File: upsample.c

package info (click to toggle)
nyquist 3.24%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 58,156 kB
  • sloc: ansic: 74,757; lisp: 18,169; java: 10,942; cpp: 6,688; sh: 175; xml: 58; makefile: 40; python: 15
file content (460 lines) | stat: -rw-r--r-- 15,747 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"

#include "falloc.h"
#include "cext.h"
#include "upsample.h"

void up_free(snd_susp_type a_susp);


typedef struct up_susp_struct {
    snd_susp_node susp;
    boolean started;
    int64_t terminate_cnt;
    boolean logically_stopped;
    sound_type input;
    int input_cnt;
    sample_block_values_type input_ptr;

    /* support for interpolation of input */
    sample_type input_x1_sample;
    double input_pHaSe;
    double input_pHaSe_iNcR;

    /* support for ramp between samples of input */
    double output_per_input;
    int64_t input_n;
} up_susp_node, *up_susp_type;


void up_n_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    up_susp_type susp = (up_susp_type) a_susp;
    int cnt = 0; /* how many samples computed */
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register sample_block_values_type input_ptr_reg;
    falloc_sample_block(out, "up_n_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    while (cnt < max_sample_block_len) { /* outer loop */
        /* first compute how many samples to generate in inner loop: */
        /* don't overflow the output sample block: */
        togo = max_sample_block_len - cnt;

        /* don't run past the input input sample block: */
        susp_check_term_log_samples(input, input_ptr, input_cnt);
        togo = min(togo, susp->input_cnt);

        /* don't run past terminate time */
        if (susp->terminate_cnt != UNKNOWN &&
            susp->terminate_cnt <= susp->susp.current + cnt + togo) {
            togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
            if (togo < 0) togo = 0;  /* avoids rounding errros */
            if (togo == 0) break;
        }


        /* don't run past logical stop time */
        if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
            int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
            /* break if to_stop == 0 (we're at the logical stop)
             * AND cnt > 0 (we're not at the beginning of the
             * output block).
             */
            if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
            if (to_stop < togo) {
                if (to_stop == 0) {
                    if (cnt) {
                        togo = 0;
                        break;
                    } else /* keep togo as is: since cnt == 0, we
                            * can set the logical stop flag on this
                            * output block
                            */
                        susp->logically_stopped = true;
                } else /* limit togo so we can start a new
                        * block at the LST
                        */
                    togo = (int) to_stop;
            }
        }

        n = togo;
        input_ptr_reg = susp->input_ptr;
        out_ptr_reg = out_ptr;
        if (n) do { /* the inner sample computation loop */
            *out_ptr_reg++ = (sample_type) *input_ptr_reg++;
        } while (--n); /* inner loop */

        /* using input_ptr_reg is a bad idea on RS/6000: */
        susp->input_ptr += togo;
        out_ptr += togo;
        susp_took(input_cnt, togo);
        cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
        snd_list_terminate(snd_list);
    } else {
        snd_list->block_len = cnt;
        susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
        snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
        susp->logically_stopped = true;
    }
} /* up_n_fetch */


void up_i_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    up_susp_type susp = (up_susp_type) a_susp;
    int cnt = 0; /* how many samples computed */
    sample_type input_x2_sample;
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register double input_pHaSe_iNcR_rEg = susp->input_pHaSe_iNcR;
    register double input_pHaSe_ReG;
    register sample_type input_x1_sample_reg;
    falloc_sample_block(out, "up_i_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    /* make sure sounds are primed with first values */
    if (!susp->started) {
        susp->started = true;
        susp_check_term_log_samples(input, input_ptr, input_cnt);
        susp->input_x1_sample = susp_fetch_sample(input, input_ptr, input_cnt);
    }

    susp_check_term_log_samples(input, input_ptr, input_cnt);
    input_x2_sample = susp_current_sample(input, input_ptr);

    while (cnt < max_sample_block_len) { /* outer loop */
        /* first compute how many samples to generate in inner loop: */
        /* don't overflow the output sample block: */
        togo = max_sample_block_len - cnt;

        /* don't run past terminate time */
        if (susp->terminate_cnt != UNKNOWN &&
            susp->terminate_cnt <= susp->susp.current + cnt + togo) {
            togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
            if (togo < 0) togo = 0;  /* avoids rounding errros */
            if (togo == 0) break;
        }


