expr2)])} @c{[sal]}

        @xlcode{(atan@pragma(defn)@index(atan) @t(@i(expr)) [@t(@i(expr2))])} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.)  @itemsep compute the arctangent
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the value of @i(x)

            @i<expr2> @itemsep    the value of @i(y) (default value is 1.0)

            returns   @itemsep  the arctangent of @i(x)/@i(y)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{expt(@i(x-expr), @i(y-expr))} @c{[sal]}

        @xlcode{(expt@pragma(defn)@index(expt) @t(@i(x-expr)) @t(@i(y-expr)))} @c{[lisp]}  @itemsep compute x to the y power
@end(fgroup)
@begin(pdescription)
            @i<x-expr> @itemsep    the floating point number

            @i<y-expr> @itemsep   the floating point exponent

            returns    @itemsep x to the y power

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{exp(@i(x-expr))} @c{[sal]}

        @xlcode{(exp@pragma(defn)@index(exp) @t(@i(x-expr)))} @c{[lisp]}  @itemsep compute e to the x power
@end(fgroup)
@begin(pdescription)
            @i<x-expr> @itemsep   the floating point number

            returns   @itemsep  e to the x power

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{sqrt(@i(expr))} @c{[sal]}

        @xlcode{(sqrt@pragma(defn)@index(sqrt) @t(@i(expr)))} @c{[lisp]}  @itemsep compute the square root of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the floating point number

            returns   @itemsep  the square root of the number

@end(pdescription)
@blankspace(1)
@begin(fgroup)
@xlcode{(<@pragma(defn)@index(<) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]}  @itemsep test for less than

@xlcode{(<=@pragma(defn)@index(<=) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]} @itemsep  test for less than or equal to

@xlcode{(=@pragma(defn)@index(=) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]}  @itemsep test for equal to

@xlcode{(/=@pragma(defn)@index(/=) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]} @itemsep  test for not equal to

@xlcode{(>=@pragma(defn)@index(>=) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]} @itemsep   test for greater than or equal to

@xlcode{(>@pragma(defn)@index(>) @t(@i(n1)) @t(@i(n2))@r(...))} @c{[lisp]} @itemsep   test for greater than
@end(fgroup)
@begin(pdescription)
            @i<n1>    @itemsep    the first number to compare

            @i<n2>    @itemsep    the second number to compare

returns   @itemsep  @xlcode(t) if the results of comparing @i<n1> with @i<n2>,
@i<n2> with @i<n3>, etc., are all true.

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Bitwise Logical Functions)@index(Bitwise Logical Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{logand(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(logand@pragma(defn)@index(logand) @t(@i(expr))@r(...))} @c{[lisp]} @itemsep  the bitwise and of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the and operation

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{logior(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(logior@pragma(defn)@index(logior) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the bitwise inclusive or of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the inclusive or operation

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{logxor(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(logxor@pragma(defn)@index(logxor) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep the bitwise exclusive or of a list of numbers
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the numbers

            returns   @itemsep  the result of the exclusive or operation

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{lognot(@i(expr))} @c{[sal]}

        @xlcode{(lognot@pragma(defn)@index(lognot) @t(@i(expr)))} @c{[lisp]}  @itemsep the bitwise not of a number
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the number

            returns   @itemsep  the bitwise inversion of number

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(String Functions)@index(String Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{string(@i(expr))} @c{[sal]}

        @xlcode{(string@pragma(defn)@index(string) @t(@i(expr)))} @c{[lisp]} @itemsep  make a string from a value
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    an integer (which is first converted into its ASCII character value), string, character, or symbol

            returns   @itemsep  the string representation of the argument

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-search(@i(pat), @i(str), start: @i(start), end: @i(end))} @c{[sal]}

        @xlcode{(string-search@pragma(defn)@index(string-search)@index(find string) @t(@i(pat)) @t(@i(str)) @t(&key )@t(:start) @t(:end))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.)  @itemsep search for pattern in string
@end(fgroup)
@begin(pdescription)
            @i<pat>   @itemsep    a string to search for

            @i<str>   @itemsep    the string to be searched

            :start    @itemsep  the starting offset in str

            :end      @itemsep  the ending offset + 1

            returns   @itemsep  index of pat in str or NIL if not found

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-trim(@i(bag), @i(str))} @c{[sal]}

        @xlcode{(string-trim@pragma(defn)@index(string-trim) @t(@i(bag)) @t(@i(str)))} @c{[lisp]}  @itemsep trim both ends of a string
@end(fgroup)
@begin(pdescription)
            @i<bag>   @itemsep    a string containing characters to trim

            @i<str>   @itemsep    the string to trim

            returns   @itemsep  a trimed copy of the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-left-trim(@i(bag), @i(str))} @c{[sal]}

        @xlcode{(string-left-trim@pragma(defn)@index(string-left-trim) @t(@i(bag)) @t(@i(str)))} @c{[lisp]}  @itemsep trim the left end of a string
@end(fgroup)
@begin(pdescription)
            @i<bag>   @itemsep    a string containing characters to trim

            @i<str>   @itemsep    the string to trim

            returns   @itemsep  a trimed copy of the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-right-trim(@i(bag), @i(str))} @c{[sal]}

        @xlcode{(string-right-trim@pragma(defn)@index(string-right-trim) @t(@i(bag)) @t(@i(str)))} @c{[lisp]}  @itemsep trim the right end of a string
@end(fgroup)
@begin(pdescription)
            @i<bag>   @itemsep    a string containing characters to trim

            @i<str>   @itemsep    the string to trim

            returns   @itemsep  a trimed copy of the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-upcase(@i(str), start: @i(start), end: @i(end))} @c{[sal]}

