File: examples.sal

package info (click to toggle)
nyquist 3.20%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 58,008 kB
  • sloc: ansic: 74,743; lisp: 17,929; java: 10,723; cpp: 6,690; sh: 171; xml: 58; makefile: 40; python: 15
file content (668 lines) | stat: -rw-r--r-- 18,291 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
;; examples.sal -- these are from the Nyquist Manual examples
;;
;; (This was going to be an extension, but I decided it's better
;; to have something loaded that anyone can run just to exercise
;; Nyquist and be sure everything is basically working.)
;;
;; Nyquist Extension
;; Version: 1.0;
;;
;; Author Name: Roger B. Dannenberg;
;; Author Email: rbd@cs.cmu.edu;
;; 
;; Additional File: examples.lsp;
;;
;; End Metadata

;; Usage: 
;;    load "examples.sal"
;;    exec ex-all()     ;; play all examples in this extension
;;    exec ex-global()  ;; play all extension demos (if installed)

;; Description:
;;
;; This extension is based on Nyquist Manual examples. The examples
;; are implemented in Lisp syntax in examples/examples.lsp.

;; eliminate some warnings by declaring globals
variable *fm-voice*, *a-voice*, *mkwave* = #t

variable *libpath* = current-path()

define function ex1()
  play osc(60)

define function ex2()
  play 0.5 * osc(60)

; build-harmonic is already defined in nyquist.lsp
;
;(defun build-harmonic (n) (snd-sine 0 n tablesize 1))

define function mkwave()
  begin
    set *table* = 0.5 * build-harmonic(1, 2048) +
                  0.25 * build-harmonic(2, 2048) +
                  0.125 * build-harmonic(3, 2048) +
                  0.0625 * build-harmonic(4, 2048)
    set *table* = list(*table*, hz-to-step(1.0), #t)
  end


if *mkwave* then
  begin
    exec mkwave()
    set *mkwave* = #f
  end


define function my-note(pitch, dur)
  return osc(pitch, dur, *table*)


define function ex3()
  play seq(my-note(c4, i), my-note(d4, i), my-note(f4, i), 
           my-note(g4, i), my-note(d4, q))


define function env-note(p)
  return my-note(p, 1.0) *
         env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)


define function ex4()
  play env-note(c4)


define function ex5()
  play seq(seq(env-note(c4), env-note(d4)) ~ 0.25,
           seq(env-note(f4), env-note(g4)) ~ 0.5,
           env-note(c4))


define function ex6()
  play seq(my-note(c4, q), my-note(d4, i))


define function ex7()
  play 0.5 * sim(my-note(c4, q), my-note(d4, i))

;; previous versions could not get current-path to locate demo-snd.aiff...
;(format t "~%examples.lsp tries to load demo-snd.aiff from the~%")
;(format t "default sound file directory, which is stored in~%")
;(format t "the variable *default-sf-dir*. The current value is:~%")
;(format t "\"~A\". If you get an error immediately, you should~%"
;        *default-sf-dir*)
;(format t "either set *default-sf-dir* or copy demo-snd.aiff~%")
;(format t "where Nyquist will find it.~%")

set a-snd = s-read(strcat(*libpath*, "../demos/audio/demo-snd.aiff"))


define function ex8()
  play a-snd


define function ex9()
  play seq(cue(a-snd), cue(a-snd))


define function ex10()
  play sim(cue(a-snd) @ 0.0,
           cue(a-snd) @ 0.7,
           cue(a-snd) @ 1.0,
           cue(a-snd) @ 1.2)


define function ex11()
  play sim(cue(a-snd),
           loud(6.0, cue(a-snd) @ 3))


define function ex12()
  play loud(6.0, sim(cue(a-snd) @ 0.0,
                     cue(a-snd) @ 0.7))


define function snds(dly)
  return sim(cue(a-snd) @ 0.0,
             cue(a-snd) @ 0.7,
             cue(a-snd) @ 1.0,
             cue(a-snd) @ (1.2 + dly))


define function ex13()
  play snds(0.1)


define function ex14()
  play loud(0.25, snds(0.3) ~ 0.9)