        /* don't run past logical stop time */
        if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
            int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
            /* break if to_stop == 0 (we're at the logical stop)
             * AND cnt > 0 (we're not at the beginning of the
             * output block).
             */
            if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
            if (to_stop < togo) {
                if (to_stop == 0) {
                    if (cnt) {
                        togo = 0;
                        break;
                    } else /* keep togo as is: since cnt == 0, we
                            * can set the logical stop flag on this
                            * output block
                            */
                        susp->logically_stopped = true;
                } else /* limit togo so we can start a new
                        * block at the LST
                        */
                    togo = (int) to_stop;
            }
        }

        n = togo;
        input_pHaSe_ReG = susp->input_pHaSe;
        input_x1_sample_reg = susp->input_x1_sample;
        out_ptr_reg = out_ptr;
        if (n) do { /* the inner sample computation loop */
            if (input_pHaSe_ReG >= 1.0) {
                input_x1_sample_reg = input_x2_sample;
                /* pick up next sample as input_x2_sample: */
                susp->input_ptr++;
                susp_took(input_cnt, 1);
                input_pHaSe_ReG -= 1.0;
                susp_check_term_log_samples_break(input, input_ptr, input_cnt, input_x2_sample);
            }
            *out_ptr_reg++ = (sample_type) 
                (input_x1_sample_reg * (1 - input_pHaSe_ReG) + input_x2_sample * input_pHaSe_ReG);
            input_pHaSe_ReG += input_pHaSe_iNcR_rEg;
        } while (--n); /* inner loop */

        togo -= n;
        susp->input_pHaSe = input_pHaSe_ReG;
        susp->input_x1_sample = input_x1_sample_reg;
        out_ptr += togo;
        cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
        snd_list_terminate(snd_list);
    } else {
        snd_list->block_len = cnt;
        susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
        snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
        susp->logically_stopped = true;
    }
} /* up_i_fetch */


void up_r_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    up_susp_type susp = (up_susp_type) a_susp;
    int cnt = 0; /* how many samples computed */
    sample_type input_DeLtA;
    sample_type input_val;
    sample_type input_x2_sample;
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    falloc_sample_block(out, "up_r_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    /* make sure sounds are primed with first values */
    if (!susp->started) {
        susp->started = true;
        susp->input_pHaSe = 1.0;
    }

    susp_check_term_log_samples(input, input_ptr, input_cnt);
    input_x2_sample = susp_current_sample(input, input_ptr);

    while (cnt < max_sample_block_len) { /* outer loop */
        /* first compute how many samples to generate in inner loop: */
        /* don't overflow the output sample block: */
        togo = max_sample_block_len - cnt;

        /* grab next input_x2_sample when phase goes past 1.0; */
        /* we use input_n (computed below) to avoid roundoff errors: */
        if (susp->input_n <= 0) {
            susp->input_x1_sample = input_x2_sample;
            susp->input_ptr++;
            susp_took(input_cnt, 1);
            susp->input_pHaSe -= 1.0;
            susp_check_term_log_samples(input, input_ptr, input_cnt);
            input_x2_sample = susp_current_sample(input, input_ptr);
            /* input_n gets number of samples before phase exceeds 1.0: */
            susp->input_n = (int64_t) ((1.0 - susp->input_pHaSe) *
                                        susp->output_per_input);
        }
        togo = (int) min(togo, susp->input_n);
        input_DeLtA = (sample_type) ((input_x2_sample - susp->input_x1_sample) * susp->input_pHaSe_iNcR);
        input_val = (sample_type) (susp->input_x1_sample * (1.0 - susp->input_pHaSe) +
                 input_x2_sample * susp->input_pHaSe);

        /* don't run past terminate time */
        if (susp->terminate_cnt != UNKNOWN &&
            susp->terminate_cnt <= susp->susp.current + cnt + togo) {
            togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
            if (togo < 0) togo = 0;  /* avoids rounding errros */
            if (togo == 0) break;
        }


