
Score Description Library

Reference Manual

Pedro J. Morales.
English translation by Luis Rodŕıguez and Pedro J. Morales.

July 25, 2007

i

Contents

1 Introduction 1

2 Description 1
2.1 SDL score example . 1
2.2 SDL score processing . 2
2.3 SDL score rendering . 3
2.4 Synchronization . 3

3 Reference guide 4
3.1 Overall SDL score structure . 4
3.2 Pitch specification . 4
3.3 Durations . 5
3.4 Notes . 5
3.5 Rests . 5
3.6 Chords . 6
3.7 Instruments . 7
3.8 Attributes . 7
3.9 Tempi . 8
3.10 Macros . 8
3.11 SDL Functions . 9

4 Reference summary 10
4.1 SDL format for score instructions . 10
4.2 SDL library functions . 11

5 lambda Music compatibility 11

6 Final remarks 11

1. INTRODUCTION 1

1 Introduction

Usually, Computer Music compositions are formally specified by means of programming language
algorithms. Owing to the fact that Nyquist is actually an extension of Lisp, this language can be
used for both sound synthesis and algorithmic composition.

In addition, Nyquist can be also employed for rendering music that is described as a note
sequence, for instance, a score in traditional music notation. However, in this case, every note
parameter has to be specified which makes difficult to compose music confortably.

The Score Description Library (SDL) is aimed at facilitating the translation from traditional
score notation to Nyquist source code and also allowing a fine control over the performance and
synthesis parameters.

2 Description

2.1 SDL score example

A SDL score is a quoted list in which the notes along with the pitch, duration attributes and other
arguments related to timing and synthesis parameters, are specified.

1 ; Begin of BWV 1069
2

3 (setf *my-sdl-score*
4 ’((TF 1)
5 (INIT-INSTR "i1" sinte) (INSTRUMENT "i1") (PWL-POINT :mm 100) (ATTR :idur 0.1)
6 2 (:c4 1) :d4 (:e4 2) :c4 :g4 :e4 :a4 (:g4 1) :f4 (:g4 4)
7 (:a4 1) :c5 :f4 :a4 :g4 :f4 :e4 :g4 :f4 :a4 :d4 :f4 :e4 :d4 :c4 :d4 :e4 :f4 (:g4 2)
8 :a3 :c4 :d4 :f4
9 :g3 :b3 :c4 :e4 (:f3 1) :e4 :d4 :c4 :g3 :d4 :c4 :b3 (ATTR :idur 1) (LABEL :t1)

10 (:c4 4)))

• TF stands for Time Factor. All the durations will be multiplied by this factor (default value
is 1).

• INIT-INSTR declares an instrument to be used in synthesis. The first argument “i1” is the
instrument name in the SDL score. The second one is the Nyquist function name which defines
the instrument. This function must be defined independently from the score by means of an
expression (defun sinte ...)

• INSTRUMENT causes that all the notes from now on are synthesized by the instrument “i1”
until a new instrument is specified.

• PWL-POINT defines a piece wise linear function in order to set the time-variable parameters.
For instance, :mm takes a value of 100 when the instruction is called.

• ATTR sets the value of a constant parameter. The parameter value is not changed until a new
ATTR instruction is reached. For example, the :idur parameter takes a value of 0.1 in every
note until a new value is specified by a new ATTR.

• 2 defines a 2 beat rest. Two different time types can be considered: a score time measured
in beat and a physical time measured in second. A quarter has a duration of 4 beats. The
physical time is computed according to the score time, tempo and Time Factor TF.

• (:c4 1) represents a note given by a C4 pitch and a 1 beat duration.(i.e, a sixteenth).
Only pitch and duration are specified. Pitch can be specified by using an alternative syntax.

2 Score Description Library

Duration can be any Lisp expression. The rest of attributes the needed for synthesis are
provided by ATTR y PWL-POINT instructions.

• :d4 is a D4 pitch note and inherited duration of 1 beat. Rests do not alter the default
duration. Changes in duration are explicitly set by a note attribute.

