
Garbage Collection with Pointers to Individual Cells

Barak Pearlmutter

In the heap model in which garbage collectors usually operate, the heap is an array of cells. Each cell contains
either a non-pointer, to be ignored, or a pointer to a block of cells somewhere in the heap, called an object. The
objects do not overlap. In addition, there are a bunch of cells not in the heap, called the root set. It is possible to
determine from a cell whether it contains a pointer or not, and it is possible to determine from a pointer how long
the object pointed to is.

The goal of a garbage collector is to preserve all structures that are accessible through a chain of defer-
ences starting at the root set, while reclaiming any storage not thus accessible. Such accessible storage is called
live. In copying garbage collection, the best technique for most applications, a new heap is constructed, all live
objects are copied to this new heap, and pointers are updated to reflect the new locations [2, 4].

Here we consider the addition of a new kind of value to be permitted in cells, namely pointers to single
cells. These single cells may be inside objects that are referenced by the usual pointers to objects. For historical
reasons, these pointers to single cells are called locatives. Locatives are similar to Pascal pointers, in that the only
operations that can be performed on a locative are to deference it or to alter the contents of the cell it points to.1 In
Pascal, pointers can not be constructed to arbitrary components of structures; but such pointers can be constructed
in most other Algol descended languages, such as Modula or ADA.

Some lisp systems, such as ZetaLisp [7] and T [6], incorporate locatives into copying garbage collectors
by having a special routine that allows a pointer to the surrounding object to be recovered from a locative. This
allows locatives to exist at the expense of never reclaiming the storage occupied by an otherwise unreferenced
object containing a cell pointed to by a locative. Also, requiring the ability to recover a pointer to the surrounding
object from a locative constrains and complicates memory formats, as in garbage collectors for C [3].

In the next section we will develop an algorithm that reclaims the otherwise unreferenced cells of objects
containing cells pointed to by locatives, thus alleviating these difficulties.

The Algorithm
The essential idea is to add an extra pass to the garbage collection process. As usual, all live objects are transport-
ed in the first pass. Then a second pass is made in which any cells referenced by locatives, but not transported by
virtue of being inside live objects, are transported.

This could be accomplished by just adding the extra pass except for one complication: it might be the case
that a cell pointed to by a locative contains a pointer to an object which is otherwise unreferenced. To account for
this possibility, during the first pass all chains of locatives must be traversed, and if a pointer to an object is found
at the end of the chain, that object must be transported.

This raises the possibility of circular chains of locatives, which would cause infinite loops. We propose
three methods for breaking such loops. The first is to track down the locative chain with two fingers, the second
moving half as fast as the first, and to step following the chain if the fast finger catches up with the slow one. The
second is to paint cells in locative chains blue as they are traversed, and to stop following a chain when a blue cell
is encountered. The third (suggested by a kind reviewer) is to break locative chains above some maximum length
(say 4) by biting the bullet and transporting the entire surrounding object.

Each technique has its drawback. The first can take a total of n2/2 accesses to track down a terminating
chain of length n, since the chain will be encountered n times, and each time it must be followed all the way to the
end. Similarly, a cyclic chain with n elements will consume 3n2 accesses, 2n2 by the fast finger and n2 by the slow
one.

The second technique only examines each element in any chain once, but requires storage for painting cells
blue and time to check for blue cells. Including time to set and check colors, this comes to 3n accesses for a chain
of length n. If it is not possible to put the color information into the cells themselves, the overhead of maintaining
the color information can be considerable.

The third technique can fail to reclaim the storage from a dead object, which can be an arbitrarily large
amount. Even if the algorithm is randomized, by making the number of locatives to be traverse before breaking the



chain a random variable, it is possible to drive the probability of reclaiming a particular reclaimable object arbi-
trarily low by setting up enough locative chains leading into the object in question.

In the Oaklisp system [5], an instrumented garbage collector of this sort never detected a chain of more
than three locatives, so the potential problem of long chains of locatives does not appear to be serious in practice.
Following locative chains consumed such a minuscule fraction of the total garbage collection time that the first
O(n2) technique was released in the production system, and is included in the sample code below.

Complexity Analysis
We shall measure the complexity of a garbage collection algorithm in terms of the number of memory accesses
required. We shall ignore the root set and the overhead of following locative chains, as this overhead is negligible,
at least in our implementation.

Without locatives, a copying garbage collector requires 5n 1 memory accesses for each live object of
length n. This breaks down to 2n to copy it from old space to new space, 1 to plant a forwarding pointer, and 3n
to scavenge it. The 3 for each cell scavenged is because it takes one to read it, one to get the forwarding informa-
tion from old space, and one to write the new location.

The algorithm presented here requires 7n memory accesses for each live object of length n. This consists
of 2n to copy it from old space to new space, n to plant forwarding pointers for each cell, and 4n for the two scav-
enging passes. The constant is 4 and not 6 because a single cell can not be both a pointer to an object and a loca-
tive, so the two memory accesses to find the forwarding information and update the cell can occur in only one of
the two scavenging passes.

To summarize, allowing locatives increases the constant factor from 5 to 7.

Extensions and Applications
The many extensions to copying garbage collection, such as generation scavenging, online ephemeral garbage col-
lection, virtual memory based techniques, et cetera [1], are all compatible with the technique presented above.

One interesting application would be to ML. It would be possible to put “ref ” objects that occur as sub-
structures inline, representing the “ref ” itself as a locative to the involved cell, at the expense of requiring the
compiler to know about two methods for retrieving structure slots: a simple fetch for non-ref slots, and an address
computation for ref slots. This would save one, or in most implementations two, cells of storage per mutable vari-
able or mutable structure slot. In our implementation of Oaklisp the major application of locatives were essential-
ly the same, representing mutable and indefinite lifetime variables, and we found them surprisingly useful.
Similarly, ZetaLisp uses locatives internally in the implementation of environments, as do many implementations
of languages with first class functions.

