1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
; SPATIAL.LSP
; created by Adam Hartman and Roger B. Dannenberg
; 2005
; stereo manipulation and spatialization functions
; EMPHIGH -- use four equalizer bands to emphasize
; the higher frequencies in an input sound
;
(defun emphigh (base)
(eq-band
(eq-band
(eq-band
(eq-band base 31 -3 1)
62 -3 1)
8000 3 1)
16000 3 1))
; EMPLOW -- use four equalizer bands to emphasize
; the lower frequencies in an input sound
;
(defun emplow (base)
(eq-band
(eq-band
(eq-band
(eq-band base 31 3 1)
62 3 1)
8000 -3 1)
16000 -3 1))
; LEFTIN -- apply low frequency emphasis to a sound
(defun leftin (inl) (emplow inl))
; RIGHTIN - apply high frequency emphasis and
; a very slight delay to a sound
;
(defun rightin (inr) (seq (s-rest 0.02) (emphigh inr)))
; STEREOIZE -- create a stereo sound from a monaural source
;
(defun stereoize (monoin)
(vector (leftin monoin) (rightin monoin)))
; EXTRACTLEFT -- extract the left channel of a stereo sound
(defun extractleft (inl) (aref inl 0))
; EXTRACTRIGHT -- extract the right channel of a stereo sound
(defun extractright (inr) (aref inr 1))
; WSUM -- weighted sum of two monaural sounds
;
; inl: first monaural sound
; inr: second monaural sound
; amtl: multiplier for the first monaural sound
; amtr: multiplier for the second monaural sound
;
(defun wsum (inl inr amtl amtr)
(sum (mult inl amtl) (mult inr amtr)))
; SMIXER -- remix a stereo signal
;
; in: original stereo sound
; lamtl: amount in new left channel from the original left channel
; lamtr: amount in new left channel from the original right channel
; ramtl: amount in new right channel from the original left channel
; ramtr: amount in new right channel from the original right channel
; Note: lamtl, lamtr, ramtl, ramtr should have values in the
; range of -1 to 1 and may be static numbers or sounds
;
(defun smixer (in lamtl lamtr ramtl ramtr)
(let ((eleft (extractleft in)) (eright (extractright in)))
(vector (wsum eleft eright lamtl lamtr)
(wsum eleft eright ramtl ramtr))))
; WIDEN -- widen the field of a stereo sound
;
; in: original stereo sound
; amt: a value between 0 and 1 which represents a widening factor
; 0 will leave the sound unchanged while 1 indicates the widest
; possible stereo field
; Note: amt may be a static number or a sound
;
(defun widen (in amt)
(let ((widenamt (mult -1 amt)))
(smixer in 1 widenamt widenamt 1)))
; SPAN -- pan the virtual center channel of a stereo sound
;
; in: original stereo sound
; amt: a value between 0 and 1 which represents the panning location
; 0 pans the center channel all the way to the left while 1 pans
; it all the way to the right
; Note: amt may be a static number or a sound
;
(defun span (in amt)
(let ((leftc (sum 0.5 (mult -1 amt))) (rightc (sum -0.5 amt)))
(smixer in 0.5 leftc rightc 0.5)))
; SWAPCHANNELS -- swap the two channels in a stereo sound
(defun swapchannels (in) (vector (aref in 1) (aref in 0)))
#| NOTE: there's nothing wrong with the code that is commented out here.
These functions were in the original library, but I have commented them
out because they are very simple and not very general. Perhaps they
can be incorporated in an expanded form in a future version of Nyquist.