• LABEL sets a time label aimed at synchronizing score sections. LABEL is related to the score
time. Coincidence among LABEL references depends on the score tempi map. Therefore, the
user is responsible for controlling this issue.

2.2 SDL score processing

A SDL score is processed by using the sdl->score function. For example:

1 (load ‘‘sdl’’)
2 (sdl->score *my-sdl-score*)
3

4 => ((0.3 0.15 (SINTE :PITCH 60 :MM 100 :IDUR 0.1))
5 (0.45 0.15 (SINTE :PITCH 62 :MM 100 :IDUR 0.1))
6 (0.6 0.3 (SINTE :PITCH 64 :MM 100 :IDUR 0.1))
7 (0.9 0.3 (SINTE :PITCH 60 :MM 100 :IDUR 0.1))
8 (1.2 0.3 (SINTE :PITCH 67 :MM 100 :IDUR 0.1))
9 ...

10)

As can be noticed, an Xmusic score is obtained as a result.
Every Xmusic score event has three elements. The first one indicates the note starting time.

The second one is the stretching factor and the third one is a call to the synthesis function. For
instance, the first event:

1 (0.3 0.15 (SINTE :PITCH 60 :MM 100 :IDUR 0.1))

starts at 0.3 seconds; the stretching factor is 0.15 and the synthesis function call is (sinte :pitch
60 :idur 0.1).

:mm argument is not a synthesis parameter but a control for tempo. Thus, sinte implementation
must not include any argument with this name.

The strecthing factor multiplies the note duration by the stretching value. For instance, for a
sytnthesis function call returning a 1 second note and a stretching factor equals to 0.15 the overall
note duration would be 0.15.

One of the most remarkable features of Nyquist is the Behavioral Abstraction which constitutes
a framework for addressing context-dependent transformations that includes stretching.

Every synthesis function has a default behavior that properly works in most of the situations.
Nevertheless, this default behavior may not be appropriated in some cases. Therefore, for instance,
the amplitude envelope attack of a sound may be changed by different strecthing factor values
which can be unsuitable for a harpsichord-like sound.

To fix this problem, the synthesis function can be defined so that the attack time is constant
and independent form the stretching factor 1.

Alternatively, all the stretching factors can be set to 1 and a specific parameter can be used
to indicate the specific duration of any event. :idur parameter is used for this purpose. This
way, sound duration can be higher or lower allowing for several articulation modes from legato to

1Extensive knowledge of Behavioral Abstraction is required to perform this task

2. DESCRIPTION 3

stacatto. The time-control parameters can not be called :dur since this name is a Xmusic reserved
keyword.

sdl:normalize-score-duration is used to set the stretching factors to 1 as is shown in the
following example:

1

2 (sdl:normalize-score-duration (sdl->score *my-sdl-score*))
3

4 => ((0.3 1 (SINTE :PITCH 60 :MM 100 :IDUR 0.1))
5 (0.45 1 (SINTE :PITCH 62 :MM 100 :IDUR 0.1))
6 (0.6 1 (SINTE :PITCH 64 :MM 100 :IDUR 0.1))
7 (0.9 1 (SINTE :PITCH 60 :MM 100 :IDUR 0.1))
8 (1.2 1 (SINTE :PITCH 67 :MM 100 :IDUR 0.1))
9 ...

10)

2.3 SDL score rendering

Once a SDL score has been translated to Xmusic format, a Nyquist behavior can be obtained by
using the timed-seq function 2

1 (play (timed-seq (sdl:normalize-score-duration (sdl->score *my-sdl-score*))))

2.4 Synchronization

When dealing with complex scores it is suitable to split them into smaller parts. Temporal references
must be established in order to synchronize all the parts involved. These temporal reference can
be set by using a LABEL instruction. sdl->timelabels function is used to obtain the temporal
references list. This data is registered as a property list of a symbol created on-the-fly. For example:

1 (setf *my-time-labels* (sdl->timelabels *my-sdl-score*))
2 (print (symbol-plist *my-time-labels*))
3