define function ex15()
  play sound-srate-abs(44100.0, osc(c4))


define function tone-seq()
  return seqrep(i, 16,
                osc-note(c4) ~ 0.25)


define function pitch-rise()
  ; pitch-rise turns tone-seq into a chromatic scale 
  ; through transposition
  ; override sustain to avoid changing ramp duration
  return sustain-abs(1.0, 16 * ramp() ~ 4)


define function chromatic-scale()
  return transpose(pitch-rise(), tone-seq())


define function ex16()
  play chromatic-scale()


define function ex17()
  play sustain((0.2 + ramp()) ~ 4,
               chromatic-scale())


define function warper()
  ; between 0 and 1, warper goes slow/fast/slow, then
  ; it adds extra 1-to-1 mapping from 1 to 2, which is
  ; just "padding" to avoid numerical problems near 1.0
  return pwl(0.25, .4, .75, .6, 1.0, 1.0, 2.0, 2.0, 2.0)


define function warp4()
  ; stretch by 4 and scale by 4: now we're warping
  ; a 4 second sequence within a 4 second duration
  return 4 * warper() ~ 4


define function ex18()
  play warp(warp4(), tone-seq())


; note: as explained in the manual, the following is NOT
; the solution to a fixed duration/variable tempo sequence:
;
define function tone-seq-2 ()
  return seqrep(i, 16,
                osc-note(c4) ~~ 0.25)


define function ex19()
  play warp(warp4(), tone-seq-2())

; here is the proper solution (vs. ex19):
;
define function tone-seq-3()
  return seqrep(i, 16,
                set-logical-stop(osc-note(c4) ~~ 0.25, 0.25))


define function ex20()
  play warp(warp4(), tone-seq-3())


define function ex21()
  play warp(warp4(),
            transpose(pitch-rise(), tone-seq()))


define function ex22()
  play warp(warp4(),
            transpose(control-warp(get-warp(),
                                   warp-abs(nil, pitch-rise())),
                      tone-seq()))


if not(boundp(quote(a-snd))) then
  set a-snd = s-read("demo-snd.aiff")


define function ex23()
  play force-srate(*default-sound-srate*,  sound(a-snd) ~ 3.0)

define function down()
  return force-srate(*default-sound-srate*, 
                     seq(sound(a-snd) ~ 0.2,
                         sound(a-snd) ~ 0.3,
                         sound(a-snd) ~ 0.4,
                         sound(a-snd) ~ 0.6))


define function ex24()
  play down()

define function up()
  return force-srate(*default-sound-srate*,
                     seq(sound(a-snd) ~ 0.5,
                         sound(a-snd) ~ 0.4,
                         sound(a-snd) ~ 0.3,
                         sound(a-snd) ~ 0.2))


define function ex25()
  play seq(down(), up(), down())


define function ex26()
  begin
    exec s-save(a-snd, 1000000000, "a-snd-file.snd")
    play "a-snd-file.snd"
    exec system(strcat("rm ", *default-sf-dir*, "a-snd-file.snd"))
  end


define function ex27()
  begin
    set my-sound-file = "a-snd-file.snd"
    exec s-save(a-snd, 1000000000, my-sound-file)
    exec play-file(my-sound-file)
    exec system(strcat("rm ", *default-sf-dir*, my-sound-file))
  end


; note that Nyquist's "Autonorm" facility probably makes this example
; superfluous
define function ex28()
  begin
    ; normalize in memory.  First, assign the sound to a variable so 
    ; it will be retained:
    set mysound = sim(osc(c4), osc(c5))
    ; now compute the maximum value (ny:all is a 1 giga-samples, you may want a
    ; smaller constant if you have less than 4GB of memory :-):
    set mymax = snd-max(mysound, NY:ALL)
    display "Computed max", mymax
    ; now write out and play the sound from memory with a scale factor:
    play mysound * (0.9 / mymax)
  end


define function myscore()
  return sim(osc(c4), osc(c5))