Garbage collection with locatives is a special case of garbage collection of potentially nested structures.
The ability to garbage collect generally nested structures would open the possibility of representing substructures
in garbage collected languages with nested structures in memory, both speeding access and saving memory.

Although mark and sweep or in place compaction algorithms can be used with generally nested structures,
nesting has been eschewed in garbage collectible structures in order to permit the use of more efficient copying
collectors.

The algorithm presented here can be extended to the case of more generally nested structures by first using
pointer reversal to mark all accessible cells in place, and then maintaining contiguity during the transportation
phase by transporting the entire surrounding block of marked cells when any cell is transported. Even with the scan
to find the surrounding block of marked cells, the number of memory accesses remains proportional to the num-
ber of live cells.

Acknowledgments
Oaklisp was implemented jointly with Kevin Lang, without whose constant encouragement and unflagging enthu-
siasm this paper could not have been written. This work was performed in the Carnegie Mellon University
Department of Computer Science, where the author was supported by a Hertz fellowship.

References



1. Appel, A. Garbage collection. In Topics in Advanced Language Implementation, P. Lee, Ed. MIT Press, 1991,
pp. 89–100.
2. Cheney, C. J. A nonrecursive list compacting algorithm. Communications of the ACM 13, 11 (1970), 677–678.
3. Detlefs, D. L. Concurrent garbage collection for C . In Topics in Advanced Language Implementation, P.
Lee, Ed. MIT Press, 1991, pp. 101–134. Also see thesis of same title, Carnegie Mellon University School of
Computer Science technical report CMU-CS-90-119.
4. Fenichel, R. R., and Yochelson J. C. A lisp garbage collector for virtual memory computer systems.
Communications of the ACM 12, 11 (Nov. 1969).
5. Pearlmutter, B. A., and Lang, K. J. The implementation of Oaklisp. In Topics in Advanced Language
Implementation, P. Lee, Ed. MIT Press, 1991, pp. 189–215.
6. Rees, J. A., et al. The T Manual, fourth ed. Yale University Computer Science Department, 1984.
7. Weinreb, D. L., and Moon, D. A. Lisp Machine Manual, fourth ed., July 1981.
/*Take a pointer to an object in old space and transports the object, setting up forwarding pointers and returning a
pointer to the new location. */
cell transport (cell c)
{
int i, length object_length(c);
/*Allocate space and make pointer to new location. */
cell newc - cvt_to_pointer(&new[freepoint]);
freepoint length;
/*Copy the contents over and set up forwarding pointers. */
for (i 0; i<length; i ) {
elt (newc, i) elt (c, i);
elt (c, i) locative_to(&elt(newc, i));
}
/* Return the new pointer. */
return newc;
}
/* This works by explicitly detecting circular chains by keeping a trailing pointer that travels at half the speed of
the leading one. If the leader ever catches the trailer, a circularity has been detected. */
void follow_loc_chain (cell c)
{
cell slow c;
bool advance_slow FALSE;
while (old_locative (c)) {
c contents (c);
if (c slow) return;
if (advance_slow) slow contents (slow);
advance_slow !advance_slow;
}
(void)touch(c);
}
/* Return the new version of c, transporting objects if necessary. Locatives to cells in old space are not transport-
ed by this routine. */
cell touch(cell c)
{
if (old_pointer (c))
if (new_locative(elt (c,0)))
return cvt_locative_to_pointer(elt(c, 0));
else return transport (c);
else }
if (old_locative (c)) follow_loc_chain (c);



return c;
}
}
/* Passed a locative to a cell to be transported. */
cell loc_transport (cell c)
{
cell newc locative_to (&new[freepoint ]);
contents (newc) contents (c); /* transport */
contents (c) newc; /* forward */
return newc;
}
/* Return the new version of c, no matter what c is. If c is a locative to a cell in old space, that cell is moved to
new space if necessary. If c is a pointer to an object in old space, that object should already by transported. */
cell loc_touch (cell c)
{
if (old_pointer (c)) return cvt_locative_to_pointer (elt (c, 0));
else if (!old_locative (c)) return c;
else if (new_locative (contents (c))) return contents (c);
else return loc_transport (c);
}
/* Main routine. */
void gc()
{
int i;
/* Nothing in new space yet: */
freepoint 0;
/* Transport objects pointed to by the root set. */
for (i 0; i<ROOT_SIZE; i )
root [i] touch (root [i]);
/* Scavenge new space for pointers to objects. */
for (i o; i<freepoint; i )
new [i] touch (new[i]);
/* ‘Transport any solitary cells pointed to by the root set. */
for (i 0; i<ROOT_SIZE; i )
root [i] loc_touch (root [i]);
/* Scavenge new space for locatives to solitary cells. */
for (i 0; i<freepoint; i )
new [i] loc_touch (new [i]);
1Unlike C pointers, locatives can not typically be incremented or decremented. This disallows a common use for
pointers to the interior of objects: efficient scanning through an array. If these addressing tricks are to be used with
locatives, either a pointer to the surrounding object must be kept alive while such use is possible, or there must be
a special kind of “incrementable locative,” perhaps constrained to point only into the interior of an array, from
which the system can recover the identity of the surrounding object. One representation for such an “incrementable
locative” would simply be an (object,locative) pair, which reduces to the previous solution.
Figure 1. The garbage collector at work. Solid lines are pointers to objects and dotted ones are pointers to indi-
vidual cells.



Figure 1. The garbage collector at work. Solid lines are pointers to objects and dotted ones are pointers to indi-
vidual cells.