        @xlcode{(string-upcase@pragma(defn)@index(string-upcase) @t(@i(str)) @t(&key )@t(:start) @t(:end))} @c{[lisp]}  @itemsep convert to uppercase
@end(fgroup)
@begin(pdescription)
            @i<str>   @itemsep    the string

            :start    @itemsep  the starting offset

            :end      @itemsep  the ending offset + 1

            returns   @itemsep  a converted copy of the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{string-downcase(@i(str), start: @i(start), end: @i(end))} @c{[sal]}

        @xlcode{(string-downcase@pragma(defn)@index(string-downcase) @t(@i(str)) @t(&key )@t(:start) @t(:end))} @c{[lisp]}  @itemsep convert to lowercase
@end(fgroup)
@begin(pdescription)
            @i<str>   @itemsep    the string

            :start    @itemsep  the starting offset

            :end      @itemsep  the ending offset + 1

            returns   @itemsep  a converted copy of the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{nstring-upcase(@i(str), start: @i(start), end: @i(end))} @c{[sal]}

        @xlcode{(nstring-upcase@pragma(defn)@index(nstring-upcase) @t(@i(str)) @t(&key )@t(:start) @t(:end))} @c{[lisp]}  @itemsep convert to uppercase
@end(fgroup)
@begin(pdescription)
            @i<str>   @itemsep    the string

            :start    @itemsep  the starting offset

            :end      @itemsep  the ending offset + 1

            returns   @itemsep  the converted string (not a copy)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{nstring-downcase(@i(str), start: @i(start), end: @i(end))} @c{[sal]}

        @xlcode{(nstring-downcase@pragma(defn)@index(nstring-downcase) @t(@i(str)) @t(&key )@t(:start) @t(:end))} @c{[lisp]}  @itemsep convert to lowercase
@end(fgroup)
@begin(pdescription)
            @i<str>   @itemsep    the string

            :start    @itemsep  the starting offset

            :end      @itemsep  the ending offset + 1

            returns  @itemsep   the converted string (not a copy)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{strcat(@i(expr)@r(...))} @c{[sal]}

        @xlcode{(strcat@pragma(defn)@index(strcat)@index(concatenate strings) @t(@i(expr))@r(...))} @c{[lisp]}  @itemsep concatenate strings
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the strings to concatenate

            returns  @itemsep   the result of concatenating the strings

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{subseq(@i(string), @i(start)[, @i(end)])} @c{[sal]}

        @xlcode{(subseq@pragma(defn)@index(subseq) @t(@i(string)) @t(@i(start)) [@t(@i(end))])} @c{[lisp]}  @itemsep extract a substring
@end(fgroup)
@begin(pdescription)
            @i<string> @itemsep   the string

            @i<start>  @itemsep   the starting position (zero origin)

            @i<end>    @itemsep   the ending position + 1 (defaults to end)

            returns    @itemsep substring between @i<start> and @i<end>

@end(pdescription)
@blankspace(1)
@begin(fgroup)
        @begin(fgroup)@xlcode{string<(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string<@pragma(defn)@index(string<) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)
        @begin(fgroup)@xlcode{string<=(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string<=@pragma(defn)@index(string<=) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{string=(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string=@pragma(defn)@index(string=) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{string/=(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string/=@pragma(defn)@index(string/=) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{string>=(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string>=@pragma(defn)@index(string>=) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{string>(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string>@pragma(defn)@index(string>) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@end(fgroup)
@begin(pdescription)
            @i<str1> @itemsep     the first string to compare

            @i<str2> @itemsep     the second string to compare

            :start1  @itemsep   first substring starting offset

            :end1    @itemsep   first substring ending offset + 1

            :start2  @itemsep   second substring starting offset

            :end2    @itemsep   second substring ending offset + 1

            returns  @itemsep   @xlcode(t) if predicate is true, @xlcode(nil) otherwise

          Note: case is significant with these comparison functions.
@end(pdescription)
@blankspace(1)
@begin(fgroup)
@begin(fgroup)@xlcode{string-lessp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-lessp@pragma(defn)@index(string-lessp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{string-not-greaterp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-not-greaterp@pragma(defn)@index(string-not-greaterp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{string-equalp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-equalp@pragma(defn)@index(string-equalp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{string-not-equalp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-not-equalp@pragma(defn)@index(string-not-equalp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{string-not-lessp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-not-lessp@pragma(defn)@index(string-not-lessp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{string-greaterp(@i(str1), @i(str2), start1: @i(start1), end1: @i(end1), start2: @i(start2), end2: @i(end2))} @c{[sal]}

        @xlcode{(string-greaterp@pragma(defn)@index(string-greaterp) @t(@i(str1)) @t(@i(str2)) @t(&key )@t(:start1) @t(:end1) @t(:start2) @t(:end2))} @c{[lisp]}
@end(fgroup)
@end(fgroup)
@begin(pdescription)
            @i<str1> @itemsep     the first string to compare

            @i<str2> @itemsep     the second string to compare

            :start1  @itemsep   first substring starting offset

            :end1    @itemsep   first substring ending offset + 1

            :start2  @itemsep   second substring starting offset

            :end2    @itemsep   second substring ending offset + 1

    returns  @itemsep   @xlcode(t) if predicate is true, @xlcode(nil) otherwise

          Note: case is not significant with these comparison functions.
@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Character Functions)@index(Character Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{char(@i(string), @i(index))} @c{[sal]}

        @xlcode{(char@pragma(defn)@index(char) @t(@i(string)) @t(@i(index)))} @c{[lisp]} @itemsep  extract a character from a string
@end(fgroup)
@begin(pdescription)
            @i<string> @itemsep   the string