4 => (:T1 64)

AT-LABEL instruction allow us to match the temporal label which has been previously specified
by LABEL and another time value from a different score. The temporal references list must be sent,
as an argument, to the sdl->score function as can be seen in the following example:

1 (setf *my-time-labels* (sdl->timelabels *my-sdl-score*))
2

3 (setf *voz-2*
4 ’((TF 1)
5 (INIT-INSTR "i1" sinte) (INSTRUMENT "i1") (PWL-POINT :mm 100) (ATTR :idur 0.1)
6 (AT-LABEL :t1)
7 2 (:g4 1) :a4 (:b4 2) :g4))
8

9 (sdl->score *voz-2* *my-time-labels*)
10

11 => ((9.9 0.15 (SINTE :PITCH 67 :MM 100 :IDUR 0.1))
12 (10.05 0.15 (SINTE :PITCH 69 :MM 100 :IDUR 0.1))
13 (10.2 0.3 (SINTE :PITCH 71 :MM 100 :IDUR 0.1))
14 (10.5 0.3 (SINTE :PITCH 67 :MM 100 :IDUR 0.1)))

2It is also possible to use the score-play function in order to directly render the score

4 Score Description Library

Warnings

Users should notice that time labels are actually score times (measured in beats), whereas in
Xmusic scores the time is specified in seconds, which in turn are mapped from the score time, the
TF parameter and the tempi map. For that reason, time labels always coincide in score time, but
they have to use the same TF parameter and tempi map to achieve a coincidence in physical time.

3 Reference guide

3.1 Overall SDL score structure

A SDL score is a quoted list containing notes, rests or other elements related to synthesis and
performance. The following elements have to be present in any SDL score:

• One instrument initialization INIT-INSTR.

• One instrument assignment INSTRUMENT.

• One tempo specification :mm, by means of either PWL-POINT or ATTR.

• One note, at least.

Examples:

1 (setf *minimal-sco-1* ’((INIT-INSTR "i1" xx) (INSTRUMENT "i1") (PWL-POINT :mm 100)
2 (:c4 2)))
3 (setf *minimal-sco-2* ’((INIT-INSTR "i2" yy) (INSTRUMENT "i2") (ATTR :mm 100) :c4))

Function sdl->score returns an error if the score does not have this basic data.

3.2 Pitch specification

Pitches can be given by using:

• A number. The standard MIDI pitch scale has been adopted here (60 = C4). No tempered
pitches are allowed when using floating point numbers (FLONUM).

• The standard Nyquist symbols. Example: cs4 = C4 sharp = 61.

• The standard lambda Music symbols3 Pitches are represented by symbols starting with a
colon. Sharps and flats are notated by # and b. Examples: :c4 :C4 :c#4 :C#4 :cb4 :Cb4

• Quoted symbols. Examples: ’c4 ’cs4 ’c#4 ’cb4

• Strings. Examples: ‘‘c4’’ ‘‘cs4’’ ‘‘c#4’’ ‘‘cb4’’

Example:

1 (setf *pitches* (list 60 60.0 c4 ’c4 C4 ’C4 cs4 df4 :c4 :c#4 :cb4 :df4
2 "c4" "cs4" "cb4" "c#4"))
3 (mapcar #’sdl:pitch-lex *pitches*)
4

5 => (60 60 60 60 60 60 61 61 60 61 59 62 60 61 59 61)

3A library for music composition developed by Pedro Morales in Common Lisp

3. REFERENCE GUIDE 5

3.3 Durations

Durations are measured in beats. A quarter worth 4 beats; a half, 8 beats, and so on. Fractional
durations are allowed.

Durations can be given by:

• A number.

• A Lisp expression. Example: (/ 4.0 3.0) represents a third of a quarter, that is, an eighth
triplet.

Physical time and score time

Physical time (measured in seconds) is computed after score time (measured in beats), the time
factor, TF and the tempi map (given by the parameter :mm).

Global Time Factor

It is given by the score instruction TF. Example: (TF 2.0) multiplies by 2.0 all the durations in
the score, whereas (TF 0.5) does it by 0.5.

