File: sequences.tex

package info (click to toggle)
oaklisp 1.3.7-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 5,776 kB
  • sloc: ansic: 4,014; makefile: 149
file content (172 lines) | stat: -rw-r--r-- 5,703 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
% This file is part of Oaklisp.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% The GNU GPL is available at http://www.gnu.org/licenses/gpl.html
% or from the Free Software Foundation, 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA


\chapter{Sequences} \label{Sequences}

Sequences are manipulated using the \df{nth} operation, which is
settable (and locatable).  The sequence heirarchy is shown in
figure~\ref{fig:seqhier}.

\index{\texttt{sequence}}
\index{\texttt{vector-type}}
\index{\texttt{simple-vector}}
\index{\texttt{list-type}}
\index{\texttt{string}}
\index{\texttt{pair}}
\index{\texttt{null-type}}
\index{\texttt{cons-pair}}
\index{\texttt{lazy-cons-pair}}

\begin{figure}[h]
\centering\includegraphics{seqhier}
\caption{The sequence type hierarchy.  Abstract types are in plain face
and instantiable ones in bold.} \label{fig:seqhier}
\end{figure}

\section{Type Predicates}

\pr{sequence?}{object}
\pr{vector?}{object}
\pr{string?}{object}
\pr{list?}{object}
\pr{pair?}{object}
\pr{null?}{object}
\pr{atom?}{object}


\section{Sequence Operations}

These operations work on all sequences.

\op{length}{list}
\lo{nth}{list n}
\lo{last}{list}
\lo{tail}{list n}
\op{copy}{sequence}

\op{append}{sequence1 sequence2}
\doc{Returns a sequence of the type of \emph{sequence1}.  One slight
bug is that one may not pass \df{append} a first argument that's a
list and a second that's not.  This may be fixed in the future.  All
other combinations should work correctly.}
\op{append\protect\bang}{sequence1 sequence2}
\doc{Most sequences have immutable lengths, and hence are not
appropriate arguments to \df{append\protect\bang}.  The major exception is lists.
The same bug is present here as in \df{append}.}

\op{reverse}{sequence}
\op{reverse\protect\bang}{sequence}

Some mapping operations are also applicable to sequences, and are
documented in Section~\ref{sec:controlmap}.

\section{Vector Constructors}

\op{vector}{\dt objects}
\doc{Returns a \df{simple-vector} containings \emph{objects}.}
\makin{simple-vector}{length}
\coercer{simple-vector}{sequence}


\section{List Constructors}

\op{list}{\dt objects}
\makin{list-type}{length fill-value}
\coercer{list-type}{sequence}
\op{cons}{object1 object2}
\makin{lazy-cons-pair}{car-thunk cdr-thunk}
\mc{lcons}{car-form cdr-form}
\doc{\macdef{}{(make lazy-cons-pair (lambda () \emph{car-form}) (lambda
() \emph{cdr-form}))}}


\section{List Accessors}

\lo{car}{pair}
\lo{cdr}{pair}
\lo{c$[$ad$]^{*}$r}{pair}
\doc{Actually these are only provided for up to four \texttt{a}'s and
\texttt{d}'s.  If you think you need more, you should probably be
defining accessor functions or using \df{nth} or perhaps
\df{destructure}.}
\lo{last-pair}{pair}
\doc{Takes successive \df{cdr}'s of \emph{pair} until it finds a pair
whose \df{cdr} is not a pair, which it returns.  \evto{(last-pair '(a
b c))}{(c)}.  \evto{(last-pair '(a b c . d))}{(c . d)}.}

\mc{destructure}{template structure \dt body}
\doc{This is for destructuring lists, and is sort of the inverse of
backquote.  \emph{Template} is a possibly nested list of variables.
These variables are bound to the corresponding values of
\emph{structure} while \emph{body} is evaluated.  For instance,
\macdef{(destructure (a (b) . c) x (foo a b c))}{(let ((a (car x))(b
(caadr x))(c (cddr x))) (foo a b c))}.  It is guaranteed that
\emph{structure} will be evaluated only once.  We note that \df{destructure}
typically generates more efficient code than the corresponding code
one might typically write.

If there is a position in \emph{template} that should be ignored, one
can place a \df{\#t} there.  For convenience and compatiblity with
\df{destructure*}, positions in \emph{template} containing \df{()},
\df{\#f} and \texttt{(quote \emph{x})} are also ignored.}

\mc{destructure*}{template structure \dt body}
\doc{This is just like \df{destructure} except that an error is
signaled if \emph{structure} doesn't precisely match \emph{template}.
Positions containing \df{\#f} and \df{()} are required to match
literally.  Positions containing \texttt{(quote \emph{x})} are required to
match \emph{x} literally, where \emph{x} is not evaluated.  As with
\df{destructure}, positions containing \df{\#t} are ignored.

\df{destructure*} is particularly useful in macro expanders where it
can do much of the syntax checking automatically.}

\mc{destructure**}{structure \lpar{}template \dt body\rpar ...
[\lpar{}\texttt{otherwise} \dt nomatch-body\rpar]}
\doc{This is just like \df{destructure*} except that, when one
template does not match, the next in line is considered.  If none
match than the OTHERWISE one does; if no otherwise clause is present,
an error is signaled.}


\section{Lists as Sets}

\op{mem}{predicate object list}
\doc{Returns the first tail of \emph{list} whose \df{car} equals
\emph{object} according to \emph{predicate}.}

\op{memq}{object list}
\op{del}{predicate object list}
\op{delq}{object list}
\op{del\protect\bang}{predicate object list}
\op{delq\protect\bang}{object list}



\section{Lists as Associations}

\op{ass}{predicate object list}
\op{assq}{object list}
\so{cdr-ass}{predicate object list}
\so{cdr-assq}{object list}



\section{Lists as Stacks}

\mc{push}{location object}
\mc{pop}{location}