1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
|
<html><head>
<title>Lisp Hints</title>
<style type="text/css">
.example {
color: #000000;
background-color: #F5F5F5;
padding: 8px;
border: #808080;
border-style: solid;
border-width: 1px;
width:auto;
}
.button {
color: #000000;
background-color: #F5F5F5;
padding-top: 1px;
padding-bottom: 1px;
padding-left: 4px;
padding-right: 8px;
border: #808080;
border-style: solid;
border-width: 1px;
white-space: pre;
}
.box {
color: #000000;
padding-top: 4px;
padding-bottom: 4px;
padding-left: 16px;
padding-right: 16px;
border: #808080;
border-style: solid;
border-width: 1px;
}
</style>
</head>
<body>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="tutorials.htm">Tutorials</a> |
<a href="../examples/examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
<hr>
<h1>Lisp Hints</h1>
<hr>
<p>The original document was written by <nobr>Geoffrey J. Gordon</nobr>
[<nobr>ggordon@cs.cmu.edu</nobr>], <nobr>Friday, February 5, 1993</nobr>,
<nobr>for <a href="http://www.cons.org/cmucl/">CMUCL</a></nobr>.</p>
<p>Modified by:</p>
<ul>
<li><nobr>Bruno Haible for <a href="http://www.gnu.org/software/clisp/">CLISP</a>.</nobr></li>
<li><nobr>Tom Almy in 1995 for <a href="http://almy.us/xlisp.html">XLISP Plus</a></nobr>.</li>
<li><nobr>Edgar M. Franke [edgar-rft@web.de] in 2010 for
<a href="http://www.cs.cmu.edu/~music/music.software.html">Nyquist</a></nobr>.</li>
</ul>
<p>All examples tested with <nobr>Nyquist 3.03</nobr> in <nobr>November
2010</nobr>.</p>
<hr>
<h2>Table of Contents</h2>
<hr>
<ol>
<li><nobr><a href="#1">Symbols</a></nobr></li>
<li><nobr><a href="#2">Numbers</a></nobr></li>
<li><nobr><a href="#3">Conses</a></nobr></li>
<li><nobr><a href="#4">Lists</a></nobr></li>
<li><nobr><a href="#5">Functions</a></nobr></li>
<li><nobr><a href="#6">Printing</a></nobr></li>
<li><nobr><a href="#7">Forms and the Top-Level Loop</a></nobr></li>
<li><nobr><a href="#8">Special Forms</a></nobr></li>
<li><nobr><a href="#9">Binding</a></nobr></li>
<li><nobr><a href="#10">Dynamic Scoping</a></nobr></li>
<li><nobr><a href="#11">Arrays</a></nobr></li>
<li><nobr><a href="#12">Strings</a></nobr></li>
<li><nobr><a href="#13">Setf</a></nobr></li>
<li><nobr><a href="#14">Booleans and Conditionals</a></nobr></li>
<li><nobr><a href="#15">Iteration</a></nobr></li>
<li><nobr><a href="#16">Non-local Exits</a></nobr></li>
<li><nobr><a href="#17">Funcall, Apply, and Mapcar</a></nobr></li>
<li><nobr><a href="#18">Lambda</a></nobr></li>
<li><nobr><a href="#19">Sorting</a></nobr></li>
<li><nobr><a href="#20">Equality</a></nobr></li>
<li><nobr><a href="#21">Some Useful List Functions</a></nobr></li>
</ol>
<a name="1"></a>
<hr>
<h2>1 Symbols</h2>
<hr>
<p>A symbol is just a sequence of characters. There are restrictions on what
you can include in a symbol and what the first character can be, but as long
as you stick to letters, digits, and hyphens, you'll be safe. [Except that
if you use only digits and possibly an initial hyphen, Lisp will think you
typed an integer rather than a symbol.] Some examples of symbols:</p>
<pre class="example">
a
b
c1
foo
bar
baaz-quux-garply
</pre>
<p>Some things you can do with symbols follow. Things after a <nobr>'>'
prompt</nobr> are what you type to the Lisp interpreter, while other things
are what the Lisp interpreter prints back to you. The <nobr>semicolon
';'</nobr> is Lisp's comment character. Everything from a ';' to the end of
line is ignored.</p>
<pre class="example">
> (setq a 5) <font color="#008844">; store a number as the value of a symbol</font>
5
> a <font color="#008844">; take the value of a symbol</font>
5
> (let ((a 6)) <font color="#008844">; bind the value of a symbol temporarily to 6</font>
a)
6
> a <font color="#008844">; the value returns to 5 once the let is finished</font>
5
> (+ a 6) <font color="#008844">; use the value of a symbol as an argument to a function</font>
11
> b <font color="#008844">; try to take the value of a symbol which has no value</font>
<font color="#AA0000">error: unbound variable - b</font>
</pre>
<p>There are two special symbols,
<a href="../reference/t.htm"> T </a>
<nobr>and <a href="../reference/nil.htm">NIL</a></nobr>. <nobr>The
value</nobr> of <a href="../reference/t.htm"> T </a> is defined
always to <nobr>be <a href="../reference/t.htm"> T </a></nobr>,
and the value of <a href="../reference/nil.htm">NIL</a></nobr> is defined
always to <nobr>be <a href="../reference/nil.htm">NIL</a></nobr></nobr>.
Lisp uses <a href="../reference/t.htm"> T </a> and
<a href="../reference/nil.htm">NIL</a></nobr> to represent true and false.
<nobr>An example</nobr> of this use is in the if statement, described more
fully later:</p>
<pre class="example">
> (if t 5 6)
5
> (if nil 5 6)
6
> (if 4 5 6)
5
</pre>
<p>The last example is odd but correct.
<nobr><a href="../reference/nil.htm">NIL</a> means</nobr> false, and
anything else means true. Unless we have a reason to do otherwise, we use
<a href="../reference/t.htm"> T </a> to mean true, just for the
sake of clarity.</p>
<p>Symbols like <a href="../reference/t.htm"> T </a> and
<a href="../reference/nil.htm">NIL</a> are called
'<nobr>self-evaluating</nobr>' symbols, because they evaluate to themselves.
There is a whole class of <nobr>self-evaluating</nobr> symbols called
'keywords'. Any symbol whose name starts with a colon is a keyword. [See
below for some uses for keywords.] Some examples:</p>
<pre class="example">
> :this-is-a-keyword
:THIS-IS-A-KEYWORD
> :so-is-this
:SO-IS-THIS
> :me-too
:ME-TOO
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="2"></a>
<hr>
<h2>2 Numbers</h2>
<hr>
<p>An integer number [FIXNUM] is a sequence of digits optionally preceded by
a plus <nobr>sign '+'</nobr> or a minus <nobr>sign '-'</nobr>. <nobr>A
floating</nobr> point number [FLONUM] looks like an integer, except that it
has a decimal point and optionally can be written in scientific notation.