This instruction must appear only once in the score. Its default value is 1.0.

Tempi

Tempi values are given by the parameter :mm whose value is set by means of the instructions ATTR
or PWL-POINT.

3.4 Notes

There are two alternatives for specifying notes:

• By using a two-element list (pitch and duration). Example: (:c4 4) is a quarter C4.

• By the pitch only. Duration is taken from the last note.

The default duration can be changed by means of the DUR instruction.

3.5 Rests

Can be noted by:

• A number representing the amount of beats.

• DELTA or PAU instructions4, indicating the duration by a number or by a Lisp expression.

Example:

1 (setf *sco3*
2 ’((TF 1.0) ; Overall Time Factor
3 (INIT-INSTR ‘‘i1’’ xx) ; Preamble. instr. init.
4 (INSTRUMENT ‘‘i1’’) ; instr. assign.
5 (ATTR :mm 60) ; metronome MM=60. 1 quarter = 1 sec.
6 (:c4 4) ; c4 quarter
7 4 ; quarter rest
8 :d4 ; d4. duration = quarter (inherited)

4Both instructions are equivalent.

6 Score Description Library

9 (PAU 8) ; half rest
10 (:e4 (/ 4.0 3.0)) ; e4. eighth triplet
11 :e4 ;
12 :e4 ;
13 (DELTA (* 2 4)) ; half rest
14 (:f4 (* 2 1.5)) ; f4 duration = 3 = dotted eighth
15 (DUR 4) ; current duration = 4 (quarter)
16 :g4 ; g4 duration = quarter
17 (DUR (/ 4.0 3.0)) ; current duration = triplet eighth
18 :a4 :a4 :a4 ; a4 triplets
19))

3.6 Chords

Polyphonic music can be achieved in SDL by gathering several scores. Nevertheless, SDL predefined
instructions can be more appropriated in simple cases.

CH produces simultaneous notes, having the current duration. Example:

1 (setf *sco4*
2 ’((TF 1.0) ; Overall Time Factor
3 (INIT-INSTR ‘‘i1’’ xx) ; preamble. init. instr.
4 (INSTRUMENT ‘‘i1’’) ; assign. instr.
5 (ATTR :mm 60) ; metronome MM=60. 1 quarter = 1 sec.
6 (:c4 4) ; c4 quarter
7 4 ; quarter rest
8 (DUR 8) ; current duration = 8 = half
9 (CH :c4 :e4 :g4) ; three-note chord. duration = half

10 ;

CH1 produces one note without increasing the time. Time increments can be indicated by the DELTA
instruction. This way independent duration chords can be built for each note. Example:

1 (setf *sco5*
2 ’((TF 1.0) ; Overall Time Factor
3 (INIT-INSTR ‘‘i1’’ xx) ; preamble. Init. instr.
4 (INSTRUMENT ‘‘i1’’) ; assign. instr.
5 (ATTR :mm 60) ; metronome MM=60. 1 quarter = 1 sec.
6 (:c4 4) ; c4 quarter
7 4 ; quarter rest
8 (CH1 :c4 4) ; CHORD BEGINNING. c4 quarter
9 (CH1 :e4 8) ; e4 half. SIMULTANEOUS BEGINNING c4

10 (:g4 4) ; g4 quarter. SIMULTANEOUS BEGINNING. c4, e4
11 (:c5 4) ; c5 quarter. Starts when g4 ends
12 ; e4 keeps playing because of the half
13 ; duration
14 (CH1 :c4 8) ; Arpeggiated chord BEGINNING
15 (DELTA 0.2) ; time increases 0.2 beats
16 (CH1 :e4 (- 8 0.2)) ; e4 starts 0.2 beats after c4
17 ; ends at the same time
18 (DELTA 0.2) ; time increases 0.2 beats
19 (CH1 :g4 (- 8 0.2 0.2)) ; g4. another arpeggio note
20 (:c5 (- 8 0.2 0.2 0.2)) ; c5 final arpeggio note
21 (:g3 4) ; g3 quarter after arpeggio
22)) ; (total arpeggio duration = 8)

3. REFERENCE GUIDE 7

3.7 Instruments

In every score notes must be tied to a synthesis instrument. INIT-INSTR is the instruction used for
mapping the score instrument name to a Nyquist function that implements the instrument itself.