            @i<index>  @itemsep   the string index (zero relative)

            returns    @itemsep the ascii code of the character

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{upper-case-p(@i(chr))} @c{[sal]}

        @xlcode{(upper-case-p@pragma(defn)@index(upper-case-p) @t(@i(chr)))} @c{[lisp]}  @itemsep is this an upper case character?
@end(fgroup)
@begin(pdescription)
            @i<chr> @itemsep      the character

            returns @itemsep    @xlcode(t) if the character is upper case, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{lower-case-p(@i(chr))} @c{[sal]}

        @xlcode{(lower-case-p@pragma(defn)@index(lower-case-p) @t(@i(chr)))} @c{[lisp]}  @itemsep is this a lower case character?
@end(fgroup)
@begin(pdescription)
            @i<chr> @itemsep      the character

            returns @itemsep    @xlcode(t) if the character is lower case, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{both-case-p(@i(chr))} @c{[sal]}

        @xlcode{(both-case-p@pragma(defn)@index(both-case-p) @t(@i(chr)))} @c{[lisp]}  @itemsep is this an alphabetic (either case) character?
@end(fgroup)
@begin(pdescription)
            @i<chr> @itemsep      the character

            returns @itemsep    @xlcode(t) if the character is alphabetic, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{digit-char-p(@i(chr))} @c{[sal]}

        @xlcode{(digit-char-p@pragma(defn)@index(digit-char-p) @t(@i(chr)))} @c{[lisp]}  @itemsep is this a digit character?
@end(fgroup)
@begin(pdescription)
            @i<chr> @itemsep      the character

            returns @itemsep    the digit weight if character is a digit, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{char-code(@i(chr))} @c{[sal]}

        @xlcode{(char-code@pragma(defn)@index(char-code) @t(@i(chr)))} @c{[lisp]}  @itemsep get the ascii code of a character
@end(fgroup)
@begin(pdescription)
            @i<chr> @itemsep      the character

            returns @itemsep    the ascii character code (integer)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{code-char(@i(code))} @c{[sal]}

        @xlcode{(code-char@pragma(defn)@index(code-char) @t(@i(code)))} @c{[lisp]}  @itemsep get the character with a specified ascii code
@end(fgroup)
@begin(pdescription)
            @i<code> @itemsep     the ascii code (integer)

            returns  @itemsep   the character with that code or @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{char-upcase(@i(chr))} @c{[sal]}

        @xlcode{(char-upcase@pragma(defn)@index(char-upcase) @t(@i(chr)))} @c{[lisp]}  @itemsep convert a character to upper case
@end(fgroup)
@begin(pdescription)
            @i<chr>  @itemsep     the character

            returns  @itemsep   the upper case character

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{char-downcase(@i(chr))} @c{[sal]}

        @xlcode{(char-downcase@pragma(defn)@index(char-downcase) @t(@i(chr)))} @c{[lisp]}  @itemsep convert a character to lower case
@end(fgroup)
@begin(pdescription)
            @i<chr>  @itemsep     the character

            returns  @itemsep   the lower case character

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{digit-char(@i(n))} @c{[sal]}

        @xlcode{(digit-char@pragma(defn)@index(digit-char) @t(@i(n)))} @c{[lisp]}  @itemsep convert a digit weight to a digit
@end(fgroup)
@begin(pdescription)
            @i<n>    @itemsep     the digit weight (integer)

            returns  @itemsep   the digit character or @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{char-int(@i(chr))} @c{[sal]}

        @xlcode{(char-int@pragma(defn)@index(char-int) @t(@i(chr)))} @c{[lisp]}  @itemsep convert a character to an integer
@end(fgroup)
@begin(pdescription)
            @i<chr>  @itemsep     the character

            returns  @itemsep   the ascii character code

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{int-char(@i(int))} @c{[sal]}

        @xlcode{(int-char@pragma(defn)@index(int-char) @t(@i(int)))} @c{[lisp]}  @itemsep convert an integer to a character
@end(fgroup)
@begin(pdescription)
            @i<int>  @itemsep     the ascii character code

            returns  @itemsep   the character with that code

@end(pdescription)
@blankspace(1)
@begin(fgroup)
       @begin(fgroup)@xlcode{char<(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char<@pragma(defn)@index(char<) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{char<=(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char<=@pragma(defn)@index(char<=) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{char=(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char=@pragma(defn)@index(char=) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{char/=(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char/=@pragma(defn)@index(char/=) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{char>=(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char>=@pragma(defn)@index(char>=) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

        @begin(fgroup)@xlcode{char>(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char>@pragma(defn)@index(char>) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@end(fgroup)
@begin(pdescription)
            @i<chr1> @itemsep     the first character to compare

            @i<chr2> @itemsep     the second character(s) to compare

            returns  @itemsep   @xlcode(t) if predicate is true, @xlcode(nil) otherwise

          Note: case is significant with these comparison functions.
@end(pdescription)
@blankspace(1)
@begin(fgroup)
@begin(fgroup)@xlcode{char-lessp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-lessp@pragma(defn)@index(char-lessp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{char-not-greaterp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-not-greaterp@pragma(defn)@index(char-not-greaterp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{char-equalp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-equalp@pragma(defn)@index(char-equalp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{char-not-equalp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-not-equalp@pragma(defn)@index(char-not-equalp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{char-not-lessp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-not-lessp@pragma(defn)@index(char-not-lessp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@pragma(endcodef)

