1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
(IFFT-ALG
(NAME "ifft")
(ARGUMENTS ("time_type" "t0") ("rate_type" "sr")
("LVAL" "src") ("long" "stepsize")
("LVAL" "window"))
(SUPPORT-FUNCTIONS "
/* index: index into outbuf whree we get output samples
* length: size of the frame, window, and outbuf; half size of samples
* array: spectral frame goes here (why not a local var?)
* window_len: size of window, should equal length
* outbuf: real part of samples are multiplied by window and added to
* outbuf (after shifting)
* src: send :NEXT to this object to get next frame
* stepsize: shift by this many and add each frame
* samples: result of ifft goes here, real and imag
* window: multiply samples by window if any
*
* IMPLEMENTATION NOTE:
* The src argument is an XLisp object that returns either an
* array of samples or NIL. The output of ifft is simply the
* concatenation of the samples taken from the array. Later,
* an ifft will be plugged in and this will return overlapped
* adds of the ifft's.
*
* OVERLAP: stepsize must be less than or equal to the length
* of real part of the transformed spectrum. A transform step
* works like this:
* (1) shift the output buffer by stepsize samples, filling
* the end of the buffer with zeros
* (2) get and transform an array of spectral coefficients
* (3) multiply the result by a window
* (4) add the result to the output buffer
* (5) output the first stepsize samples of the buffer
*
* DATA FORMAT: the DC component goes in array elem 0
* Cosine part is in elements 2*i-1
* Sine part is in elements 2*i
* Nyquist frequency is in element length-1
*/
#include \"samples.h\"
#include \"fftext.h\"
#include \"fft.h\"
#define MUST_BE_FLONUM(e) \\
if (!(e) || ntype(e) != FLONUM) { xlerror(\"in IFFT: flonum expected\", (e)); }
table_type get_window_samples(LVAL window, sample_type **samples, long *len)
{
table_type result = NULL;
if (soundp(window)) {
sound_type window_sound = getsound(window);
xlprot1(window); /* maybe not necessary */
result = sound_to_table(window_sound);
xlpop();
*samples = result->samples;
*len = (long) (result->length + 0.5);
}
return result;
}
")
(SAMPLE-RATE "sr")
(STATE
("long" "index" "stepsize") ; samples index
("long" "length" "0") ; samples length
("LVAL" "array" "NULL")
("long" "window_len" "0")
("sample_type *" "outbuf" "NULL")
("LVAL" "src" "src")
("long" "stepsize" "stepsize")
("sample_type *" "window" "NULL") ; window samples
("sample_type *" "samples" "NULL")
("table_type" "table"
"get_window_samples(window, &susp->window, &susp->window_len)"))
(OUTER-LOOP "
if (susp->src == NULL) {
out: togo = 0; /* indicate termination */
break; /* we're done */
}
if (susp->index >= susp->stepsize) {
long i;
long m, n;
LVAL elem;
susp->index = 0;
susp->array =
xleval(cons(s_send, cons(susp->src, consa(s_next))));
if (susp->array == NULL) {
susp->src = NULL;
goto out;
} else if (!vectorp(susp->array)) {
xlerror(\"in IFFT: array expected\", susp->array);
} else if (susp->samples == NULL) {
/* assume arrays are all the same size as first one;
now that we know the size, we just have to do this
first allocation.
*/
susp->length = getsize(susp->array);
if (susp->length < 1)
xlerror(\"in IFFT: array has no elements\", susp->array);
if (susp->window && (susp->window_len != susp->length))
xlerror(\"in IFFT: window size and spectrum size differ\",
susp->array);
/* tricky non-power of 2 detector: only if this is a
* power of 2 will the highest 1 bit be cleared when
* we subtract 1 ...
*/
if (susp->length & (susp->length - 1))
xlfail(\"spectrum size must be a power of 2\");
if (susp->stepsize < 1)
xlfail(\"in IFFT: step size must be greater than zero\");
if (susp->length < susp->stepsize)
xlerror(\"in IFFT: step size must be smaller than spectrum size\",
susp->array);
susp->samples = (sample_type *) calloc(susp->length,
sizeof(sample_type));
susp->outbuf = (sample_type *) calloc(susp->length,
sizeof(sample_type));
} else if (getsize(susp->array) != susp->length) {
xlerror(\"in IFFT: arrays must all be the same length\", susp->array);
}
/* at this point, we have a new array to put samples */
/* the incoming array format is [DC, R1, I1, R2, I2, ... RN]
* where RN is the real coef at the Nyquist frequency
* but susp->samples should be organized as [DC, RN, R1, I1, ...]
*/
n = susp->length;
/* get the DC (real) coef */
elem = getelement(susp->array, 0);
MUST_BE_FLONUM(elem)
susp->samples[0] = (sample_type) getflonum(elem);
/* get the Nyquist (real) coef */
elem = getelement(susp->array, n - 1);
MUST_BE_FLONUM(elem);
susp->samples[1] = (sample_type) getflonum(elem);
/* get the remaining coef */
for (i = 1; i < n - 1; i++) {
elem = getelement(susp->array, i);
MUST_BE_FLONUM(elem)
susp->samples[i + 1] = (sample_type) getflonum(elem);
}
susp->array = NULL; /* free the array */
/* here is where the IFFT and windowing should take place */
//fftnf(1, &n, susp->samples, susp->samples + n, -1, 1.0);
m = ROUND32(log2(n));
if (!fftInit(m)) riffts(susp->samples, m, 1);
else xlfail(\"FFT initialization error\");
fft_shift(susp->samples, n);
if (susp->window) {
n = susp->length;
for (i = 0; i < n; i++) {
susp->samples[i] *= susp->window[i];
}
}
/* shift the outbuf */
n = susp->length - susp->stepsize;
for (i = 0; i < n; i++) {
susp->outbuf[i] = susp->outbuf[i + susp->stepsize];
}
/* clear end of outbuf */
for (i = n; i < susp->length; i++) {
susp->outbuf[i] = 0;
}
/* add in the ifft result */
n = susp->length;
for (i = 0; i < n; i++) {
susp->outbuf[i] += susp->samples[i];
}
}
togo = min(togo, susp->stepsize - susp->index);\n")
(INNER-LOOP "output = outbuf[index++]")
(CONSTANT "length" "samples" "array" "src" "window")
(TERMINATE COMPUTED)
(FINALIZATION " if (susp->samples) free(susp->samples);
if (susp->table) table_unref(susp->table);
if (susp->outbuf) free(susp->outbuf);\n")
)
|