        /* don't run past logical stop time */
        if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
            int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
            /* break if to_stop == 0 (we're at the logical stop)
             * AND cnt > 0 (we're not at the beginning of the
             * output block).
             */
            if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
            if (to_stop < togo) {
                if (to_stop == 0) {
                    if (cnt) {
                        togo = 0;
                        break;
                    } else /* keep togo as is: since cnt == 0, we
                            * can set the logical stop flag on this
                            * output block
                            */
                        susp->logically_stopped = true;
                } else /* limit togo so we can start a new
                        * block at the LST
                        */
                    togo = (int) to_stop;
            }
        }

        n = togo;
        out_ptr_reg = out_ptr;
        if (n) do { /* the inner sample computation loop */
            *out_ptr_reg++ = (sample_type) input_val;
            input_val += input_DeLtA;
        } while (--n); /* inner loop */

        out_ptr += togo;
        susp->input_pHaSe += togo * susp->input_pHaSe_iNcR;
        susp->input_n -= togo;
        cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
        snd_list_terminate(snd_list);
    } else {
        snd_list->block_len = cnt;
        susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
        snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
        susp->logically_stopped = true;
    }
} /* up_r_fetch */


void up_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    up_susp_type susp = (up_susp_type) a_susp;
    time_type final_time = susp->susp.t0;
    int n;

    /* fetch samples from input up to final_time for this block of zeros */
    while ((ROUNDBIG((final_time - susp->input->t0) * susp->input->sr)) >=
           susp->input->current)
        susp_get_samples(input, input_ptr, input_cnt);
    /* convert to normal processing when we hit final_count */
    /* we want each signal positioned at final_time */
    n = (int) ROUNDBIG((final_time - susp->input->t0) * susp->input->sr -
         (susp->input->current - susp->input_cnt));
    susp->input_ptr += n;
    susp_took(input_cnt, n);
    susp->susp.fetch = susp->susp.keep_fetch;
    (*(susp->susp.fetch))(a_susp, snd_list);
}


void up_mark(snd_susp_type a_susp)
{
    up_susp_type susp = (up_susp_type) a_susp;
    sound_xlmark(susp->input);
}


void up_free(snd_susp_type a_susp)
{
    up_susp_type susp = (up_susp_type) a_susp;
    sound_unref(susp->input);
    ffree_generic(susp, sizeof(up_susp_node), "up_free");
}


void up_print_tree(snd_susp_type a_susp, int n)
{
    up_susp_type susp = (up_susp_type) a_susp;
    indent(n);
    stdputstr("input:");
    sound_print_tree_1(susp->input, n);
}


sound_type snd_make_up(rate_type sr, sound_type input)
{
    register up_susp_type susp;
    /* sr specified as input parameter */
    time_type t0 = input->t0;
    int interp_desc = 0;
    sample_type scale_factor = 1.0F;
    time_type t0_min = t0;
    /* combine scale factors of linear inputs (INPUT) */
    scale_factor *= input->scale;
    input->scale = 1.0F;

    /* try to push scale_factor back to a low sr input */
    if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; }

    falloc_generic(susp, up_susp_node, "snd_make_up");

    /* make sure no sample rate is too high */
    if (input->sr > sr) {
        sound_unref(input);
        snd_badsr();
    }

    /* select a susp fn based on sample rates */
    interp_desc = (interp_desc << 2) + interp_style(input, sr);
    switch (interp_desc) {
      case INTERP_n: susp->susp.fetch = up_n_fetch; break;
      case INTERP_i: susp->susp.fetch = up_i_fetch; break;
      case INTERP_r: susp->susp.fetch = up_r_fetch; break;
      default: snd_badsr(); break;
    }

    susp->terminate_cnt = UNKNOWN;
    /* handle unequal start times, if any */
    if (t0 < input->t0) sound_prepend_zeros(input, t0);
    /* minimum start time over all inputs: */
    t0_min = min(input->t0, t0);
    /* how many samples to toss before t0: */
    susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
    if (susp->susp.toss_cnt > 0) {
        susp->susp.keep_fetch = susp->susp.fetch;
        susp->susp.fetch = up_toss_fetch;
    }

    /* initialize susp state */
    susp->susp.free = up_free;
    susp->susp.sr = sr;
    susp->susp.t0 = t0;
    susp->susp.mark = up_mark;
    susp->susp.print_tree = up_print_tree;
    susp->susp.name = "up";
    susp->logically_stopped = false;
    susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input);
    susp->started = false;
    susp->susp.current = 0;
    susp->input = input;
    susp->input_cnt = 0;
    susp->input_pHaSe = 0.0;
    susp->input_pHaSe_iNcR = input->sr / sr;
    susp->input_n = 0;
    susp->output_per_input = sr / input->sr;
    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}


sound_type snd_up(rate_type sr, sound_type input)
{
    sound_type input_copy = sound_copy(input);
    return snd_make_up(sr, input_copy);
}