define function ex29()
  begin
    ; if you don't have space in memory, here's how to do it:
    ; Compute the maximum. This is a bit tricky in SAL because snd-max
    ; is looking for an expression (in LISP) to evaluate, not a sound.
    ; Use list and quote to create the LISP expression '(myscore):
    set mymax = snd-max(list(quote(myscore)), NY:ALL)
    display "Computed max", mymax
    ; now we know the max, but we don't have a the sound (it was garbage
    ; collected and never existed all at once in memory).  Compute the sound
    ; again, this time with a scale factor:]
    play myscore() * (0.9 / mymax)
  end


define function ex30()
  play fmosc(c4, pwl(0.1))


define function ex31()
  play fmosc(c4, pwl(0.5))


define function ex32()
  play fmosc(c4, pwl(0.5, step-to-hz(c4),  0.501))


define function ex33()
  begin
    set *fm-voice* = list(extract(0.110204, 0.13932, cue(a-snd)),
                          24.848422,
                          #T)
    play fmosc(cs2, pwl(0.5, step-to-hz(cs2), 0.501),
               *fm-voice*, 0.0)
  end


define function sweep(delay, pitch-1, sweep-time, pitch-2, hold-time)
  begin
    with interval = step-to-hz(pitch-2) - step-to-hz(pitch-1)
    return pwl(delay, 0.0,
               ; sweep from pitch 1 to pitch 2
               delay + sweep-time, interval,
               ; hold until about 1 sample from the end
               delay + sweep-time + hold-time - 0.0005, interval,
               ; quickly ramp to zero (pwl always does this,
               ;    so make it short)
               delay + sweep-time + hold-time)
  end


define function ex34()
  play fmosc(cs2, sweep(0.1, cs2, 0.6, gs2, 0.5),
             *fm-voice*, 0.0)


define function ex35() 
  play fmosc(cs2, 10.0 * lfo(6.0), *fm-voice*, 0.0)


define function ex36()
  begin
    with modulator
    set modulator = pwl(1.0, 1000.0, 1.0005) * 
                    osc(c4)
    play fmosc(c4, modulator)
  end


;;; FINDING ZERO CROSSINGS, SND-SAMPLES

set max-samples-for-zeros = 1000

define function zeros(snd)
  begin
    ; start by getting the samples, only take 1000 samples max
    with s = snd-samples(snd, max-samples-for-zeros),
         newsign, sign, n, len, result, result2, starttime, srate
    ; go through the array looking for zero crossings
    set len = length(s)
    ; stop if there are no samples
    if len = 0 then return nil
    set sign = 0.0 > s[0]
    ; get the start time and sample rate of the sound for use below
    set starttime = car(snd-extent(snd, max-samples-for-zeros))
    set srate = snd-srate(snd)
    set n = 1
    loop
      until n >= len
      set newsign = 0.0 > s[n]
      if not(eq(sign, newsign)) then
        set result = cons(n, result)
      set sign = newsign
      set n += 1
    end
    ; now we have the zero crossings, convert them to times
    loop
      with result2 = nil
      for num in result
      ; return the time of the zero crossing, which is the start time
      ; of the snd plus the sample number / srate
      set result2 = cons(starttime + num / srate, result2)
      finally return result2
    end
  end


define function ex37()
  begin
    ; extract a short piece of this sample
    set short = extract(0.1, 0.14, cue(a-snd))
    set z = zeros(short)
    exec format(t, "Zero crossings from a-snd: ~A~%", z)
  end


; find the differences between zero crossings reported by zeros
; print the result in terms of samples for readability
;
define function periods(lis, short)
  begin
    with result, prev, srate
    if null(lis) then return nil
    set srate = snd-srate(short)
    loop
      set prev = car(lis)
      set lis = cdr(lis)
      if null(lis) then return reverse(result)
      set result = cons(srate * car(lis) - prev, result)
    end
  end

define function ex38()
  ; ex38 depends upon z, set by (ex37)
  begin
    if not(boundp(quote(z))) then exec ex37()
    set p = periods(z, short)
    exec format(t, 
                "The intervals (in samples) between zero crossings are: ~%~A~%",
                p)
  end