Here are some numbers:</p>
<pre class="example">
5
17
-34
+6
3.1415
1.722e-15
</pre>
<p>The standard arithmetic functions are all available:</p>
<p><table cellpadding="0" cellspacing="0"><tbody>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>+</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/addition.htm">addition</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>-</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/subtraction.htm">subtraction</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>*</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/multiplication.htm">multiplication</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>/</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/division.htm">division</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>truncate</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/truncate.htm">truncate</a> a float to an integer</nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>rem</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/rem.htm">remainder</a> of a division</nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>sin</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/sin.htm">sine</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>cos</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/cos.htm">cosine</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>tan</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/tan.htm">tangent</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>sqrt</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr><a href="../reference/sqrt.htm">square root</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>exp</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr>natural <a href="../reference/exp.htm">exponent</a></nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>expt</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr>math <a href="../reference/expt.htm">exponent</a></nobr></td>
</tr>
</tbody></table></p>
<p><nobr><a href="../reference/addition.htm"> + </a> [addition]</nobr>,
<nobr><a href="../reference/subtraction.htm"> - </a> [subtraction]</nobr>,
<nobr><a href="../reference/multiplication.htm"> * </a> [multiplication]</nobr>,
and <nobr><a href="../reference/division.htm"> / </a> [division]</nobr>
accept any number of arguments and return a number according to type
contagion. This means that as long as only integer numbers are given as
arguments the result will always be an integer number, but as soon as at
least one of the arguments is a floating number then the result will be a
floating point number. Here are some examples:</p>
<pre class="example">
> (/ 3 2) <font color="#008844">; integer division causes rounding error</font>
1
> (/ 3 2.0) <font color="#008844">; the 2.0 forces floating point computation</font>
1.5
> (exp 1) <font color="#008844">; e</font>
2.71828
> (exp 3) <font color="#008844">; e * e * e</font>
20.0855
> (expt 3 4.2) <font color="#008844">; exponent with a base other than e</font>
100.904
> (+ 5 6 7 (* 8 9 10)) <font color="#008844">; the functions + - * / accept multiple arguments</font>
738
</pre>
<p>In Nyquist the valid range of integer numbers is limited by the size of a
C 'long' value on the machine on which Nyquist is running.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="3"></a>
<hr>
<h2>3 Conses</h2>
<hr>
<p>A <a href="../reference/cons.htm">cons</a> is just a
<nobr>two-field</nobr> record. <nobr>The fields</nobr> are called
<a href="../reference/car.htm">car</a> and
<a href="../reference/cdr.htm">cdr</a>, for historical reasons.
<nobr>On the</nobr> first machine where Lisp was implemented, there
were two assembly language instructions CAR and CDR which stood for
'contents of address register' and 'contents of decrement register'.
Conses were implemented using these two registers.</p>
<p>Conses are created by the <a href="../reference/cons.htm">cons</a>
function:</p>
<pre class="example">
> (cons 4 5) <font color="#008844">; Allocate a cons. Set the car to 4 and the cdr to 5</font>
(4 . 5)
> (cons (cons 4 5) 6)
((4 . 5) . 6)
> (car (cons 4 5))
4
> (cdr (cons 4 5))
5
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="4"></a>
<hr>
<h2>4 Lists</h2>
<hr>
<p>You can build many structures out of conses. Perhaps the simplest is a
linked list. <nobr>The <a href="../reference/car.htm">car</a></nobr>
<nobr>[the <a href="../reference/first.htm">first</a></nobr> element] of
each cons points to one of the elements of the list, and the
<a href="../reference/cdr.htm">cdr</a> <nobr>[the
<a href="../reference/rest.htm">rest</a></nobr> of the elements] points
either to another cons or to <a href="../reference/nil.htm">NIL</a>.
<nobr>You can</nobr> create such a linked list with the
<a href="../reference/list.htm">list</a> function:</p>
<pre class="example">
> (list 4 5 6)
(4 5 6)
</pre>
<p>Notice that Lisp prints linked lists a special way. <nobr>It omits</nobr>
some of the periods and parentheses. The rule is that if the
<a href="../reference/cdr.htm">cdr</a> of a
<a href="../reference/cons.htm">cons</a> is
<a href="../reference/nil.htm">NIL</a>, Lisp doesn't bother to print the
period or the <a href="../reference/nil.htm">NIL</a>, and if the
<a href="../reference/cdr.htm">cdr</a> of
<nobr><a href="../reference/cons.htm">cons</a> A</nobr> is
<nobr><a href="../reference/cons.htm">cons</a> B</nobr>, then Lisp doesn't
bother to print the period for
<nobr><a href="../reference/cons.htm">cons</a> A</nobr> or the parentheses
for <nobr><a href="../reference/cons.htm">cons</a> B. So:</nobr></p>
<pre class="example">
> (cons 4 nil)
(4) <font color="#008844">; (4 . nil)</font>
> (cons 4 (cons 5 6))
(4 5 . 6) <font color="#008844">; (4 . (5 . 6))</font>
> (cons 4 (cons 5 (cons 6 nil)))
(4 5 6) <font color="#008844">; (4 . (5 . (6 . nil)))</font>
</pre>
<p>The last example is exactly equivalent to the call:</p>
<pre class="example">
(list 4 5 6)
</pre>
<p>Note that <a href="../reference/nil.htm">NIL</a> now means the list with
no elements. <nobr>The <a href="../reference/cdr.htm">cdr</a></nobr> of
<nobr>(a b)</nobr>, a list with <nobr>2 elements</nobr>, <nobr>is
(b)</nobr>, a list with 1 element, and the
<a href="../reference/cdr.htm">cdr</a> of (b), a list with <nobr>1
element</nobr>, <nobr>is <a href="../reference/nil.htm">NIL</a></nobr>,
which therefore must be a list with no elements.</p>
<p><div class="box">
<p>The <a href="../reference/car.htm">car</a> and
<a href="../reference/cdr.htm">cdr</a> of
<a href="../reference/nil.htm">NIL</a> are defined to
<nobr>be <a href="../reference/nil.htm">NIL</a></nobr>.</p>
</div></p>
<p>If you store your list in a variable, you can make it act like a
stack:</p>
<pre class="example">
> (setq a nil)
NIL <font color="#008844">; A = ()</font>
> (push 4 a)
(4) <font color="#008844">; A = (4)</font>
> (push 5 a)
(5 4) <font color="#008844">; A = (5 4)</font>
> (pop a)
5 <font color="#008844">; A = (4)</font>
> (pop a)
4 <font color="#008844">; A = ()</font>
> (pop a)
NIL <font color="#008844">; A = ()</font>
</pre>
<p>See <a href="../reference/pop.htm">pop</a>,
<a href="../reference/push.htm">push</a>,
<a href="../reference/setq.htm">setq</a>.</p>
<a name="list-accessors"></a>
<p><b>List Accessors</b></p>
<p>There are several different approaches to name the accessor
functions for elements of conses and lists. <nobr>The 'traditional'</nobr>
Lisp still uses function names like
<a href="../reference/car.htm">car</a> and
<a href="../reference/cdr.htm">cdr</a> while the 'modern' Lisp uses more
descriptive names like <a href="../reference/first.htm">first</a> and <a
href="../reference/rest.htm">rest</a>. This leads to the situation that in