@begin(fgroup)@xlcode{char-greaterp(@i(chr1), @i(chr2)@r(...))} @c{[sal]}

        @xlcode{(char-greaterp@pragma(defn)@index(char-greaterp) @t(@i(chr1)) @t(@i(chr2))@r(...))} @c{[lisp]}
@end(fgroup)
@end(fgroup)
@begin(pdescription)
@i<chr1> @itemsep     the first string to compare

@i<chr2> @itemsep     the second string(s) to compare

returns  @itemsep   @xlcode(t) if predicate is true, @xlcode(nil) otherwise

          Note: case is not significant with these comparison functions.
@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(Input/Output Functions)@index(Input/Output Functions)
@begin(fdescription)
        @begin(fgroup)@xlcode{read([@i(stream)[, @i(eof)[, @i(rflag)]]])} @c{[sal]}

        @xlcode{(read@pragma(defn)@index(read) [@t(@i(stream)) [@t(@i(eof)) [@t(@i(rflag))]]])} @c{[lisp]}  @itemsep read an expression
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            @i<eof>    @itemsep   the value to return on end of file (default is @xlcode(nil))

            @i<rflag>  @itemsep   recursive read flag (default is @xlcode(nil))

            returns    @itemsep the expression read

@end(pdescription)
@blankspace(1)

        @xlcode{(print@pragma(defn)@index(print) @t(@i(expr)) [@t(@i(stream))])} @c{[lisp]}  @itemsep print an expression on a new line
@begin(pdescription)
            @i<expr>   @itemsep   the expression to be printed

            @i<stream> @itemsep   the output stream (default is standard output)

            returns    @itemsep the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{prin1(@i(expr)[, @i(stream)])} @c{[sal]}

        @xlcode{(prin1@pragma(defn)@index(prin1) @t(@i(expr)) [@t(@i(stream))])} @c{[lisp]}  @itemsep print an expression
@end(fgroup)
@begin(pdescription)
            @i<expr>   @itemsep   the expression to be printed

            @i<stream> @itemsep   the output stream (default is standard output)

            returns    @itemsep the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{princ(@i(expr)[, @i(stream)])} @c{[sal]}

        @xlcode{(princ@pragma(defn)@index(princ) @t(@i(expr)) [@t(@i(stream))])} @c{[lisp]}  @itemsep print an expression without quoting
@end(fgroup)
@begin(pdescription)
            @i<expr>   @itemsep   the expressions to be printed

            @i<stream> @itemsep   the output stream (default is standard output)

            returns   @itemsep  the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{pprint(@i(expr)[, @i(stream)])} @c{[sal]}

        @xlcode{(pprint@pragma(defn)@index(pprint) @t(@i(expr)) [@t(@i(stream))])} @c{[lisp]}  @itemsep pretty print an expression
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expressions to be printed

            @i<stream> @itemsep   the output stream (default is standard output)

            returns @itemsep    the expression

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{terpri([@i(stream)])} @c{[sal]}

        @xlcode{(terpri@pragma(defn)@index(terpri) [@t(@i(stream))])} @c{[lisp]}  @itemsep terminate the current print line
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the output stream (default is standard output)

            returns   @itemsep  @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{flatsize(@i(expr))} @c{[sal]}

        @xlcode{(flatsize@pragma(defn)@index(flatsize) @t(@i(expr)))} @c{[lisp]}  @itemsep length of printed representation using prin1
@end(fgroup)
@begin(pdescription)
            @i<expr>  @itemsep    the expression

            returns  @itemsep   the length

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{flatc(@i(expr))} @c{[sal]}

        @xlcode{(flatc@pragma(defn)@index(flatc) @t(@i(expr)))} @c{[lisp]}  @itemsep length of printed representation using princ
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expression

            returns  @itemsep   the length
@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(The Format Function)@index(The Format Function)
@begin(fdescription)
@begin(fgroup)@xlcode{format(@i(stream), @i(fmt), @i(arg)@r(...))} @c{[sal]}

        @xlcode{(format@pragma(defn)@index(format) @t(@i(stream)) @t(@i(fmt)) @t(@i(arg))@r(...))} @c{[lisp]}   @itemsep do formated
@end(fgroup)
output
@begin(pdescription)
            @i<stream> @itemsep   the output stream

            @i<fmt>    @itemsep   the format string

            @i<arg>    @itemsep   the format arguments

            returns   @itemsep  output string if @i<stream> is @xlcode(nil), @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)
@end(fdescription)
       The format string can contain characters that should be copied
        directly to the output and formatting directives.  The
        formatting directives are:
@begin(display)
@xlcode(~A) @itemsep print next argument using princ
@xlcode(~S) @itemsep print next argument using prin1
@xlcode(~%) @itemsep start a new line
@xlcode(~~) @itemsep print a tilde character
@xlcode(~)<newline> @itemsep ignore this one newline and white space on the 
next line up to the first non-white-space character or newline. This 
allows strings to continue across multiple lines
@end(display)

@section(File I/O Functions)@index(File I/O Functions)
Note that files are ordinarily opened as text. Binary files (such as standard midi files) must be opened with @xlcode(open-binary) on non-unix systems.
@begin(fdescription)
        @begin(fgroup)@xlcode{open(@i(fname), direction: @i(direction))} @c{[sal]}

        @xlcode{(open@pragma(defn)@index(open) @t(@i(fname)) @t(&key )@t(:direction))} @c{[lisp]} @itemsep  open a file stream
@end(fgroup)
@begin(pdescription)
            @i<fname> @itemsep    the file name string or symbol

            :direction @itemsep :input or :output (default is :input)

            returns   @itemsep  a stream

@end(pdescription)
@blankspace(1)
        @begin(fgroup)@xlcode{open-binary(@i(fname), direction: @i(direction))} @c{[sal]}