The INSTRUMENT instruction assigns the instrument name to the notes. The current instrument
can be set by a new INSTRUMENT instruction. Example:

1 (setf *sco6*
2 ’((TF 1.0)
3 (INIT-INSTR ‘‘i1’’ flute) ; assign i1 instrument score name
4 ; to the flute function
5 (INSTRUMENT ‘‘i1’’) ; current instr. = i1
6 (ATTR :mm 60)
7 (:c4 4) ; rendered by flute
8 4
9 (INIT-INSTR ‘‘i2’’ clarinet) ; assign i2 instrument score name

10 ; to the clarinet function
11 :d4 ; rendered by flute
12 (INSTRUMENT ‘‘i2) ; current instr. = i2
13 :e4 ; rendered by clarinet
14))

3.8 Attributes

In SDL scores, parameters for synthesis functions in Nyquist are defined by ATTR and PWL-POINT
instructions.

• ATTR has two arguments. The first one is the parameter name (starting with a colon). The
second one is used just to set the parameter value. The current parameter value can be
changed by another ATTR instruction.

• PWL-POINT behaves like the ATTR instruction. The only difference is that a linear interpolation
is performed between two consecutive PWL-POINT instructions.

It is not allowed to define the same attribute value by using both ATTR and PWL-POINT instructions.

1 (setf *sco7*
2 ’((TF 1.0)
3 (INIT-INSTR ‘‘i1’’ flute) ; maps i1 to flute
4 (INSTRUMENT ‘‘i1’’) ; current instr. i1 (flute)
5 (:c4 4) ; mm = 100; rel = 4; decay = 3.2
6 (ATTR :decay 3.2) ;
7 (:d4 4) ; mm = 100; rel = 4; decay = 5.1
8 (ATTR :decay 5.1)
9 (:e4 4) ; mm = 100; rel = 4; decay = 5.1

10 (PWL-POINT :rel 4.0)
11 (PWL-POINT :mm 100)
12 (:f4 4) ; mm = 100; rel = 4; decay = 5.1
13 (:g4 4) ; mm = 100; rel = 5; decay = 5.1
14 (:a4 4) ; mm = 100; rel = 6; decay = 5.1
15 (PWL-POINT :rel 7.0)
16 (:b4 4) ; mm = 100; rel = 7; decay = 5.1
17 (:c5 4) ; mm = 100; rel = 7; decay = 5.1
18 (:d5 4) ; mm = 100; rel = 7; decay = 5.1
19 (PWL-POINT :rel 7.0)
20 (:e5 4) ; mm = 100; rel = 7; decay = 5.1
21))

8 Score Description Library

3.9 Tempi

ATTR can be used in case of sharp tempo changes, whereas PWL-POINT performs gradual tempo
changes. Example:

1 (setf *sco-8*
2 ’((TF 1)
3 (INIT-INSTR "i1" flute) (INSTRUMENT "i1")
4 (:c4 4)
5 (PWL-POINT :mm 60)
6 :d4 :e4 :f4 :g4
7 (PWL-POINT :mm 60)
8 :e5 :d5 :c5 :b4 :c5
9 (PWL-POINT :mm 30)))

10

11 (score-print (sdl->score *voz-8*))
12

13 => ((0 1 (FLUTE :PITCH 60 :MM 60))
14 (1 1 (FLUTE :PITCH 62 :MM 60))
15 (2 1 (FLUTE :PITCH 64 :MM 60))
16 (3 1 (FLUTE :PITCH 65 :MM 60))
17 (4 1 (FLUTE :PITCH 67 :MM 60))
18 (5 1 (FLUTE :PITCH 76 :MM 60))
19 (6 1.11111 (FLUTE :PITCH 74 :MM 54)) ; ritardando
20 (7.11111 1.25 (FLUTE :PITCH 72 :MM 48))
21 (8.36111 1.42857 (FLUTE :PITCH 71 :MM 42))
22 (9.78968 1.66667 (FLUTE :PITCH 72 :MM 36))
23)