most Lisps today the list accessor functions are available under different
names for the same functions:</p>
<p><div class="box">
<p><table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td align="right"><nobr>modern</nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr>traditional</nobr></td>
<td></td>
<td>equivalent to</td>
<td><nobr><code> </code></nobr></td>
<td>(1 2 3 4 5 6 7 8)</td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/first.htm">first</a></nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr><a href="../reference/car.htm">car</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nth.htm">nth</a> 0 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>1</td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/second.htm">second</a></nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr><a href="../reference/caar.htm">cadr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nth.htm">nth</a> 1 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>2</td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/third.htm">third</a></nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr><a href="../reference/caaar.htm">caddr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nth.htm">nth</a> 2 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>3</td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/fourth.htm">fourth</a></nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr><a href="../reference/caaaar.htm">cadddr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nth.htm">nth</a> 3 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>4</td>
</tr>
<tr>
<td colspan="3"></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nth.htm">nth</a> 4 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>5</td>
</tr>
<tr>
<td colspan="3"></nobr></td>
<td><nobr><code> </code></nobr></td>
<td> ...</td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr>
<td colspan="4"></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 0 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(1 2 3 4 5 6 7 8)</td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/rest.htm">rest</a></nobr></td>
<td><nobr> — </nobr></td>
<td align="left"><nobr><a href="../reference/cdr.htm">cdr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 1 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(2 3 4 5 6 7 8)</td>
</tr>
<tr>
<td colspan="2"></td>
<td align="left"><nobr><a href="../reference/caar.htm">cddr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 2 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(3 4 5 6 7 8)</td>
</tr>
<tr>
<td colspan="2"></td>
<td align="left"><nobr><a href="../reference/cdddr.htm">cdddr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 3 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(4 5 6 7 8)</td>
</tr>
<tr>
<td colspan="2"></td>
<td align="left"><nobr><a href="../reference/cddddr.htm">cddddr</a></nobr></td>
<td><nobr><code> </code></nobr></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 4 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(5 6 7 8)</td>
</tr>
<tr>
<td colspan="4"></td>
<td>(<a href="../reference/nthcdr.htm">nthcdr</a> 5 ... )</td>
<td><nobr><code> </code>→ </nobr></td>
<td>(6 7 8)</td>
</tr>
<tr>
<td colspan="3"></nobr></td>
<td><nobr><code> </code></nobr></td>
<td> ...</td>
</tr>
<tr>
<td align="right"><nobr><a href="../reference/last.htm">last</a></nobr></td>
<td colspan="4"></td>
<td><nobr><code> </code>→ </nobr></td>
<td>(8)</td>
</tr>
</tbody></table></p>
</div></p>
<p>The traditional <nobr>c..r-functions</nobr> are available in even more
variations, see <a href="../reference/car.htm">car</a>,
<a href="../reference/cdr.htm">cdr</a>,
<nobr><a href="../reference/cddr.htm">cadr, cddr</a></nobr>,
<nobr><a href="../reference/caaar.htm">caaar...caddr</a></nobr>,
<nobr><a href="../reference/cdddr.htm">cdaar...cdddr</a></nobr>,
<nobr><a href="../reference/caaaar.htm">caaaar...cadddr</a></nobr>,
<nobr>and <a href="../reference/cddddr.htm">cdaaar...cddddr</a></nobr>.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="5"></a>
<hr>
<h2>5 Functions</h2>
<hr>
<p>You saw one example of a function above. Here are some more:</p>
<pre class="example">
> (+ 3 4 5 6) <font color="#008844">; this function takes any number of arguments</font>
18
> (+ (+ 3 4) (+ (+ 4 5) 6)) <font color="#008844">; isn't prefix notation fun?</font>
22
> (defun foo (x y) <font color="#008844">; defining a function</font>
(+ x y 5))
FOO
> (foo 5 0) <font color="#008844">; calling a function</font>
10
> (defun fact (x) <font color="#008844">; a recursive function</font>
(if (> x 0)
(* x (fact (- x 1)))
1))
FACT
> (fact 5)
120
> (defun a (x)
(if (= x 0)
t
(b (- x)))) <font color="#008844">; mutually recursive functions</font>
A
> (defun b (x)
(if (> x 0)
(a (- x 1))
(a (+ x 1))))
B
> (a 5)
T
> (defun bar (x) <font color="#008844">; A function with multiple statements</font>
(setq x (* x 3)) <font color="#008844">; in its body. It will return the value</font>
(setq x (/ x 2)) <font color="#008844">; returned by its final statement</font>
(+ x 4))
BAR
> (bar 6)
13
</pre>
<p>See <a href="../reference/addition.htm"> + </a>,
<a href="../reference/subtraction.htm"> − </a>,
<a href="../reference/multiplication.htm"> * </a>,
<a href="../reference/division.htm"> / </a>,
<a href="../reference/number-equal.htm"> = </a>,
<a href="../reference/number-greaterp.htm"> > </a>,
<a href="../reference/defun.htm">defun</a>,
<a href="../reference/if.htm"> if </a>,
<a href="../reference/setq.htm">setq</a>. When we defined 'foo', we
gave it two arguments, 'x' <nobr>and 'y'</nobr>. Now when we call 'foo', we
are required to provide exactly two arguments. The first will become the
value of 'x' for the duration of the call to 'foo', and the second will
become the value of 'y' for the duration of the call. <nobr>In Lisp</nobr>,
most variables are lexically scoped. <nobr>That is</nobr>, if 'foo' calls
'bar' and 'bar' tries to reference 'x', then 'bar' will not get 'foo's value
<nobr>for x</nobr>.</p>
<p><div class="box">
<p>The process of assigning a symbol a value for the duration of some
lexical scope is called 'binding'.</p>
</div></p>
<p>You can specify optional arguments for your functions. Any argument
after the symbol
<a href="../reference/lambda-keyword-optional.htm">&optional</a> is
optional:</p>
<pre class="example">
> (defun bar (x &optional y)
(if y
x
0))
BAR
> (defun baaz (&optional (x 3) (z 10))
(+ x z))
BAAZ
> (bar 5)
0
> (bar 5 t)
5
> (baaz 5)
15
> (baaz 5 6)
11
> (baaz)
13
</pre>
<p>See <a href="../reference/addition.htm"> + </a>,
<a href="../reference/defun.htm">defun</a>,
<a href="../reference/if.htm"> if </a>.
<nobr>It is</nobr> legal to call the function 'bar' with either one or two
arguments. <nobr>If it</nobr> is called with one argument, 'x' will be bound
to the value of that argument and 'y' will be bound <nobr>to
<a href="../reference/nil.htm">NIL</a></nobr>. <nobr>If it</nobr> is called
with two arguments, 'x' and 'y' will be bound to the values of the first and
second argument, respectively.</p>
<p>The function 'baaz' has two optional arguments. <nobr>It specifies</nobr> a
default value for each of them. <nobr>If the</nobr> caller specifies only
one argument, 'z' will be bound <nobr>to 10</nobr> instead of <nobr>to
<a href="../reference/nil.htm">NIL</a></nobr>, and if the caller
specifies no arguments, 'x' will be bound <nobr>to 3</nobr> and <nobr>'z' to
10</nobr>.</p>
<p>You can make your function accept any number of arguments by ending its
argument list with an
<a href="../reference/lambda-keyword-rest.htm">&rest</a> parameter.