        @xlcode{(open-binary@pragma(defn)@index(open-binary)@index(open)@index(binary files) @t(@i(fname)) @t(&key )@t(:direction))} @c{[lisp]} @itemsep  open a binary file stream
@end(fgroup)
@begin(pdescription)
            @i<fname> @itemsep    the file name string or symbol

            :direction @itemsep :input or :output (default is :input)

            returns   @itemsep  a stream

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{close(@i(stream))} @c{[sal]}

        @xlcode{(close@pragma(defn)@index(close) @t(@i(stream)))} @c{[lisp]}  @itemsep close a file stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the stream

            returns    @itemsep @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{setdir(@i(path)[, @i(verbose)])} @c{[sal]}

        @xlcode{(setdir@pragma(defn)@index(setdir)@index(change directory) @t(@i(path)) [@t(@i(verbose))])} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.) @itemsep set current directory
@end(fgroup)
@begin(pdescription)
            @i<path> @itemsep   the path of the new directory

            @i<verbose> @itemsep print error message if current directory cannot be changed to @i(path)

            returns   @itemsep  the resulting full path, e.g. (setdir ".") gets the current working directory, or @xlcode(nil) if an error occurs

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{listdir(@i(path))} @c{[sal]}

        @xlcode{(listdir@pragma(defn)@index(listdir)@index(directory listing)@index(scan directory)@index(read directory)@index(list directory) @t(@i(path)))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.) @itemsep get a directory listing
@end(fgroup)
@begin(pdescription)
            @i<path> @itemsep   the path of the directory to be listed

            returns   @itemsep  list of filenames in the directory

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{get-temp-path()} @c{[sal]}

        @xlcode{(get-temp-path@pragma(defn)@index(get-temp-path)@index(temporary files)@index(temp file))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.) @itemsep get a path where a temporary file can be created. Under Windows, this is based on environment variables. If XLISP is running as a sub-process to Java, the environment may not exist, in which case the default result is the unfortunate choice @xlcode(c:\windows\).
@end(fgroup)
@begin(pdescription)
            returns   @itemsep  the resulting full path as a string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{get-user()} @c{[sal]}

        @xlcode{(get-user@pragma(defn)@index(get-user)@index(user name)@index(temp file))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.) @itemsep get the user ID. In Unix systems (including OS X and Linux), this is the value of the USER environment variable. In Windows, this is currently just ``nyquist'', which is also returned if the environment variable cannot be accessed. This function is used to avoid the case of two users creating files of the same name in the same temp directory.
@end(fgroup)
@begin(pdescription)
            returns   @itemsep the string naming the user

@end(pdescription)
@blankspace(1)
        @begin(fgroup)@xlcode{find-in-xlisp-path(@i(filename))} @c{[sal]}

        @xlcode{(find-in-xlisp-path@pragma(defn)@index(find-in-xlisp-path) @t(@i(filename)))} @c{[lisp]}@foot(This is not a standard XLISP 2.0 function.) @itemsep search the XLISP search path (e.g. @xlcode(XLISPPATH) from the environment) for @i(filename). If @i(filename) is not found as is, and there is no file extension, append "@code(.lsp)" to @i(filename) and search again. The current directory is not searched.
@end(fgroup)
@begin(pdescription)
            @i<filename> @itemsep the name of the file to search for

            returns @itemsep a full path name to the first occurrence found

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{read-char([@i(stream)])} @c{[sal]}

        @xlcode{(read-char@pragma(defn)@index(read-char)@index(get char) [@t(@i(stream))])} @c{[lisp]}  @itemsep read a character from a stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            returns   @itemsep  the character

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{peek-char([@i(flag)[, @i(stream)]])} @c{[sal]}

        @xlcode{(peek-char@pragma(defn)@index(peek-char) [@t(@i(flag)) [@t(@i(stream))]])} @c{[lisp]}  @itemsep peek at the next character
@end(fgroup)
@begin(pdescription)
            @i<flag>  @itemsep    flag for skipping white space (default is @xlcode(nil))

            @i<stream> @itemsep    the input stream (default is standard input)

            returns   @itemsep  the character (integer)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{write-char(@i(ch)[, @i(stream)])} @c{[sal]}

        @xlcode{(write-char@pragma(defn)@index(write-char) @t(@i(ch)) [@t(@i(stream))])} @c{[lisp]}  @itemsep write a character to a stream
@end(fgroup)
@begin(pdescription)
            @i<ch>    @itemsep    the character to write

            @i<stream> @itemsep   the output stream (default is standard output)

            returns   @itemsep  the character

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{read-int([@i(stream)[, @i(length)]])} @c{[sal]}

        @xlcode{(read-int@pragma(defn)@index(read-int) [@t(@i(stream)) [@t(@i(length))]])} @c{[lisp]}  @itemsep read a binary integer from a stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            @i<length> @itemsep the length of the integer in bytes (default is 4)

            returns   @itemsep  the integer

Note: Integers are assumed to be big-endian (high-order byte first) and 
signed, regardless of the platform. To read little-endian format, use a
negative number for the length, e.g. -4 indicates a 4-bytes, low-order
byte first. The file should be opened in binary mode.

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{write-int(@i(ch)[, @i(stream)[, @i(length)]])} @c{[sal]}

        @xlcode{(write-int@pragma(defn)@index(write-int) @t(@i(ch)) [@t(@i(stream)) [@t(@i(length))]])} @c{[lisp]}  @itemsep write a binary integer to a stream
@end(fgroup)
@begin(pdescription)
            @i<ch>    @itemsep    the character to write

            @i<stream> @itemsep   the output stream (default is standard output)

            @i<length> @itemsep the length of the integer in bytes (default is 4)

            returns   @itemsep  the integer

Note: Integers are assumed to be big-endian (high-order byte first) and 
signed, regardless of the platform. To write in little-endian format, use a
negative number for the length, e.g. -4 indicates a 4-bytes, low-order
byte first. The file should be opened in binary mode.