For example, some general 3-D positioning with Doppler effects, etc.,
and some more elaborate HRTF code would be very interesting. Feel free
to give these a try. -RBD
; IID -- position a monaural sound source by attenuating the volume
; of the sound at each ear point based on the distance between the
; two ear points and the distance of the sound source from the listener
;
; in: monaural source sound
; dist: lateral distance of the sound source from the listener in meters
; headwidth: width of the listener's head (i.e. the distance between
; the two ears) in meters
; rorl: a value of either 0 or 1 which represents whether the sound
; source is to the left or to the right of the listener
;
(defun iid (in dist headWidth RorL)
(let ((nearmult (/ 1.0 (mult dist dist)))
(farmult (/ 1.0 (mult (sum dist headWidth)
(sum dist headWidth)))))
(if (eq rorl 0)
; sound source is to the left of listener
(vector (mult in nearmult) (mult in farmult))
; sound source is to the right of listener
(vector (mult in farmult) (mult in nearmult)))))
; ITD -- position a monaural sound source by delaying the arrival
; of the sound at each ear point based on the distance
; between the two ear points and the distance of the sound
; source from the listener
; in: monaural source sound
; dist: lateral distance of the sound source from the listener in meters
; headwidth: width of the listener's head (i.e. the distance
; between the two ears) in meters
; rorl: a value of either 0 or 1 which represents whether the sound
; source is to the left or to the right of the listener
;
(defun itd (in dist headWidth RorL)
(let ((neardel (mult 0.0029387 dist))
(fardel (mult 0.0029387 (sum dist headWidth))))
(if (eq rorl 0)
; sound source is to the left of listener
(vector (seq (s-rest neardel) in ) (seq (s-rest fardel) in))
; sound source is to the right of listener
(vector (seq (s-rest fardel) in) (seq (s-rest neardel) in)))))
; CFSPATIALIZATION -- a spatialization effect based on a cross-feed network
;
(defun cfspatialization (in)
(let ((shadowLeft (lp (seq (s-rest 0.0004) (aref in 0)) 265))
(shadowRight (lp (seq (s-rest 0.0004) (aref in 1)) 265)))
(vector (sum (aref in 0) shadowRight) (sum (aref in 1) shadowLeft))))
; CUSTBP -- a helper function that creates a custom bandpass filter
; for use in the hrtfapprox function
(defun custbp (in) (lp (sum (hp in 4980) (mult in 0.75)) 7900))
; HRTFAPPROX -- a spatialization effect based on an approximated HRTF
;
(defun hrtfapprox (in)
(let ((filteredLeft (seq (s-rest 0.00025) (custbp (aref in 0))))
(filteredRight (seq (s-rest 0.00025) (custbp (aref in 1)))))
(vector (sum (aref in 0) (lp filteredRight 10200))
(sum (aref in 0) (lp filteredLeft 1020)))))
|#
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Dolby Pro-Logic encoding and a
;; 2D Sound Positioning Scheme
;;
;; Dave Borel (dborel) with minor changes by
;; Roger B. Dannenberg
;;
;; Features:
;; -Dolby Pro-Logic panning
;; -Doppler for moving sounds
;; -Distance attenuation
;; -Atmospheric damping of high frequencies
;; -Progagation delay
;; -Test programs
(setf config 1) ;Distance between listener and speakers
;---------------------------------------------------
; Math Helpers
;---------------------------------------------------
;
; Distance between two points
;
(defun dist (x0 y0 x1 y1)
(let* ( (rx (sum x1 (mult -1.0 x0)))
(ry (sum y1 (mult -1.0 y0))) )
(s-sqrt (sum (mult rx rx) (mult ry ry)))))
;
; Raise x to each sample of snd
;
(defun s-expt (x snd)
(s-exp (mult (s-log x) snd)))
;;
;; SPATIALIZATION HELPERS:
;;
;
; Doppler effect
;
(defun pl-doppler (snd r)
(let* ( (v (mult -1 (slope r)))
(ratio (recip (sum 1 (mult v (recip 344.31)))))
(map (integrate ratio)) )
(sound-warp map snd) ))
;
; Distance-based low-pass filter
; (see report)
;
(defun absorb (snd r-m)
(lp snd (mult 14763.67 (s-expt 0.97895 r-m))))
;
; Distance-based attenuation
; (see report)
;
(defun atten (snd r)
; (let* ( (log2-r (mult (s-log r) (recip (log 10.0))))
; (db-ratio (mult 20 log2-r))
; (ratio (db-to-linear db-ratio)) )
;
; (mult (clip ratio 1.0) snd)))
(mult snd (clip (recip (mult r r)) 1)))
;
; Top-level spatializer
; sound source at (x,y)
; speaker at (xs, ys)
; assumes listener at (0,0)
;
; You could use this with
; configurations other than
; pro-logic (e.g. 6.1, 7.1, etc)
;
(defun stage (snd x y xs ys)
(let* ( (r (dist x y 0 0))
(rs (dist xs ys 0 0))
(x-hat (mult x (recip r)))
(y-hat (mult y (recip r)))
(xs-hat (mult xs (recip rs)))
(ys-hat (mult ys (recip rs)))
(dot (sum (mult x-hat xs-hat) (mult y-hat ys-hat)))
(overlap (mult 0.5 (sum dot (s-abs dot)))) )
(mult overlap snd)))
;---------------------------------------------------
; Speaker Mixing
;---------------------------------------------------
;
; Dolby Pro-Logic Encoder
;
(defun prologic (left center right surround)
(let* ( (c (scale 0.5 center))
(s (highpass2 (lowpass2 (scale 0.5 surround) 7000) 100) )
(slfe (scale 0.25 (lp surround 100)))
(l (sim left center (mult -1.0 s) slfe))
(r (sim right center s slfe)) )
(vector l r)))
;
; Direct-to-speaker playback
;
(defun pl-left (snd) (let ((s (mult 0 snd))) (prologic snd s s s)))
(defun pl-center (snd) (let ((s (mult 0 snd))) (prologic s snd s s)))
(defun pl-right (snd) (let ((s (mult 0 snd))) (prologic s s snd s)))
(defun pl-rear (snd) (let ((s (mult 0 snd))) (prologic s s s snd)))
;
; Pans a sound across the surround speakers
; (no realistic imaging or attenuation)
; Works like pan but y specifies depth
(defun pl-pan2d (s-in x y)
(let ((snd (scale 0.5 s-in)))
(prologic (mult snd (sum 1.0 (mult -1.0 x)
(sum 1 (mult -1.0 y))) );left
(mult snd 0.0) ;center(null)
(mult snd x (sum 1.0 (mult -1.0 y) )) ;right
(mult snd y 0.5)))) ;rear
;
; Position a sound in the 2D soundstage
; Includes spatialization effects
;
; (x,y) may be (flonum, flonum) or (behavior, behavior)
;
(defun pl-position (s-in x y config)
(let* ( (r-m (dist x y 0 0))
(r (mult r-m (recip config)))
(spd-snd (/ 344.31 config))
(offset (if (soundp r-m)
(/ (aref (snd-samples r 1) 0) spd-snd)
(/ r spd-snd)))
(snd (seq (s-rest offset)
(if (soundp r-m)
(atten (absorb (pl-doppler s-in r-m) r-m) r)
(atten (absorb s-in r-m) r)))) )
; Two Notes:
; 1.) The center channel is automatically imaged correctly
; because sounds placed between the left-and-right channels
; distribute linearly between the two channels.