3.10 Macros

A basic macro implementation is available in SDL which allows for a specification of repetitive
structures such as tremeloes, etc. The MAC instruction is used for this purpose. The first argument
is the name of a Lisp function and the rest ones represents the arguments for this function. Example:

1 ; Nyquist function that repeats an event n times
2

3 (defun sdl-repeat (n quoted-event)
4 (let (result)
5 (dotimes (i n (apply #’append result))
6 (push quoted-event result))))
7

8 ; macro sdl-repeat called from a score
9 ; the sequence :f4 :g4 is repeated 4 times

10

11 (setf *score*
12 ’((TF 1.0)
13 (INIT-INSTR "i1" flute2)(INSTRUMENT "i1")(ATTR :mm 60)
14 (:e4 4) (MAC sdl-repeat 4 (:f4 :g4))))
15

16 (sdl->score *score*))
17

18 => ((0 1 (FLUTE2 :PITCH 64 :MM 60))
19 (1 1 (FLUTE2 :PITCH 65 :MM 60)) ; f4 repite 4 veces f4 g4
20 (2 1 (FLUTE2 :PITCH 67 :MM 60)) ; g4
21 (3 1 (FLUTE2 :PITCH 65 :MM 60)) ; f4
22 (4 1 (FLUTE2 :PITCH 67 :MM 60)) ; g4

3. REFERENCE GUIDE 9

23 (5 1 (FLUTE2 :PITCH 65 :MM 60)) ; f4
24 (6 1 (FLUTE2 :PITCH 67 :MM 60)) ; g4
25 (7 1 (FLUTE2 :PITCH 65 :MM 60)) ; f4
26 (8 1 (FLUTE2 :PITCH 67 :MM 60)) ; g4
27)

Macros can be also used to control the parameter values through a Lisp function instead of speci-
fying them note by note. Example:

1 ; pitches controlled by logistic equation
2

3 (setf *logistica* 0.3)
4 (setf *k* 3.97)
5

6 (defun logistica ()
7 (setf *logistica* (* *k* (- 1.0 *logistica*) *logistica*)))
8

9 (defun call-logistica (n dur pitch-min pitch-interval)
10 (let (result)
11 (dotimes (i n (reverse result))
12 (push (list (pitch-min (round (* (logistica) pitch-interval))) dur)
13 result))))
14

15 (setf *score2*
16 ’((TF 1.0)
17 (INIT-INSTR "i1" flute2)(INSTRUMENT "i1")(ATTR :mm 60)
18 (:e4 4) (MAC call-logistica 5 4 30 15)))
19

20 (score-print (sdl->score *score2*))
21

22 => ((0 1 (FLUTE2 :PITCH 64 :MM 60))
23 (1 1 (FLUTE2 :PITCH 43 :MM 60))
24 (2 1 (FLUTE2 :PITCH 38 :MM 60))
25 (3 1 (FLUTE2 :PITCH 45 :MM 60))
26 (4 1 (FLUTE2 :PITCH 31 :MM 60))
27 (5 1 (FLUTE2 :PITCH 34 :MM 60))
28)

3.11 SDL Functions

FUN instruction allows for defining score events through Lisp functions.
Warning: The inclusion of attribute :mm is mandatory if the event to be generated is a note.