Lisp will collect all arguments not otherwise accounted for into a list and
bind the <a href="../reference/lambda-keyword-rest.htm">&rest</a>
parameter to that <nobr>list. So:</nobr></p>
<pre class="example">
> (defun foo (x &rest y)
y)
FOO
> (foo 3)
NIL
> (foo 4 5 6)
(5 6)
</pre>
<p>See <a href="../reference/defun.htm">defun</a>. Finally, you can give
your function another kind of optional argument called a
<a href="../reference/lambda-keyword-key.htm">&key</a> 'keyword'
argument. <nobr>The caller</nobr> can give these arguments in any order,
because they're labelled with keywords:</p>
<pre class="example">
> (defun foo (&key x y)
(cons x y))
FOO
> (foo :x 5 :y 3)
(5 . 3)
> (foo :y 3 :x 5)
(5 . 3)
> (foo :y 3)
(NIL . 3)
> (foo)
(NIL)
</pre>
<p>See <a href="../reference/defun.htm">defun</a>.
<nobr>An <a href="../reference/lambda-keyword-key.htm">&key</a></nobr>
parameter can have a default <nobr>value too:</nobr></p>
<pre class="example">
> (defun foo (&key (x 5))
x)
FOO
> (foo :x 7)
7
> (foo)
5
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="6"></a>
<hr>
<h2>6 Printing</h2>
<hr>
<p>Some functions can cause output. The simplest one is
<a href="../reference/print.htm">print</a>, which
prints its argument and then <nobr>returns it:</nobr></p>
<pre class="example">
> (print 3)
3 <font color="#008844">; screen output</font>
3 <font color="#008844">; return value</font>
</pre>
<p>The first 3 above was <a href="../reference/print.htm">print</a>ed, the
second was returned.</p>
<p>If you want more complicated output, you will need to use
<a href="../reference/format.htm">format</a>.
Here's an example:</p>
<pre class="example">
> (format t "An atom: ~S~%and a list: ~S~%and an integer: ~A~%"
nil (list 5) 6)
An atom: NIL <font color="#008844">; screen output</font>
and a list: (5) <font color="#008844">; screen output</font>
and an integer: 6 <font color="#008844">; screen output</font>
NIL <font color="#008844">; return value</font>
</pre>
<p>See <a href="../reference/list.htm">list</a>. <nobr>The first</nobr>
argument to <a href="../reference/format.htm">format</a> is either
<a href="../reference/t.htm"> T </a>,
<a href="../reference/nil.htm">NIL</a>, or a stream.
<nobr><a href="../reference/t.htm"> T </a> specifies</nobr> output
to the terminal. <nobr><a href="../reference/nil.htm">NIL</a> means</nobr>
not to print anything but to return a string containing the output instead.
Streams are general places for output <nobr>to go</nobr>. They can specify a
file, or the terminal, or a printer device. This tutorial will not describe
streams in any further detail.</p>
<p>The second argument is a formatting template, which is a string
optionally containing formatting directives. <nobr>All remaining</nobr>
arguments may be referred to by the formatting directives. Lisp will replace
the directives with some appropriate characters based on the arguments to
which they refer and then print the resulting string.</p>
<p>The format function always returns <a href="../reference/nil.htm">NIL</a>
unless its first argument is <a href="../reference/nil.htm">NIL</a>, in
which case it prints nothing and returns a string.</p>
<p>There are several different directives available:</p>
<p><table cellpadding="0" cellspacing="0"><tbody>
<tr>
<td><nobr><code> </code></nobr></td>
<td valign="top">
<table cellpadding="0" cellspacing="0" width="100%"><tbody>
<tr valign="top">
<td class="button"><nobr><code>~S</code></nobr></td>
</tr>
</tbody></table>
</td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">[standard] - accepts any Lisp object and replaces it by
the same printed representation which is produced by the
<a href="../reference/print.htm">print</a> function.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr>
<td><nobr><code> </code></nobr></td>
<td valign="top">
<table cellpadding="0" cellspacing="0" width="100%"><tbody>
<tr valign="top">
<td class="button"><nobr><code>~A</code></nobr></td>
</tr>
</tbody></table>
</td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">[aestethic] - tries to '<nobr>pretty-print</nobr>'
its argument.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr>
<td><nobr><code> </code></nobr></td>
<td valign="top">
<table cellpadding="0" cellspacing="0" width="100%"><tbody>
<tr valign="top">
<td class="button"><nobr><code>~%</code></nobr></td>
</tr>
</tbody></table>
</td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">[linebreak] - is always replaced by a linebreak character
or character sequence of the underlying operation system.</td>
</tr>
<tr>
<td><nobr><font size="-2"> </font></nobr></td>
</tr>
<tr>
<td><nobr><code> </code></nobr></td>
<td valign="top">
<table cellpadding="0" cellspacing="0" width="100%"><tbody>
<tr valign="top">
<td class="button"><nobr><code>~~</code></nobr></td>
</tr>
</tbody></table>
</td>
<td valign="top"><nobr> - </nobr></td>
<td width="100%">[tilde] - is replaced by a single '~' character.</td>
</tr>
</tbody></table></p>
<p>If the last character in a line in a
<a href="../reference/format.htm">format</a> template is a tilde, then
the linebreak is ignored and the template continues with the next
<nobr>non-whitespace</nobr> character in the next line.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="7"></a>
<hr>
<h2>7 Forms and the Top-Level Loop</h2>
<hr>
<p>The things which you type to the Lisp interpreter are called 'forms'.
<nobr>The Lisp</nobr> interpreter repeatedly
<a href="../reference/read.htm">read</a>s a form,
<a href="../reference/eval.htm">eval</a>uates it, and
<a href="../reference/print.htm">print</a>s the result. This procedure
is therefore called the '<nobr>read-eval-print' loop</nobr>, or REPL for
short.</p>
<p>Some forms will cause errors. After an error, Lisp will put you into the
debugger so you can try to figure out what caused the error.</p>
<p>In general, a form is either an <a href="../reference/atom.htm">atom</a>,
<nobr>[for example</nobr> a symbol, an integer, or a string] or <nobr>a
<a href="../reference/list.htm">list</a></nobr>. <nobr>If the</nobr> form is
an <a href="../reference/atom.htm">atom</a>, Lisp evaluates it immediately.
Symbols evaluate to their value, integers and strings evaluate to
themselves. <nobr>If the</nobr> form is a
<a href="../reference/list.htm">list</a></nobr>, Lisp treats its first
element as the name of a function. <nobr>It evaluates</nobr> the remaining
elements recursively, and then calls the function with the values of the
remaining elements as arguments. </p>
<p>For example, if Lisp sees the form:</p>
<pre class="example">
(+ 3 4)
</pre>
<p>then it treats <a href="../reference/addition.htm"> + </a> as
the name of a function. <nobr>It then</nobr> evaluates 3 to <nobr>get
3</nobr> and 4 to <nobr>get 4</nobr>, finally it calls <a
href="../reference/addition.htm"> + </a> with 3 and 4 as the
arguments. <nobr>The <a href="../reference/addition.htm"> + </a>
function</nobr> <nobr>returns 7</nobr>, which Lisp prints.</p>
<p><div class="box">
<p><b>Nyquist:</b> <nobr>A description</nobr> of the debugger can be found
in the <nobr><a href="../manual/xlisp.htm#break-loop">Break Command Loop</a></nobr>
section and a detailed description of the evaluation process can be found in
the <a href="../manual/xlisp.htm#the-evaluator">Evaluator</a> section of the XLISP
manual.</p>
</div></p>
<p>The <nobr>top-level</nobr> loop provides some other conveniences.
