1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
<!DOCTYPE html>
<html lang="en">
<!-- #include "meta.shtml" -->
<body>
<!-- #include "head.shtml" -->
<h1>Quantil mean</h1>
<h2>Synopsis</h2>
<pre class="fortran">
use oakleaf
subroutine <span class="subroutine">qmean</span>(data,mean,stderr,stdsig,flag)
real, dimension(:), intent(in) :: data
real, intent(out) :: mean
real, intent(out), optional :: stderr,stdsig
logical, intent(in), optional :: verbose
integer, intent(out), optional :: flag
end subroutine qmean
</pre>
<h2>Description</h2>
<p>
This routine estimates both averadge and standard deviation
of a data set on base of the
<a href="https://en.wikipedia.org/wiki/Order_statistic">order statistics</a>,
i.e. <a href="https://en.wikipedia.org/wiki/Quantile_function">quantiles.</a>
The median, the <i>Q(0.5)</i> quantile, is claimed as the (robust) mean.
</p>
<p>
The standard deviation (and consequently the standard error)
is estimated preferably
by the <i>Q<sub>n</sub></i>-estimator due Rousseeuw & Croux;
one is more durable on
highly contamined samples, yet additional memory space is required.
In other cases (<i>N < 3</i> or <i>N > 2**16</i>),
the deviations is determined as <i>MAD/0.6745</i>,
where <i>MAD</i> is the median of absolute deviations.
</p>
<p>
Both the median and the <i>Q<sub>n</sub>,MAD</i> are robust estimators,
however they
are generally incompatible to least-square estimates, as being
granulated and deviated for contamined data.
</p>
<p>
The <a href="https://en.wikipedia.org/wiki/Quicksort">quick sort</a> algorithm
is used for small samples <i>N ≤ 42</i>;
one requires <i>N</i> log <i>N</i> operations.
The larger samples are estimated by the quick median which needs
<i>2N</i> operations
(Wirth,D.: Algorithm and data structures, chapter Finding the Median).
The <i>Q<sub>n</sub></i>-estimator requires <i>N**2/2</i> elements.
</p>
<h2>Parameters</h2>
<h3>On input:</h3>
<dl>
<dt>data</dt><dd> array of data</dd>
</dl>
<h3>On output:</h3>
<dl>
<dt>mean</dt><dd> mean by median</dd>
<dt>stderr</dt><dd>(optional) standard error</dd>
<dt>stdsig</dt><dd>(optional) standard deviation by MAD</dd>
<dt>verbose </dt><dd> (optional) print a detailed information
about the calulations.</dd></dt>
<dt>flag</dt><dd>(optional) a flag,
see <a href="status.html">the status codes</a>.</dd>
</dl>
<h2>Example</h2>
<p>
Save the program to the file <samp>example.f08</samp>:
</p>
<pre>
program example
use oakleaf
real, dimension(5) :: data = [ 1, 2, 3, 4, 5 ]
real :: mean,stderr,stdsig
call qmean(data,mean,stderr,stdsig)
write(*,*) 'qmean:',mean,' stderr:',stderr,'stdsig:',stdsig
end program example
</pre>
<p>
Than compile and run it:
</p>
<pre>
$ gfortran -I/usr/include example.f08 -L/usr/lib -loakleaf -lminpack
$ ./a.out
qmean: 3.00000000 stderr: 0.992554188 stdsig: 2.21941876
</pre>
<!--
<h2>Median and MAD estimates</h2>
<p>This routine estimates the averadge by
<a href="https://en.wikipedia.org/wiki/Median">median</a>
and the standard deviation by the median of absolute deviations (MAD).
</p>
<pre>
subroutine <span class="subroutine">madmed(x,t,s)</span>
subroutine <span class="subroutine">madwmed(x,dx,t,s,d)</span>
real(kind), dimension(:),intent(in) :: x, dx
real(kind), intent(out) :: t,s
end subroutine qmean
<b>On input:</b>
x - array of data values to be estimated
dx (optional) - array of the data errors
<b>On output</b> are estimated:
t - median
s - standard deviation as MAD/Q50
</pre>
-->
<!--
<p style="margin:2em; text-align: center;">☘</p>
<h1>Auxiliary tools</h1>
<h2>Empirical CDF</h2>
<p>
The following routine construct the
<a href="https://en.wikipedia.org/wiki/Empirical_distribution_function">
Empirical cumulative distribution function</a> (CDF)
from data.</p>
<pre>
subroutine <span class="subroutine">ecdf(data,x,p)</span>
real, dimension(:), intent(in) :: data
real, dimension(:), intent(out) :: x,p
end subroutine ecdf
</pre>
<h3>On input:</h3>
<dl>
<dt>data</dt><dd> an array of data values to be estimated</dd>
</dl>
<h3>On output:</h3>
<dl>
<dt>x</dt><dd> coordinates of absicca of steps</dd>
<dt>p</dt><dd> step values</dd>
</dl>
<h2>Quantiles</h2>
<p>The estimates <a href="https://en.wikipedia.org/wiki/Quantile_function">
Q-quantiles</a> by a linear interpolation of empirical CDF
between discrete CDF steps.
This is the inverse function of the empirical CDF.
</p>
<pre>
function <span class="subroutine">quantile(q,x,y) result(t)</span>
real, intent(in) :: q
real, dimension(:), intent(in) :: x,y
end function quantile
</pre>
<h3>On input:</h3>
<dl>
<dt>q</dt><dd> quantile as fraction (0 ≤ q ≤ 1)</dd>
<dt>x,y</dt><dd> the empirical CDF</dd>
</dl>
<h3>Result:</h3>
<p>
The lineary interpolated value of <i>x</i> abscicca for the given quantile.
</p>
<h2>An example</h3>
<p>
Save following program listing to the file <samp>example.f08</samp>:
</p>
<pre>
program example
use oakleaf
real, dimension(5) :: data = [ 1, 2, 3, 4, 5 ]
real, dimension(5) :: xcf, ycdf
call ecdf(data,xcdf,ycdf)
write(*,*) 'Q(0.75):',quantile(0.75,xcdf,ycdf)
end program example
</pre>
<p>
Than compile and run it:
</p>
<pre>
$ gfortran -I$HOME/scratch/opt/include q.f08 -L$HOME/scratch/opt/lib -loakleaf -lminpack
$ ./a.out
Q(0.75): 4.500000000
</pre>
-->
<h2>References</h2>
<p>
Wirth,D.: Algorithm and data structures,
Prentice-Hall International editions (1986)
</p>
<p>Rousseeuw, Peter J and Croux, Christophe:
Alternatives to the median absolute deviation,
Journal of the American Statistical association vol. 88, 1273--1283 (1993)
</p>
<!-- #include "foot.shtml" -->
</body>
</html>
|