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{read-float([@i(stream)[, @i(length)]])} @c{[sal]}

        @xlcode{(read-float@pragma(defn)@index(read-float) [@t(@i(stream)) [@t(@i(length))]])} @c{[lisp]}  @itemsep read a binary floating-point number from a stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            @i<length> @itemsep the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)

            returns   @itemsep  the integer

Note: Floats are assumed to be big-endian (high-order byte first) and 
signed, regardless of the platform. To read little-endian format, use a
negative number for the length, e.g. -4 indicates a 4-bytes, low-order
byte first. The file should be opened in binary mode.

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{write-float(@i(ch)[, @i(stream)[, @i(length)]])} @c{[sal]}

        @xlcode{(write-float@pragma(defn)@index(write-float) @t(@i(ch)) [@t(@i(stream)) [@t(@i(length))]])} @c{[lisp]}  @itemsep write a binary floating-point number to a stream
@end(fgroup)
@begin(pdescription)
            @i<ch>    @itemsep    the character to write

            @i<stream> @itemsep   the output stream (default is standard output)

            @i<length> @itemsep the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)

            returns   @itemsep  the integer

Note: Floats are assumed to be big-endian (high-order byte first) and 
signed, regardless of the platform. To write in little-endian format, use a
negative number for the length, e.g. -4 indicates a 4-bytes, low-order
byte first. The file should be opened in binary mode.

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{read-line([@i(stream)])} @c{[sal]}

        @xlcode{(read-line@pragma(defn)@index(read-line) [@t(@i(stream))])} @c{[lisp]}  @itemsep read a line from a stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            returns   @itemsep  the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{read-byte([@i(stream)])} @c{[sal]}

        @xlcode{(read-byte@pragma(defn)@index(read-byte) [@t(@i(stream))])} @c{[lisp]}  @itemsep read a byte from a stream
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the input stream (default is standard input)

            returns    @itemsep the byte (integer)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{write-byte(@i(byte)[, @i(stream)])} @c{[sal]}

        @xlcode{(write-byte@pragma(defn)@index(write-byte) @t(@i(byte)) [@t(@i(stream))])} @c{[lisp]}  @itemsep write a byte to a stream
@end(fgroup)
@begin(pdescription)
            @i<byte>   @itemsep   the byte to write (integer)

            @i<stream> @itemsep   the output stream (default is standard output)

            returns    @itemsep the byte (integer)

@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(String Stream Functions)@index(String Stream Functions)
        These functions operate on unnamed streams.  An unnamed output
        stream collects characters sent to it when it is used as the
        destination of any output function.  The functions 
@xlcode(get-output-stream-string) and @xlcode(get-output-stream-list) return a string or a list of characters.

An unnamed input stream is setup with the 
 @xlcode(make-string-input-stream) function and returns each character of the string when
        it is used as the source of any input function.

@begin(fdescription)
@blankspace(1)
        @begin(fgroup)@xlcode{make-string-input-stream(@i(str)[, @i(start)[, @i(end)]])} @c{[sal]}

        @xlcode{(make-string-input-stream@pragma(defn)@index(make-string-input-stream) @t(@i(str)) [@t(@i(start)) [@t(@i(end))]])} @c{[lisp]}
@end(fgroup)
@begin(pdescription)
            @i<str>    @itemsep   the string

            @i<start>  @itemsep   the starting offset

            @i<end>    @itemsep   the ending offset + 1

            returns    @itemsep an unnamed stream that reads from the string

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{make-string-output-stream)()} @c{[sal]}

        @xlcode{(make-string-output-stream)} @c{[lisp]}@pragma(defn)@index(make-string-output-stream)
@end(fgroup)
@begin(pdescription)
            returns   @itemsep  an unnamed output stream

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{get-output-stream-string(@i(stream))} @c{[sal]}

        @xlcode{(get-output-stream-string@pragma(defn)@index(get-output-stream-string) @t(@i(stream)))} @c{[lisp]}
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep    the output stream

            returns    @itemsep the output so far as a string

          Note:  the output stream is emptied by this function
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{get-output-stream-list(@i(stream))} @c{[sal]}

        @xlcode{(get-output-stream-list@pragma(defn)@index(get-output-stream-list) @t(@i(stream)))} @c{[lisp]}
@end(fgroup)
@begin(pdescription)
            @i<stream> @itemsep   the output stream

            returns   @itemsep  the output so far as a list

          Note:  the output stream is emptied by this function
@end(pdescription)
@blankspace(1)
@end(fdescription)

@section(System Functions)@index(System Functions)
Note: the @xlcode(load) function first tries to load a file from the current directory. A @code(.lsp) extension is added if there is not already an alphanumeric extension following  a period.  If that fails, XLISP searches the path, which is obtained from the XLISPPATH environment variable in Unix and  HKEY_LOCAL_MACHINE\SOFTWARE\CMU\Nyquist\XLISPPATH under Win32. (The Macintosh version has no search path.)