<nobr>One particularly</nobr> convenient convenience is the ability to talk
about the results of previously typed forms. Lisp always saves its most
recent three results, it stores them as the values of the symbols
<a href="../manual/xlisp.htm#command-loop"> * </a>,
<a href="../manual/xlisp.htm#command-loop"> ** </a>,
<nobr>and <a href="../manual/xlisp.htm#command-loop"> *** </a></nobr>.
<nobr>For example:</nobr></p>
<pre class="example">
> 3
3
> 4
4
> 5
5
> ***
3
> ***
4
> ***
5
> **
4
> *
4
</pre>
<p>See <a href="../manual/xlisp.htm#command-loop"> * </a>,
<a href="../manual/xlisp.htm#command-loop"> ** </a>,
<a href="../manual/xlisp.htm#command-loop"> *** </a>,
<a href="../manual/xlisp.htm#command-loop"> + </a>,
<a href="../manual/xlisp.htm#command-loop"> ++ </a>,
<a href="../manual/xlisp.htm#command-loop"> +++ </a>,
<a href="../manual/xlisp.htm#command-loop"> − </a>.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="8"></a>
<hr>
<h2>8 Special Forms</h2>
<hr>
<p>There are a number of special forms which look like function calls but
aren't. These include control constructs such as
<a href="../reference/if.htm"> if </a> statements and
<a href="../reference/do.htm">do</a> loops, assignments like
<a href="../reference/setq.htm">setq</a>,
<a href="../reference/setf.htm">setf</a>,
<a href="../reference/push.htm">push</a>, and
<a href="../reference/pop.htm">pop</a>, definitions such as
<a href="../reference/defun.htm">defun</a>, and binding constructs such
<nobr>as <a href="../reference/let.htm">let</a></nobr>. <nobr>Not all</nobr>
of these special forms have been mentioned yet, see below for examples.</p>
<p>One useful special form is the <a href="../reference/quote.htm">quote</a>
form. <nobr>The <a href="../reference/quote.htm">quote</a></nobr> function
prevents its argument from being evaluated. <nobr>For example:</nobr></p>
<pre class="example">
> (setq a 3)
3
> a
3
> (quote a)
A
> 'a <font color="#008844">; 'a is an abbreviation for (quote a)</font>
A
</pre>
<p>Another similar special form is the
<a href="../reference/function.htm">function</a> form, it causes its
argument to be interpreted as a function rather than being evaluated.
<nobr>For example:</nobr></p>
<pre class="example">
> (setq + 3)
3
> +
3
> '+
+
> (function +)
#<Subr-+: #88b44d5e>
> #'+ <font color="#008844">; #'+ is an abbreviation for (function +)</font>
#<Subr-+: #88b44d5e>
</pre>
<p>The <a href="../reference/function.htm">function</a> special form is
useful when you want to pass a function as an argument to another function.
<nobr>See below</nobr> for some examples of functions which take functions
as arguments.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="9"></a>
<hr>
<h2>9 Binding</h2>
<hr>
<p>Binding is lexically scoped assignment. <nobr>It happens</nobr> to the
variables in a function's parameter list whenever the function is called.
<nobr>The formal</nobr> parameters are bound to the actual parameters for
the duration of the function call. <nobr>You can</nobr> bind variables
anywhere in a program with the <a href="../reference/let.htm">let</a>
special form, which looks <nobr>like this:</nobr></p>
<pre class="example">
(let ((<font color="#0000CC">variable-1 value-1</font>)
(<font color="#0000CC">variable-2 value-2</font>)
<font color="#008844">...</font> )
<font color="#0000CC">body</font>)
</pre>
<p>The <a href="../reference/let.htm">let</a> function binds
'<nobr>variable-1</nobr>' to '<nobr>value-1</nobr>',
'<nobr>variable-2</nobr>' to '<nobr>value-2</nobr>', and so forth.
<nobr>Then it</nobr> executes the statements in its body. The body of a
<a href="../reference/let.htm">let</a> follows exactly the same rules that
a function body does. Some examples:</p>
<pre class="example">
> (let ((a 3)) (+ a 1))
4
> (let ((a 2)
(b 3)
(c 0))
(setq c (+ a b))
c)
5
> (setq c 4)
4
> (let ((c 5))
c)
5
> c
4
</pre>
<p>See <a href="../reference/addition.htm"> + </a>,
<a href="../reference/let.htm">let</a>,
<a href="../reference/setq.htm">setq</a>. <nobr>Instead of:</nobr></p>
<pre class="example">
(let ((a nil)
(b nil))
<font color="#008844">...</font> )
</pre>
<p>you can write:</p>
<pre class="example">
(let (a b)
<font color="#008844">...</font> )
</pre>
<p>The '<nobr>value-1</nobr>', '<nobr>value-2</nobr>', etc. inside a
<a href="../reference/let.htm">let</a> form cannot reference the variables
'<nobr>variable-1</nobr>', '<nobr>variable-2</nobr>', etc. that the
<a href="../reference/let.htm">let</a> form is binding. <nobr>For
example:</nobr></p>
<pre class="example">
> (let ((x 1)
(y (+ <font color="#AA0000">x</font> 1))) <font color="#008844">; x is still unbound here</font>
y)
<font color="#AA0000">error: unbound variable - x</font>
</pre>
<p>If the symbol 'x' already has a global value, stranger happenings will
result:</p>
<pre class="example">
> (setq x 7)
7
> (let ((x 1)
(y (+ <font color="#AA0000">x</font> 1))) <font color="#008844">; references to the global x</font>
y)
8
</pre>
<p>The <a href="../reference/let-star.htm">let*</a> special form is just
like <a href="../reference/let.htm">let</a> except that it allows values to
reference variables defined earlier in the
<a href="../reference/let-star.htm">let*</a> form.
<nobr>For example:</nobr></p>
<pre class="example">
> (setq x 7)
7
> (let* ((x 1)
(y (+ x 1))) <font color="#008844">; references to x in the line before</font>
y)
2
</pre>
<p>The <a href="../reference/let-star.htm">let*</a> form:</p>
<pre class="example">
(let* ((x a)
(y b))
<font color="#008844">...</font> )
</pre>
<p>is equivalent to the following <a href="../reference/let.htm">let</a>
construct:</p>
<pre class="example">
(let ((x a))
(let ((y b))
<font color="#008844">...</font> ))
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="10"></a>
<hr>
<h2>10 Dynamic Scoping</h2>
<hr>
<p>The <a href="../reference/let.htm">let</a> and
<a href="../reference/let-star.htm">let*</a> forms provide lexical scoping,
which is what you expect if you're used to programming in C or Pascal.
Dynamic scoping is what you get in BASIC. <nobr>If you</nobr> assign a value
to a dynamically scoped variable, every mention of that variable returns
that value until you assign another value to the same variable.</p>
<p>In Lisp, dynamically scoped variables are called 'special' variables.