; build a wavetable using zero crossing information
;
; I interactively played with the data and decided to extract from the
; 5th period to the 21st period (these had 86 and 87 samples each and
; seem to indicate some kind of periodicity).  The 1st period measures
; from the zeroth zero crossing to the first, so the 5th period measures
; from the 4th zero crossing to the 5th.  I'll arbitrarily take
; the 4th and 20th zero crossing times (the 5th and 20th should work as
; well), and from the data, this looks like 2 waveform periods.
; This is very clear if you plot the data.
;
; arguments are:
;  snd - the sound to extract from
;  zeros - the result of (zeros snd)
;  start - the number of the starting zero crossing
;  stop - the number of the ending zero crossing
;  n - number of periods contained in the extracted sound
;
define function extract-table(snd, zeros, start, stop, n)
  begin
    with starttime, extent, hz
    ; Start by shifting snd to time zero:
    set starttime = car(snd-extent(snd, max-samples-for-zeros))
    set snd = cue(snd) @  - starttime

    exec format(t, "~A~%", snd)
    ; also get the start and stop times and shift them:
    set start = nth(start, zeros) - starttime
    set stop = nth(stop, zeros) - starttime

    exec format(t, "table ~A start ~A stop ~A~%", snd, start, stop)

    ; now extract the samples of interest, note that we are
    ; overwriting our pointer to the snd argument
    set snd = extract(start, stop, cue(snd))
    exec format(t, "table now ~A~%", snd)

    ; now we need to figure out the pitch this sound would represent
    ; when played at its samplerate.  The pitch in hz is 1 / duration,
    ; and duration is the extent of the sound / n.  Therefore, take
    ; n/extent
    set extent = snd-extent(snd, max-samples-for-zeros)
    set hz = n / (cadr(extent) - car(extent))
    ; an osc table is a list of the sound, pitch number, and T (periodic)
    return list(snd, hz-to-step(hz), #t)
  end


define function ex39()
  begin
    ; try it out
    set *a-voice* = extract-table(short, z, 4, 20, 2)
    ; now use the table with an oscillator
    play osc(c3, 1.0, *a-voice*)
  end


define function ex40()
  ; play it at its normal pitch
  play osc(cadr(*a-voice*), 1.0, *a-voice*)


define function ex41()
  play noise()


define function ex42()
  play lp(noise(), 1000.0)


define function ex43()
  play hp(noise(), 1000.0) * 0.5


; low pass sweep from 100 hz to 2000 hz
define function ex44()
  play lp(noise(), pwl(0.0, 100.0, 1.0, 2000.0, 1.0))


; high pass sweep from 50 hz to 4000 hz
define function ex45()
  play hp(noise(), pwl(0.0, 50.0, 1.0, 4000.0, 1.0)) * 0.5


; band pass at 500 hz, 20 hz bandwidth
define function ex46()
  play reson(10.0 * noise(), 500.0, 20.0, 1)


; band pass sweep from 100 to 1000 hz, 20 hz bandwidth
define function ex47()
  play reson(0.03 * noise(),
             pwl(0.0, 200.0, 1.0, 1000.0, 1.0),
             20.0)

define function ex48()
  begin
    load "reverb"
    play reverb(seq(pluck(c4, 0.05), s-rest(8)), 10.0) * 0.2
  end

;; test trigger -- this was broken by some updates to seq, which
;;    shares the property that closures are evaluated to obtain sounds
;;    at some time in the future. This should play 2 short plucks.
define function ex49()
  begin
    play trigger(control-srate-abs(*default-sound-srate*,
                     pwl(0.2, 0, 0.5, 1, 0.6, -0.1, 0.7, 1, 1, 1)),
                  pluck(c5, 0.2) * 0.4)
  end