Example:

1 (load "xm")
2

3 (setf *my-durations* (make-heap (list 4 6 8)))
4

5 (defun heap-durations (inicio pitch)
6 (let ((dur (next *my-durations*)))
7 (list inicio dur (list ’sinte-fun :pitch pitch :mm 60 :idur dur))))
8

9 (setf *score3*
10 ’((TF 1.0)
11 (INIT-INSTR "i1" flute2)(INSTRUMENT "i1")(ATTR :mm 60)
12 (:e4 4)

10 Score Description Library

13 (FUN #’heap-durations 1 :c4)
14 (FUN #’heap-durations 2 :d4)
15 (FUN #’heap-durations 3 :e4)
16 (FUN #’heap-durations 4 :c4)
17 (FUN #’heap-durations 7 :d4)))
18

19 (sdl->score *score3*)
20

21 => ((0 1 (FLUTE2 :PITCH 64 :MM 60))
22 (0.25 1.5 (SINTE-FUN :PITCH :C4 :MM 60 :IDUR 6))
23 (0.5 1 (SINTE-FUN :PITCH :D4 :MM 60 :IDUR 4))
24 (0.75 2 (SINTE-FUN :PITCH :E4 :MM 60 :IDUR 8))
25 (1 1.5 (SINTE-FUN :PITCH :C4 :MM 60 :IDUR 6))
26 (1.75 1 (SINTE-FUN :PITCH :D4 :MM 60 :IDUR 4))
27)

4 Reference summary

4.1 SDL format for score instructions

(TF args: time-factor)
Overall Time Factor. All the durations in the score are multiplied by this factor.

(TIME-IN-SECONDS)
No arguments needed. Durations are measured in seconds when tempo is set to 60.

(DUR lisp-expr)
Sets the value of the current duration. Any Lisp expression can be used as argument.

(DELTA lisp-expr)
Increases the time value.

(PAU lisp-expr)
The same as DELTA.

(INIT-INSTR string function-name)
Initializes an instrument. It maps the score name instrument string to the synthesis function

function-name.

(INSTRUMENT string)
Sets the current instrument to string. The notes following this instruction are rendered by

the instrument string until a new instrument is set.

(ATTR :symbol lisp-expr)
Sets :symbol value to lisp-expr. The first argument must start with a colon. The value for

this attribute is kept until a new ATTR instruction is reached.

(PWL-POINT :symbol lisp-expr)
Behaves like ATTR. The only difference is that a linear interpolation is performed between two

consecutive PWL-POINT instructions.

(CH &rest pitches)

5. LAMBDA MUSIC COMPATIBILITY 11

Produces a chord containing the pitches given by its argument and the current duration.

(CH1 pitch duration)
Produces a note whose pitch and duration are given by the arguments. Time is not increased,

so that the next event starts at the same time.

(FUN #’function-name &rest args)
Calls the function function-name sending the arguments in the args list. The returning value

must be an event to be added to an Xmusic score. This event has to be processed by the Nyquist
function timed-seq. Hence, the event must follow the format (start-time stretching-factor
synthesis-function-call)

(MAC macro-name &rest args)
Calls the function macro-name sending the arguments in the args list. The returning value

must be SDL code which replaces the call to the macro.

number
This is actually a rest of number beat duration.

symbol
A note whose pitch is given by symbol and with the current duration.

(pitch dur)
Note specified by pitch and dur arguments.

4.2 SDL library functions

(sdl->score score-data &optional time-marks)
Produces an Xmusic score consisting of a (onset-time stretch-factor synthesis-function)

format event list.
score-data is a SDL score. time-marks is a symbol whose property list contains the time labels
to be referenced from score-data.

(sdl->timelabels score-data &optional time-marks)
Returns a symbol whose property-list contains the time labels in time-marks added to score-data

time labels. Sinchronicity can be ensured by using time labels.
(sdl:normalize-score-duration score)

score is an Xmusic score. This function sets all the event stretching factors to 1.0. This is
intended for making synthesis parameters independent from notes duration.

5 lambda Music compatibility

lambda Music is a library developed in Common Lisp and intended for MIDI rendering. Many
scores from lambda Music can be converted to SDL by introducing just minor changes.

6 Final remarks

This library is just an attempt to facilitate the music transcription from traditional notation to
synthesis in Nyquist. Currently it is under development and therefore some features have to be im-

12 Score Description Library

proved. For instance, the inconsistency between physical and score time. In addition, an extended
implementation of the macros should be considered.