<nobr>In Common Lisp</nobr> special variables are declared with the 'defvar'
special form. <nobr>In Nyquist</nobr> there is no 'defvar' form.</p>
<p><div class="box">
<p>Nyquist has no 'dynamic' scoping in the <nobr>Common Lisp</nobr> sense.</p>
</div></p>
<p>In Nyquist every variable assigned with
<a href="../reference/setq.htm">setq</a> or
<a href="../reference/setf.htm">setf</a> at the <nobr>top-level</nobr>,
outside of a function or a <a href="../reference/let.htm">let</a>
binding, is a lexical scoped variable. Here is an example what this means:</p>
<pre class="example">
> (setq *variable* 5) <font color="#008844">; define a global variable</font>
5
> (defun check-variable () <font color="#008844">; define a function in global scope,</font>
*variable*) <font color="#008844">; returning the value of the variable</font>
CHECK-VARIABLE
> (check-variable) <font color="#008844">; the CHECK-VARIABLE function returns</font>
5 <font color="#008844">; the global value of the variable</font>
> (let ((*variable* 10)) <font color="#008844">; create a local binding for the variable</font>
(print (check-variable)) <font color="#008844">; call CHECK-VARIABLE and print the return value</font>
(print *variable*)) <font color="#008844">; print the local value of the variable</font>
5 <font color="#008844">; return value of CHECK-VARIABLE</font>
10 <font color="#008844">; variable value inside of LET</font>
10
</pre>
<p>See <a href="../reference/defun.htm">defun</a>,
<a href="../reference/let.htm">let</a>,
<a href="../reference/print.htm">print</a>,
<a href="../reference/setq.htm">setq</a>. Because the
'<nobr>check-variable</nobr>' function was defined in global
scope and therefore is lexically outside of the
<a href="../reference/let.htm">let</a> form, the
'<nobr>check-variable</nobr>' function returns the variable's global value
<nobr>of 5</nobr>, even if called from inside the
<a href="../reference/let.htm">let</a> form, where the variable has a
<nobr>value of 10</nobr>.</p>
<p><div class="box">
<p><b>Important:</b> In Nyquist there is no way to change the scoping
behaviour of variables, so you must be careful where you define your
variables. With Nyquist it's generally a good idea to prefer local
<a href="../reference/let.htm">let</a> bindings over global variables.</p>
</div></p>
<p>By convention, the name of a global Nyquist variable begins and ends with
a <nobr>star *</nobr> to signal that the variable might behave differently
than the programmer expects.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="11"></a>
<hr>
<h2>11 Arrays</h2>
<hr>
<p>The function
<nobr><a href="../reference/make-array.htm">make-array</a></nobr> makes a
<nobr>1-dimensional</nobr> array.
<nobr>The <a href="../reference/aref.htm">aref</a></nobr> function accesses
its elements. <nobr>All elements</nobr> of an array are initially set
<nobr>to <a href="../reference/nil.htm">NIL</a></nobr>.
<nobr>For example:</nobr></p>
<pre class="example">
> (make-array 4) <font color="#008844">; 1-D array with 4 elements</font>
#(NIL NIL NIL NIL)
</pre>
<p>Array indices always <nobr>start at 0</nobr>. <nobr>See
<a href="#13">below</a></nobr> for how to set the elements of an array.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="12"></a>
<hr>
<h2>12 Strings</h2>
<hr>
<p>A string is a sequence of characters between double quotes. Nyquist
represents a string internally as a <nobr>variable-length</nobr> array of
characters. <nobr>You can</nobr> write a string containing a double quote by
preceding the quote with a backslash. <nobr>A double</nobr> backslash stands
for a single backslash. <nobr>For example:</nobr></p>
<p><table cellpadding="0" cellspacing="0"><tbody>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>"abcd"</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr>has 4 characters</nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>"\""</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr>has 1 character, a quote</nobr></td>
</tr>
<tr>
<td height="2px"></td>
</tr>
<tr valign="top">
<td><nobr><code> </code></nobr></td>
<td class="button"><nobr><code>"\\"</code></nobr></td>
<td><nobr> - </nobr></td>
<td width="100%"><nobr>has 1 character, a backslash</nobr></td>
</tr>
</tbody></table></p>
<p>Here are some functions for dealing with strings:</p>
<pre class="example">
> (strcat "abcd" "efg")
"abcdefg" <font color="#008844">; STRCAT concatenates strings</font>
> (char "abc" 1)
#\b <font color="#008844">; Lisp writes characters preceded by #\</font>
> (subseq "abc" 0 2)
"ab" <font color="#008844">; SUBSEQ extracts substrings</font>
</pre>
<p>See <a href="../reference/char.htm">char</a>,
<a href="../reference/strcat.htm">strcat</a>,
<a href="../reference/subseq.htm">subseq</a>.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="13"></a>
<hr>
<h2>13 Setf</h2>
<hr>
<p>Certain forms in Lisp naturally define a memory location. For example, if
the value of 'x' is a <a href="../reference/list.htm">list</a>, then
<nobr>(<a href="../reference/nth.htm">nth</a> 4 x)</nobr> defines the fifth
element of the <a href="../reference/list.htm">list</a>. <nobr>Or, if</nobr>
the value of 'y' is a <nobr>one-dimensional</nobr>
<a href="../reference/make-array.htm">array</a>,
<nobr>(<a href="../reference/aref.htm">aref</a> y 2)</nobr> defines the
third element of the <a href="../reference/make-array.htm">array</a>.</p>
<p>The <a href="../reference/setf.htm">setf</a> special form uses its first
argument to define a place in memory, evaluates its second argument, and
stores the resulting value in the resulting memory location. <nobr>For
example:</nobr></p>
<pre class="example">
> (setq a (make-array 3))
#(NIL NIL NIL)
> (aref a 1)
NIL
> (setf (aref a 1) 3) <font color="#008844">; store 3 in the second element of a</font>
3
> a
#(NIL 3 NIL)
> (aref a 1) <font color="#008844">; read the second element of a</font>
3
> (setq b (list 1 2 3 4 5))
(1 2 3 4 5)
> (nth 4 b)
5
> (setf (nth 4 b) "five") <font color="#008844">; store "five" in the fifth element of b</font>
"five"
> b
(1 2 3 4 "five")
> (nth 4 b)
"five"
</pre>
<p>The <a href="../reference/setf.htm">setf</a> function is the only way to
set the elements of a list or an array.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="14"></a>
<hr>
<h2>14 Booleans and Conditionals</h2>
<hr>
<p>Lisp uses the <nobr>self-evaluating</nobr> symbol
<a href="../reference/nil.htm">NIL</a> to mean false. Anything other than
<nobr>self-evaluating</nobr> means true. Unless we have a reason not to,
we usually use the <nobr>self-evaluating</nobr> symbol
<a href="../reference/t.htm"> T </a> to stand
<nobr>for true</nobr>.</p>
<p>Lisp provides a standard set of logical functions, for example
<a href="../reference/and.htm">and</a>,
<a href="../reference/or.htm">or</a>, and
<a href="../reference/not.htm">not</a>.
<nobr>The <a href="../reference/and.htm">and</a></nobr> and
<a href="../reference/or.htm">or</a> connectives are
<nobr>short-circuiting</nobr>, <a href="../reference/and.htm">and</a>
will not evaluate any arguments to the right of the first one which
evaluates <nobr>to <a href="../reference/nil.htm">NIL</a></nobr>, while
<a href="../reference/or.htm">or</a> will not evaluate any arguments to the
right of the first one which evaluates
<nobr>to <a href="../reference/t.htm"> T </a></nobr>.</p>
<p>Lisp also provides several special forms for conditional execution. The
simplest of these <nobr>is
<a href="../reference/if.htm"> if </a></nobr>. The first argument
of <a href="../reference/if.htm"> if </a> determines whether the
second or third argument will be executed:</p>
<pre class="example">
> (if t 5 6)
5
> (if nil 5 6)
6
> (if 4 5 6)
5
</pre>
<p>If you need to put more than one statement in the 'then' or 'else' clause
of an <a href="../reference/if.htm"> if </a></nobr> statement,
you can use the <a href="../reference/progn.htm">progn</a> special form.