@begin(fdescription)
        @begin(fgroup)@xlcode{get-env(@i(name))} @c{[sal]}

        @xlcode{(get-env@pragma(defn)@index(get-env)@index(getenv)@index(environment variables) @t(@i(name)))} @c{[lisp]} @itemsep get from an environment variable
@end(fgroup)
@begin(pdescription)
           @i<name> @itemsep the name of the environment variable

           returns  @itemsep string value of the environment variable, @xlcode(nil) if variable does not exist

@end(pdescription)
@blankspace(1)

        @xlcode{(load@pragma(defn)@index(load) @t(@i(fname)) @t(&key )@t(:verbose) @t(:print))} @c{[lisp]}   @itemsep load a source file
@begin(pdescription)
            @i<fname>   @itemsep  the filename string or symbol

            :verbose  @itemsep  the verbose flag (default is t)

            :print    @itemsep  the print flag (default is @xlcode(nil))

            returns   @itemsep  the filename

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{save(@i(fname))} @c{[sal]}

        @xlcode{(save@pragma(defn)@index(save) @t(@i(fname)))} @c{[lisp]} @itemsep save workspace to a file
@end(fgroup)
@begin(pdescription)
            @i<fname> @itemsep    the filename string or symbol

            returns   @itemsep @xlcode(t) if workspace was written, @xlcode(nil) otherwise

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{restore(@i(fname))} @c{[sal]}

        @xlcode{(restore@pragma(defn)@index(restore) @t(@i(fname)))} @c{[lisp]}  @itemsep restore workspace from a file
@end(fgroup)
@begin(pdescription)
            @i<fname> @itemsep    the filename string or symbol

            returns   @itemsep  @xlcode(nil) on failure, otherwise never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{dribble([@i(fname)])} @c{[sal]}

        @xlcode{(dribble@pragma(defn)@index(dribble) [@t(@i(fname))])} @c{[lisp]}  @itemsep create a file with a transcript of a session
@end(fgroup)
@begin(pdescription)
            @i<fname> @itemsep    file name string or symbol
                        (if missing, close current transcript)

            returns   @itemsep @xlcode(t) if the transcript is opened, @xlcode(nil) if it is closed

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{gc()} @c{[sal]}

        @xlcode{(gc@pragma(defn)@index(gc))} @c{[lisp]}  @itemsep force garbage collection
@end(fgroup)
@begin(pdescription)
            returns @itemsep    @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{expand(@i(num))} @c{[sal]}

        @xlcode{(expand@pragma(defn)@index(expand) @t(@i(num)))} @c{[lisp]}  @itemsep expand memory by adding segments
@end(fgroup)
@begin(pdescription)
            @i<num> @itemsep      the number of segments to add

            returns @itemsep    the number of segments added

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{alloc(@i(num))} @c{[sal]}

        @xlcode{(alloc@pragma(defn)@index(alloc) @t(@i(num)))} @c{[lisp]}  @itemsep change number of nodes to allocate in each segment
@end(fgroup)
@begin(pdescription)
            @i<num> @itemsep      the number of nodes to allocate

            returns @itemsep    the old number of nodes to allocate

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{info()} @c{[sal]}

        @xlcode{(info@pragma(defn)@index(info))} @c{[lisp]}  @itemsep show information about memory usage.
@end(fgroup)
@begin(pdescription)
            returns @itemsep    @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{room()} @c{[sal]}

        @xlcode{(room@pragma(defn)@index(room))} @c{[lisp]}  @itemsep show memory allocation statistics
@end(fgroup)
@begin(pdescription)
            returns @itemsep    @xlcode(nil)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{type-of(@i(expr))} @c{[sal]}

        @xlcode{(type-of@pragma(defn)@index(type-of) @t(@i(expr)))} @c{[lisp]}  @itemsep returns the type of the expression
@end(fgroup)
@begin(pdescription)
            @i<expr> @itemsep     the expression to return the type of

            returns  @itemsep   @xlcode(nil) if the value is @xlcode(nil) otherwise one of the symbols:

@begin(pdescription)
                          SYMBOL      @itemsep    for symbols

                          OBJECT      @itemsep    for objects

                          CONS        @itemsep    for conses

                          SUBR        @itemsep    for built-in functions

                          FSUBR       @itemsep    for special forms

                          CLOSURE     @itemsep    for defined functions

                          STRING      @itemsep    for strings

                          FIXNUM      @itemsep    for integers

                          FLONUM      @itemsep    for floating point numbers

                          CHARACTER   @itemsep    for characters

                          FILE-STREAM @itemsep    for file pointers

                          UNNAMED-STREAM @itemsep for unnamed streams

                          ARRAY          @itemsep for arrays

@end(pdescription)
@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{peek(@i(addrs))} @c{[sal]}

        @xlcode{(peek@pragma(defn)@index(peek) @t(@i(addrs)))} @c{[lisp]}   @itemsep peek at a location in memory
@end(fgroup)
@begin(pdescription)
            @i<addrs>  @itemsep   the address to peek at (integer)

            returns    @itemsep the value at the specified address (integer)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{poke(@i(addrs), @i(value))} @c{[sal]}

        @xlcode{(poke@pragma(defn)@index(poke) @t(@i(addrs)) @t(@i(value)))} @c{[lisp]} @itemsep  poke a value into memory
@end(fgroup)
@begin(pdescription)
            @i<addrs>  @itemsep   the address to poke (integer)

            @i<value>  @itemsep   the value to poke into the address (integer)

            returns    @itemsep the value

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{bigendianp()} @c{[sal]}

        @xlcode{(bigendianp@pragma(defn)@index(bigendianp)@index(endian)@index(big endian)@index(little endian))} @c{[lisp]} @itemsep  is this a big-endian machine?
@end(fgroup)
@begin(pdescription)
            returns    @itemsep T if this a big-endian architecture, storing the high-order byte of an integer at the lowest byte address of the integer; otherwise, NIL.
@foot(This is not a standard XLISP 2.0 function.)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{address-of(@i(expr))} @c{[sal]}