;; another trigger test
define function ex50()
  begin
    with pitch-pat = make-heap({60 62 65 67 70 72 74 77 79 82 84})
    play 0.25 * trigger(sound-srate-abs(40, noise(10)) - 0.8,
                        (0.1 + rrandom()) * pluck(next(pitch-pat)))
  end


set last-example-number = 50

define function convolve-1()
  begin
    with idur = 5000,
         fill1 = to-mono(s-read(strcat(*libpath*, "plight/fill-1.wav"))),
         crash = to-mono(s-read(strcat(*libpath*, "plight/16-crash-4.wav"))),
         s-array = snd-fetch-array(crash, idur, idur),
         impulse = snd-from-array(0, *sound-srate*, s-array)
    play 0.05 * convolve(fill1, impulse)
  end

define function convolve-2()
  begin 
    with idur = 5000,
         fill1 = to-mono(s-read(strcat(*libpath*, "plight/fill-1.wav"))),
         crash = to-mono(s-read(strcat(*libpath*, "plight/16-crash-4.wav"))),
         impulse = extract-abs(0, idur / *sound-srate*, crash)
    play 0.05 * convolve(fill1, impulse)
  end    



exec format(t, "\nType (ex1) through (ex~A) to run these examples.\n",
            last-example-number)
exec format(t, "See demos/stktest.lsp for more simple sound examples.\n")
exec format(t, "\nI'm turning off Auto-normalization.  See AUTONORM-ON\n")
exec format(t, "in the documentation for an explanation:\n\n")
exec autonorm-off()

define function ex-all ()
  begin
    if *AUTONORMFLAG* then
      exec format(t, "Warning: turning automatic normalization feature off~%")
    exec autonorm-off()
    loop
      for i from 1 to last-example-number
      for fn = list(intern(format(nil, "EX~A", i)))
      exec format(t, "~A~%", fn)
      exec eval(fn)
    end
  end

define function ex-global ()
  begin
    if *AUTONORMFLAG* then
      exec format(t, "Warning: turning automatic normalization feature off~%")
    exec autonorm-off()
    exec convolve-1()
    exec convolve-2()
    exec ex-all()
    exec autonorm-on()
    load "cellautomata/cell_aut.lsp"
    play cell-aut-demo()
    load "arpeggiator/arp.sal"
    exec arp1()
    exec arp2()
    exec arp3()
    exec score-play(arp4(list(c4, e4, b4, c5), 20, 0.15, 3))
    exec score-play(arp-seq())
    load "fft/fft_demo.lsp"
    exec fft-test()
    exec ifft-test()
    exec file-test()
    exec hp-test()
    exec mod-test()
    exec mod-test-w()
    exec mod-test-ww()
    exec mod-test-wws()
    load "lpc/lpcdemo.sal"
    exec ex-1()
    ; exec ex-2() -- cannot save to installation; dirs are read-only
    exec ex-4()
    exec ex-7()
    exec ex-8()
    exec ex-9()
    exec ex-10()
    exec ex-11()
    exec ex-12()
    exec ex-13()
    exec ex-14()
    exec ex-15()
    exec ex-16()
    load "mateos/gong.lsp"
    exec dmhm-gong-test()
    load "mateos/bell.lsp"
    exec dmhm-bell-test()
    load "mateos/organ.lsp"
    exec dmhm-organ-test()
    load "mateos/tuba.lsp"
    exec dmhm-tuba-test()
    load "osc/osc-test.lsp"
    play hzosc-osc()
    play gran-osc()
    play piano-osc()
    exec autonorm-on() ; back on after osc-test.lsp
    load "plight/drum.lsp"
    ;; windows user may not have drums installed so test first
    if fboundp(quote(play-drum-example)) then
      exec play-drum-example()
    load "pmorales/all.lsp"
    load "sdl/inv-08.lsp"
    load "sdl/ej2.lsp"
    load "shepard/shepard.lsp"
    exec playscale(majorscale(60))
    exec playparadoxscale(chromascale(60))
    play sheptone-sweep(60, 60, 2, 72, 60, 12, 4)
    load "stk/stktest.lsp"
    exec all-stk-demos()
    load "midi/example.sal"
    load "pvoc/phasevocoder.sal"
    exec test-all()
  end

exec format(t, "\n\"exec ex-all()\" in SAL or (ex-all) in Lisp will compute and play all examples for testing purposes.\n")
exec format(t, "\"exec ex-global()\" in SAL or (ex-global) in Lisp will load and play all demos (good for testing, but not much indication of where sounds are coming from).\n")