<a href="../reference/progn.htm">progn</a> executes each statement in its
body, then returns the value of the <nobr>final one</nobr>:</p>
<pre class="example">
> (setq a 7)
7
> (setq b 0)
0
> (setq c 5)
5
> (if (> a 5)
(progn
(setq a (+ b 7))
(setq b (+ c 8)))
(setq b 4))
13
</pre>
<p>An <a href="../reference/if.htm"> if </a> statement which lacks
either a 'then' or an 'else' clause can be written using the
<a href="../reference/when.htm">when</a> or
<a href="../reference/unless.htm">unless</a> special form:</p>
<pre class="example">
> (when t 3)
3
> (when nil 3)
NIL
> (unless t 3)
NIL
> (unless nil 3)
3
</pre>
<p><a href="../reference/when.htm">when</a> and
<a href="../reference/unless.htm">unless</a>, unlike
<a href="../reference/if.htm"> if </a>, allow any number of
statements in their bodies:</p>
<pre class="example">
(when x
a
b
c)
</pre>
<p>is equivalent to:</p>
<pre class="example">
(if x
(progn
a
b
c))
</pre>
<p>For example:</p>
<pre class="example">
> (when t
(setq a 5)
(+ a 6))
11
</pre>
<p>More complicated conditionals can be defined using the
<a href="../reference/cond.htm">cond</a> special form.
<nobr>A <a href="../reference/cond.htm">cond</a></nobr> form consists of
the symbol cond followed by a number of
<a href="../reference/cond.htm">cond</a> clauses, each of which is a list.
<nobr>The first</nobr> element of a <a href="../reference/cond.htm">cond</a>
clause is the condition, the remaining elements <nobr>[if any]</nobr> are
the actions:</p>
<pre class="example">
(cond (<font color="#0000CC">condition-1 action-1</font>)
(<font color="#0000CC">condition-2 action-2</font>)
...
(t <font color="#0000CC">default-action</font>))
</pre>
<p>The <a href="../reference/cond.htm">cond</a> form finds the first clause
whose condition evaluates to true [does not evaluate <nobr>to
<a href="../reference/nil.htm">NIL</a>]</nobr>. <nobr>It then</nobr>
executes the corresponding action and returns the resulting value. None of
the remaining conditions are evaluated, nor are any actions except the one
corresponding to the selected condition. <nobr>For example</nobr>:</p>
<pre class="example">
> (setq a 3)
3
> (cond
((evenp a) a) <font color="#008844">; if a is even return a</font>
((> a 7) (/ a 2)) <font color="#008844">; else if a is bigger than 7 return a/2</font>
((< a 5) (- a 1)) <font color="#008844">; else if a is smaller than 5 return a-1</font>
(t 17)) <font color="#008844">; else return 17</font>
2
</pre>
<p>If the action in the selected <a href="../reference/cond.htm">cond</a>
clause is missing, then <a href="../reference/cond.htm">cond</a> returns
what the condition <nobr>evaluated to:</nobr></p>
<pre class="example">
> (cond ((+ 3 4)))
7
</pre>
<p>The Lisp <a href="../reference/case.htm">case</a> form is like a C
'switch' statement:</p>
<pre class="example">
> (setq x 'b)
B
> (case x
(a 5)
((d e) 7)
((b f) 3)
(t 9))
3
</pre>
<p>The <a href="../reference/t.htm"> T </a> clause at the end
means that if 'x' is not 'a', '<nobr>d or e</nobr>', or
'<nobr>b or f</nobr>', then the <a href="../reference/case.htm">case</a>
form will <nobr>return 9</nobr>.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="15"></a>
<hr>
<h2>15 Iteration</h2>
<hr>
<p>The simplest iteration construct in Lisp is
<a href="../reference/loop.htm">loop</a>.
<nobr>A <a href="../reference/loop.htm">loop</a></nobr> construct repeatedly
executes its body until it hits a
<a href="../reference/return.htm">return</a> special form.
<nobr>For example</nobr>:</p>
<pre class="example">
> (setq a 4)
4
> (loop
(setq a (+ a 1))
(when (> a 7) (return a)))
8
> (loop
(setq a (- a 1))
(when (< a 3) (return)))
NIL
</pre>
<p>The next simplest is <a href="../reference/dolist.htm">dolist</a>.
<nobr>It binds</nobr> a variable to the elements of a list in order and
stops when it hits the end of <nobr>the list</nobr>:</p>
<pre class="example">
> (dolist (x '(a b c))
(print x))
A
B
C
NIL
</pre>
<p><a href="../reference/dolist.htm">dolist</a> always
<nobr>returns <a href="../reference/nil.htm">NIL</a></nobr>. Note that the
value of 'x' in the above example was
<nobr>never <a href="../reference/nil.htm">NIL</a></nobr>.
<nobr>The <a href="../reference/nil.htm">NIL</a></nobr> below the C was the
value that <a href="../reference/dolist.htm">dolist</a> returned, printed
by the <nobr>read-eval-print</nobr> loop.</p>
<p>The most flexible, but also most complicated iteration form is
<nobr>called <a href="../reference/do.htm">do</a></nobr>.
<nobr>A <a href="../reference/do.htm">do</a></nobr> form looks
<nobr>like this</nobr>:</p>
<pre class="example">
> (do ((x 1 (+ x 1)) <font color="#008844">; variable x, initial value 1, update with (+ x 1)</font>
(y 1 (* y 2))) <font color="#008844">; variable y, initial value 1, update with (* y 2)</font>
((> x 5) y) <font color="#008844">; terminate if (> x 5), return the value of y</font>
(print y)
(print 'working))
1
WORKING
2
WORKING
4
WORKING
8
WORKING
16
WORKING
32
</pre>
<p>The first part of a <a href="../reference/do.htm">do</a> form specifies
what variables to bind, what their initial values are, and how to update
them. <nobr>The second</nobr> part specifies a termination condition and a
return value. The last part is the body. <nobr>A
<a href="../reference/do.htm">do</a></nobr> form binds its variables to
their initial values like
<nobr>a <a href="../reference/let.htm">let</a></nobr>, then checks the
termination condition. <nobr>As long</nobr> as the condition is false, it
executes the body repeatedly. When the condition becomes true, it
returns the value of the <nobr>return-value</nobr> form.</p>
<p>The <a href="../reference/do-star.htm">do*</a> form is to
<a href="../reference/do.htm">do</a> as
<a href="../reference/let-star.htm">let*</a> is
<nobr>to <a href="../reference/let.htm">let</a></nobr>.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="16"></a>
<hr>
<h2>16 Non-local Exits</h2>
<hr>
<p>The <a href="../reference/return.htm">return</a> special form is an
example of a nonlocal return. Another example is
<nobr><a href="../reference/return-from.htm">return-from</a></nobr>, which
returns a value from the surrounding function:</p>
<pre class="example">
> (defun foo (x)
(return-from foo 3)
x)
FOO
> (foo 17)
3
</pre>
<p>Actually, the <nobr><a
href="../reference/return-from.htm">return-from</a></nobr> form can return
from any named block, it's just that functions are the only blocks which are
named by default. <nobr>You can</nobr> create a named block with the
<a href="../reference/block.htm">block</a> special form:</p>
<pre class="example">
> (block foo
(return-from foo 7)
3)
7
</pre>
<p>The <a href="../reference/return.htm">return</a> special form can return
from any block <nobr>named <a href="../reference/nil.htm">NIL</a></nobr>.