        @xlcode{(address-of@pragma(defn)@index(address-of) @t(@i(expr)))} @c{[lisp]}  @itemsep get the address of an xlisp node
@end(fgroup)
@begin(pdescription)
            @i<expr>   @itemsep   the node

            returns    @itemsep the address of the node (integer)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{exit()} @c{[sal]}

        @xlcode{(exit@pragma(defn)@index(exit))} @c{[lisp]}  @itemsep exit xlisp
@end(fgroup)
@begin(pdescription)
            returns    @itemsep never returns

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{setup-console()} @c{[sal]}

        @xlcode{(setup-console@pragma(defn)@index(setup-console)@index(window initialization))} @c{[lisp]}  @itemsep set default console attributes
@end(fgroup)
@begin(pdescription)
            returns    @itemsep NIL

Note: Under Windows, Nyquist normally starts up in a medium-sized console window with black text and a white background, with a window title of ``Nyquist.'' This is normally accomplished by calling @xlcode(setup-console) in @code(system.lsp). In Nyquist, you can avoid this behavior by setting @xlcode(*setup-console*) to NIL in your @code(init.lsp) file. If @xlcode(setup-console) is not called, Nyquist uses standard input and output as is. This is what you want if you are running Nyquist inside of emacs, for example.@index(emacs, using Nyquist with)

@end(pdescription)
@blankspace(1)

        @begin(fgroup)@xlcode{echoenabled(@i(flag))} @c{[sal]}

        @xlcode{(echoenabled@pragma(defn)@index(echoenabled)@index(console, XLISP) @t(@i(flag)))} @c{[lisp]}  @itemsep turn console input echoing on or off
@end(fgroup)
@begin(pdescription)
            @i<flag>   @itemsep T to enable echo, NIL to disable

            returns    @itemsep NIL

Note: This function is only implemented under Linux and Mac OS X. If Nyquist I/O is redirected through pipes,
the Windows version does not echo the input, but the Linux and Mac versions do. You can turn off echoing with
this function. Under windows it is defined to do nothing.

@end(pdescription)
@end(fdescription)

@section(File I/O Functions)@index(File I/O Functions)

@subsection(Input from a File)@index(Input from a File)

To open a file for input, use the @xlcode(open) function with the keyword
argument @xlcode(:direction) set to @xlcode(:input).  To open a file for output,
use the @xlcode(open) function with the keyword argument @xlcode(:direction) set
to @xlcode(:output).  The @xlcode(open) function takes a single required argument which
is the name of the file to be opened.  This name can be in the form of a
string or a symbol.  The @xlcode(open) function returns an object of type
@xlcode(FILE-STREAM) if it succeeds in opening the specified file.  It returns the
value @xlcode(nil) if it fails.  In order to manipulate the file, it is
necessary to save the value returned by the @xlcode(open) function.  This is
usually done by assigning it to a variable with the @xlcode(setq) special form or by
binding it using @xlcode(let) or @xlcode(let*).  Here is an example:
@begin(example)
(setq fp (open "init.lsp" :direction :input))
@end(example)
        Evaluating this expression will result in the file @code(init.lsp)
        being opened.  The file object that will be returned by the @xlcode(open)
        function will be assigned to the variable @xlcode(fp).

        It is now possible to use the file for input.  To read an
        expression from the file, just supply the value of the @xlcode(fp)
        variable as the optional @i(stream) argument to @xlcode(read).
@begin(example)
(read fp)
@end(example)
        Evaluating this expression will result in reading the first
        expression from the file @code(init.lsp).  The expression will be
        returned as the result of the @xlcode(read) function.  More expressions
        can be read from the file using further calls to the @xlcode(read)
        function.  When there are no more expressions to read, the @xlcode(read)
        function will return @xlcode(nil) (or whatever value was supplied as the
        second argument to @xlcode(read)).

        Once you are done reading from the file, you should close it.
        To close the file, use the following expression:
@begin(example)
(close fp)
@end(example)
        Evaluating this expression will cause the file to be closed.

@subsection(Output to a File)@index(Output to a File)

        Writing to a file is pretty much the same as reading from one.
        You need to open the file first.  This time you should use the
        @xlcode(open) function to indicate that you will do output to the file.
        For example:
@begin(example)
(setq fp (open "test.dat" :direction :output))
@end(example)
        Evaluating this expression will open the file @code(test.dat) for
        output.  If the file already exists, its current contents will
        be discarded.  If it doesn't already exist, it will be created.
        In any case, a @xlcode(FILE-STREAM) object will be returned by the @xlcode(OPEN)
        function.  This file object will be assigned to the @xlcode(fp)
        variable.

        It is now possible to write to this file by supplying the value
        of the @xlcode(fp) variable as the optional @i(stream) parameter in the  @xlcode(print) function.
@begin(example)
(print "Hello there" fp)
@end(example)
        Evaluating this expression will result in the string ``Hello
        there'' being written to the file @code(test.dat).  More data can be
        written to the file using the same technique.

        Once you are done writing to the file, you should close it.
        Closing an output file is just like closing an input file.
@begin(example)
(close fp)
@end(example)
        Evaluating this expression will close the output file and make
        it permanent.

@subsection(A Slightly More Complicated File Example)

        This example shows how to open a file, read each Lisp expression
        from the file and print it.  It demonstrates the use of files
        and the use of the optional @i(stream) argument to the @xlcode(read)
        function.
@begin(programexample)
(do* ((fp (open "test.dat" :direction :input))
      (ex (read fp) (read fp)))
     ((null ex) nil)
  (print ex))
@end(programexample)