1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "gate.h"
void gate_free(snd_susp_type a_susp);
typedef struct gate_susp_struct {
snd_susp_node susp;
int64_t terminate_cnt;
sound_type signal;
int signal_cnt;
sample_block_values_type signal_ptr;
int64_t rise_samps;
int64_t fall_samps;
double floor;
double threshold;
int64_t on_count;
int64_t off_count;
double rise_factor;
double fall_factor;
int64_t start_fall;
int64_t start_rise;
int64_t stop_count;
long delay_len;
int state;
double value;
} gate_susp_node, *gate_susp_type;
#define ST_HOLD 0
#define ST_FALL 1
#define ST_FALL_UNTIL 2
#define ST_OFF 3
#define ST_OFF_UNTIL 4
#define ST_RISE 5
/* Overview:
This operation generates an exponential rise and decay suitable for
implementing a noise gate. The decay starts when the signal drops
below threshold and stays there for longer than lookahead.
Decay continues until the value reaches floor, at which point the
decay stops and the value is held constant. Either during the decay
or after the floor is reached, if the signal goes above threshold,
then the output value will rise to 1.0 (0dB) at the point the
signal crosses the threshold. Again, lookahead is used, so the rise
actually starts before the signal crosses the threshold. The rise
rate is constant and set so that a rise from floor to 0dB occurs
in the specified risetime. Similarly, the fall rate is constant
such that a fall from 0dB to the floor takes falltime.
Rather than looking ahead, the output actually lags the input by
lookahead. The caller should advance the time of the input signal
in order to get a correct output signal, and this will be taken
care of in Lisp code.
The implementation is a finite-state machine that simultaneously
computes the value and scans ahead for threshold crossings. Time
points, remembered as sample counts are saved in variables:
on_count -- the time at which the rise should complete
off_count -- the time at which the fall should begin
rise_factor -- multiply by this to get exponential rise
fall_factor -- multiply by this to get exponential fall
rise_samps -- number of samples for a full rise
fall_samps -- number of samples for a full fall
floor -- the lowest value to output
threshold -- compare the signal s to this value
start_rise -- the sample count at which a rise begins
delay_len -- number of samples to look ahead, length of buffer
state -- the current state of finite state machine
(see the individual 'case' statements for description of states)
value -- the current output value
computing fall_factor:
factor ^ (sample_rate * time) == floor
log(factor) * sample_rate * time == log(floor)
log(factor) == log(floor) / (sample_rate * time)
factor == exp(log(floor) / (sample_rate * time))
*/
void compute_start_rise(gate_susp_type susp)
{
/* to compute when to start rise to achieve 0dB at on_count:
let frt = full rise time = rise_time, art = actual rise time,
fft = full fall time = fall_time, aft = actual fall time
If there's no time for a fft + frt, scale both the the fall time
and rise times proportionally by available time / (fft + frt).
When you enter ST_FALL, set start_fall = now.
Let avail = available time = (on_count - start_fall).
If there is not enough time for a full fall and full rise,
i.e. if avail < (fft + frt) then let
art = frt * avail / (fft + frt)
So start rise at
on_time - rise_time * (on_count-start_fall)/(rise_time+fall_time)
*/
int64_t total = susp->rise_samps + susp->fall_samps;
if ((susp->on_count - susp->start_fall) < total) {
susp->start_rise = susp->on_count -
(susp->rise_samps * (susp->on_count - susp->start_fall)) / total;
} else susp->start_rise = susp->on_count - susp->rise_samps;
}
void gate_n_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
gate_susp_type susp = (gate_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double threshold_reg;
register int64_t off_count_reg;
register int64_t stop_count_reg;
register long delay_len_reg;
register int state_reg;
register double value_reg;
register sample_block_values_type signal_ptr_reg;
falloc_sample_block(out, "gate_n_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the signal input sample block: */
susp_check_term_samples(signal, signal_ptr, signal_cnt);
togo = min(togo, susp->signal_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
n = togo;
threshold_reg = susp->threshold;
off_count_reg = susp->off_count;
stop_count_reg = susp->stop_count;
delay_len_reg = susp->delay_len;
state_reg = susp->state;
value_reg = susp->value;
signal_ptr_reg = susp->signal_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{
sample_type future = *signal_ptr_reg++;
int64_t now = susp->susp.current + cnt + togo - n;
switch (state_reg) {
/* hold at 1.0 and look for the moment to begin fall: */
case ST_HOLD:
if (future >= threshold_reg) {