;
; 2.) Although the below settings assume that all speakers are
; equidistant from the listener, you can easily assume a
; different layout by modifying the xs and ys values in
; each channel's call to the stage function.
;
(prologic (stage snd x y -.1913 -.4619) ;left
(scale 0.0 snd) ;center (null)
(stage snd x y .1913 -.4619) ;right
(stage snd x y 0.0 .5 )))) ;rear
;---------------------------------------------------
; Diagnostics
;---------------------------------------------------
;
; Pro-Logic Channel Test Tones
;
(defun pl-test ()
(play (prologic
( osc-note a3 )
(seq (s-rest 1.25) (osc-note b3))
(seq (s-rest 2.5 ) (osc-note c4))
(seq (s-rest 3.75) (osc-note d4)) )))
;
; Pan Test
;
(defun pan-test ()
(play (pl-pan2d
(seq
(s-rest .25) (osc a3 .75)
(s-rest .25) (osc b3 .75)
(s-rest .25) (osc c4 .75)
(s-rest .25) (osc d4 .75))
(pwl
0 0
0.99 0
1 1
2.99 1
3 0
4 0
4 )
(pwl
0 0
1.99 0
2 1
4 1
4 ))))
;
; Doppler test
;
(defun dop ()
(play (pl-doppler (osc c4 10) (pwl .25 0 .5 100 .75 100 1.0))))
;
; Attenuation test
;
(defun att ()
(play (atten (osc-note c4 4)
(pwl 0 2
1 2
2 100
3 100
4 2
4 ))))
;
; Doppler positioning test (ambulance)
;
(defun ambulance ()
(play (scale 0.2
(pl-position
(stretch 16 (fmosc c4 (mult 1000 (lfo 2))))
(pwl
0 -20
8 20
8 )
(pwl
0 0
8 )
config))))
;
; Position test
;
; Make a sound orbit the listener
(defun orbit-x (r t times)
(let (k)
(seqrep (k times)
(pwl
0.0 0.0
(/ t 4) r
(/ t 2) 0.0
(/ (* t 3) 4) (* -1 r)
t 0.0
t ) )))
(defun orbit-y (r t times)
(let (k)
(seqrep (k times)
(pwl
0.0 (* -1 r)
(/ t 4.0) 0.0
(/ t 2.0) r
(/ (* t 3.0)4.0) 0.0
t (* -1 r)
t ) )))
(defun orbit (snd r t times)
(pl-position snd
(orbit-x r t times)
(orbit-y r t times)
config))
; Play some tones
(defun pos-1 ()
(play (pl-position
(seq
(s-rest .125) (osc a3 1.75)
(s-rest .25) (osc b3 1.75)
(s-rest .25) (osc c4 1.75)
(s-rest .25) (osc d4 1.75) (s-rest .125))
(pwl
0 -5
1 5
2 5
3 -5
4 -5
5 5
6 5
7 -5
8 -5
8 )
(pwl
0 -5
1 -5
2 5
3 5
4 -5
5 -5
6 5
7 5
8 -5
8 )
config)))
(defun pos-2 ()
(play (seq
(orbit (seq
(s-rest .125) (osc a3 1.75)
(s-rest .25) (osc b3 1.75)
(s-rest .25) (osc c4 1.75)
(s-rest .25) (osc d4 1.75) (s-rest .125))
5 8 1)
(orbit (seq
(s-rest .125) (osc a3 1.75)
(s-rest .25) (osc b3 1.75)
(s-rest .25) (osc c4 1.75)
(s-rest .25) (osc d4 1.75) (s-rest .125))
5 8 1))))
|