Loops are by default
<nobr>named <a href="../reference/nil.htm">NIL</a></nobr>, but you can
make your own
<nobr><a href="../reference/nil.htm">NIL</a>-named blocks</nobr>:</p>
<pre class="example">
> (block nil
(return 7)
3)
7
</pre>
<p>Another form which causes a nonlocal exit is the
<nobr><a href="../reference/error.htm">error</a> form</nobr>:</p>
<pre class="example">
> (error "This is an error")
<font color="#AA0000">error: This is an error</font>
</pre>
<p>The <a href="../reference/error.htm">error</a> form applies format to its
arguments, then places you in the debugger.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="17"></a>
<hr>
<h2>17 Funcall, Apply, and Mapcar</h2>
<hr>
<p>Earlier I promised to give some functions which take functions as
arguments. Here they are:</p>
<pre class="example">
> (funcall #'+ 3 4)
7
> (apply #'+ 3 4 '(3 4))
14
> (mapcar #'not '(t nil t nil t nil))
(NIL T NIL T NIL T)
</pre>
<p><a href="../reference/funcall.htm">funcall</a> calls its first argument
on its remaining arguments.</p>
<p><a href="../reference/apply.htm">apply</a> is just like
<a href="../reference/funcall.htm">funcall</a>, except that its final
argument should be a list. <nobr>The elements</nobr> of that list are
treated as if they were additional arguments to
<nobr>a <a href="../reference/funcall.htm">funcall</a></nobr>.</p>
<p>The first argument to <a href="../reference/mapcar.htm">mapcar</a> must
be a function of one argument, <a href="../reference/mapcar.htm">mapcar</a>
applies this function to each element of a list and collects the results in
another list.</p>
<p><a href="../reference/funcall.htm">funcall</a> and
<a href="../reference/apply.htm">apply</a> are chiefly useful when their
first argument is a variable. <nobr>For instance</nobr>, a search engine
could take a heuristic function as a parameter and use
<a href="../reference/funcall.htm">funcall</a> or
<a href="../reference/apply.htm">apply</a> to call that function on a
state description. <nobr>The sorting</nobr> functions described later use
<a href="../reference/funcall.htm">funcall</a> to call their comparison
functions.</p>
<p><a href="../reference/mapcar.htm">mapcar</a>, along with nameless
<a href="#18">lambda</a> functions, can replace many loops.</p>
<p><div class="box">
<p><b>Nyquist/XLISP:</b> <nobr>In XLISP</nobr>, a '<nobr>special
form</nobr>' of type FSUBR is not a function. This means that
<a href="../reference/apply.htm">apply</a>,
<a href="../reference/funcall.htm">funcall</a> and
<a href="../reference/mapcar.htm">mapcar</a> only work with functions
of type SUBR [built-in function] or CLOSURE [function defined by
<a href="../reference/defun.htm">defun</a>,
<a href="../reference/flet.htm">flet</a>,
<a href="../reference/labels.htm">labels</a>, or
<a href="../reference/lambda.htm">lambda</a>], but with special forms
of <nobr>type FSUBR</nobr> a 'bad argument type' error is signalled.</p>
</div></p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="18"></a>
<hr>
<h2>18 Lambda</h2>
<hr>
<p>If you just want to create a temporary function and don't want to
bother giving it a name, <a href="../reference/lambda.htm">lambda</a> is
what you need.</p>
<pre class="example">
> #'(lambda (x)
(+ x 3))
#<Closure: #88b71ece>
> (funcall * 5)
8
</pre>
<p>The combination of <a href="../reference/lambda.htm">lambda</a> and
<a href="../reference/mapcar.htm">mapcar</a> can replace many loops.
<nobr>For example</nobr>, the following two forms are equivalent:</p>
<pre class="example">
> (do ((x '(1 2 3 4 5) (cdr x))
(y nil))
((null x) (reverse y))
(push (+ (car x) 2) y))
(3 4 5 6 7)
> (mapcar #'(lambda (x) (+ x 2)) '(1 2 3 4 5))
(3 4 5 6 7)
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="19"></a>
<hr>
<h2>19 Sorting</h2>
<hr>
<p>Lisp provides a primitive for
<nobr>sorting, <a href="../reference/sort.htm">sort</a></nobr>:</p>
<pre class="example">
> (sort '(2 1 5 4 6) #'<)
(1 2 4 5 6)
> (sort '(2 1 5 4 6) #'>)
(6 5 4 2 1)
</pre>
<p>The first argument to <a href="../reference/sort.htm">sort</a> is a list,
the second is a comparison function. <nobr>Be careful</nobr>, because
<a href="../reference/sort.htm">sort</a> is allowed to destroy its argument,
so if the original sequence is important to you, make a copy before sorting
<nobr>the list</nobr>.</p>
<p><div class="box">
<p><b>Bug:</b> In Nyquist 3.03 [November 2010] the XLISP
<a href="../reference/sort.htm">sort</a> function has a bug, so it's better
to store the return value of sort in the original variable <nobr>like
this</nobr>:</p>
<pre class="example">
(setq a '(3 1 4 1 5 9 6 7)) => (3 1 4 1 5 9 6 7)
(setq a (sort a '<)) => (1 1 3 4 5 6 7 9)
a => (1 1 3 4 5 6 7 9)
</pre>
</div></p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="20"></a>
<hr>
<h2>20 Equality</h2>
<hr>
<p>Lisp has many different ideas of equality. Numerical equality is
denoted by =. Two symbols are eq if and only if they are identical. Two
copies of the same list are not eq, but they are equal.</p>
<pre class="example">
> (eq 'a 'a)
T
> (eq 'a 'b)
NIL
> (= 3 4)
T
> (eq '(a b c) '(a b c))
NIL
> (equal '(a b c) '(a b c))
T
> (eql 'a 'a)
T
> (eql 3 3)
T
</pre>
<p>The eql predicate is equivalent to eq for symbols and to = for numbers.</p>
<p>The equal predicate is equivalent to eql for symbols and numbers. It is
true for two conses if and only if their cars are equal and their cdrs are
equal.</p>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<a name="21"></a>
<hr>
<h2>21 Some Useful List Functions</h2>
<hr>
<p>These functions all manipulate lists:</p>
<pre class="example">
> (append '(1 2 3) '(4 5 6)) ;concatenate lists
(1 2 3 4 5 6)
> (reverse '(1 2 3)) ;reverse the elements of a list
(3 2 1)
> (member 'a '(b d a c)) ;set membership -- returns the first tail
(A C) ;whose car is the desired element
</pre>
<p><nobr> <a href="#top">Back to top</a></nobr></p>
<hr>
<a href="../start.htm">Nyquist / XLISP 2.0</a> -
<a href="../manual/contents.htm">Contents</a> |
<a href="tutorials.htm">Tutorials</a> |
<a href="../examples/examples.htm">Examples</a> |
<a href="../reference/reference-index.htm">Reference</a>
</body></html>
|