off_count_reg = now + delay_len_reg;
} else if (now >= off_count_reg) {
state_reg = ST_FALL;
stop_count_reg = now + susp->fall_samps;
susp->start_fall = now;
}
break;
/* fall until stop_count_reg while looking for next rise time */
case ST_FALL:
value_reg *= susp->fall_factor;
if (future >= threshold_reg) {
off_count_reg = susp->on_count = now + delay_len_reg;
compute_start_rise(susp);
state_reg = ST_FALL_UNTIL;
} else if (now == stop_count_reg) {
state_reg = ST_OFF;
value_reg = susp->floor;
}
break;
/* fall until start_rise while looking for next fall time */
case ST_FALL_UNTIL:
value_reg *= susp->fall_factor;
if (future >= threshold_reg) {
off_count_reg = now + delay_len_reg;
}
if (now >= susp->start_rise) {
state_reg = ST_RISE;
} else if (now >= stop_count_reg) {
state_reg = ST_OFF_UNTIL;
value_reg = susp->floor;
}
break;
/* hold at floor (minimum value_reg) and look for next rise time */
case ST_OFF:
if (future >= threshold_reg) {
off_count_reg = susp->on_count = now + delay_len_reg;
compute_start_rise(susp);
if (now >= susp->start_rise) {
state_reg = ST_RISE;
} else {
state_reg = ST_OFF_UNTIL;
}
}
break;
/* hold at floor until start_rise and look for next fall time */
case ST_OFF_UNTIL:
if (future >= threshold_reg) {
off_count_reg = now + delay_len_reg;
}
if (now >= susp->start_rise) {
state_reg = ST_RISE;
}
break;
/* rise while looking for fall time */
case ST_RISE:
value_reg *= susp->rise_factor;
if (future >= threshold_reg) {
off_count_reg = now + delay_len_reg;
}
if (now >= susp->on_count) {
value_reg = 1.0;
state_reg = ST_HOLD;
}
break;
}
*out_ptr_reg++ = (sample_type) value_reg;
};
} while (--n); /* inner loop */
togo -= n;
susp->off_count = off_count_reg;
susp->stop_count = stop_count_reg;
susp->state = state_reg;
susp->value = value_reg;
/* using signal_ptr_reg is a bad idea on RS/6000: */
susp->signal_ptr += togo;
out_ptr += togo;
susp_took(signal_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
} /* gate_n_fetch */
void gate_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
gate_susp_type susp = (gate_susp_type) a_susp;
time_type final_time = susp->susp.t0;
int n;
/* fetch samples from signal up to final_time for this block of zeros */
while ((ROUNDBIG((final_time - susp->signal->t0) * susp->signal->sr)) >=
susp->signal->current)
susp_get_samples(signal, signal_ptr, signal_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = (int) ROUNDBIG((final_time - susp->signal->t0) * susp->signal->sr -
(susp->signal->current - susp->signal_cnt));
susp->signal_ptr += n;
susp_took(signal_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void gate_mark(snd_susp_type a_susp)
{
gate_susp_type susp = (gate_susp_type) a_susp;
sound_xlmark(susp->signal);
}
void gate_free(snd_susp_type a_susp)
{
gate_susp_type susp = (gate_susp_type) a_susp;
sound_unref(susp->signal);
ffree_generic(susp, sizeof(gate_susp_node), "gate_free");
}
void gate_print_tree(snd_susp_type a_susp, int n)
{
gate_susp_type susp = (gate_susp_type) a_susp;
indent(n);
stdputstr("signal:");
sound_print_tree_1(susp->signal, n);
}
sound_type snd_make_gate(sound_type signal, time_type lookahead, double risetime, double falltime, double floor, double threshold)
{
register gate_susp_type susp;
rate_type sr = signal->sr;
time_type t0 = signal->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, gate_susp_node, "snd_make_gate");
susp->rise_samps = (int64_t) (signal->sr * risetime + 0.5);
susp->fall_samps = (int64_t) (signal->sr * falltime + 0.5);
susp->floor = floor; floor = log(floor / signal->scale);
susp->threshold = threshold; threshold /= signal->scale;
susp->on_count = 0;
susp->off_count = 0;
susp->rise_factor = exp(- floor / susp->rise_samps);
susp->fall_factor = exp(floor / susp->fall_samps);
susp->start_fall = -susp->fall_samps;
susp->start_rise = 0;
susp->stop_count = 0;
susp->delay_len = max(1, ROUND32(signal->sr * lookahead));
susp->state = ST_OFF;
susp->value = susp->floor;
susp->susp.fetch = gate_n_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < signal->t0) sound_prepend_zeros(signal, t0);
/* minimum start time over all inputs: */
t0_min = min(signal->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = gate_toss_fetch;
}
/* initialize susp state */
susp->susp.free = gate_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = gate_mark;
susp->susp.print_tree = gate_print_tree;
susp->susp.name = "gate";
susp->susp.log_stop_cnt = UNKNOWN;
susp->susp.current = 0;
susp->signal = signal;
susp->signal_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_gate(sound_type signal, time_type lookahead, double risetime, double falltime, double floor, double threshold)
{
sound_type signal_copy = sound_copy(signal);
return snd_make_gate(signal_copy, lookahead, risetime, falltime, floor, threshold);
}
|