1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
% This file is part of Oaklisp.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% The GNU GPL is available at http://www.gnu.org/licenses/gpl.html
% or from the Free Software Foundation, 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA
\chapter{Sequences} \label{Sequences}
Sequences are manipulated using the \df{nth} operation, which is
settable (and locatable). The sequence heirarchy is shown in
figure~\ref{fig:seqhier}.
\index{\texttt{sequence}}
\index{\texttt{vector-type}}
\index{\texttt{simple-vector}}
\index{\texttt{list-type}}
\index{\texttt{string}}
\index{\texttt{pair}}
\index{\texttt{null-type}}
\index{\texttt{cons-pair}}
\index{\texttt{lazy-cons-pair}}
\begin{figure}[h]
\centering\includegraphics{seqhier}
\caption{The sequence type hierarchy. Abstract types are in plain face
and instantiable ones in bold.} \label{fig:seqhier}
\end{figure}
\section{Type Predicates}
\pr{sequence?}{object}
\pr{vector?}{object}
\pr{string?}{object}
\pr{list?}{object}
\pr{pair?}{object}
\pr{null?}{object}
\pr{atom?}{object}
\section{Sequence Operations}
These operations work on all sequences.
\op{length}{list}
\lo{nth}{list n}
\lo{last}{list}
\lo{tail}{list n}
\op{copy}{sequence}
\op{append}{sequence1 sequence2}
\doc{Returns a sequence of the type of \emph{sequence1}. One slight
bug is that one may not pass \df{append} a first argument that's a
list and a second that's not. This may be fixed in the future. All
other combinations should work correctly.}
\op{append\protect\bang}{sequence1 sequence2}
\doc{Most sequences have immutable lengths, and hence are not
appropriate arguments to \df{append\protect\bang}. The major exception is lists.
The same bug is present here as in \df{append}.}
\op{reverse}{sequence}
\op{reverse\protect\bang}{sequence}
Some mapping operations are also applicable to sequences, and are
documented in Section~\ref{sec:controlmap}.
\section{Vector Constructors}
\op{vector}{\dt objects}
\doc{Returns a \df{simple-vector} containings \emph{objects}.}
\makin{simple-vector}{length}
\coercer{simple-vector}{sequence}
\section{List Constructors}
\op{list}{\dt objects}
\makin{list-type}{length fill-value}
\coercer{list-type}{sequence}
\op{cons}{object1 object2}
\makin{lazy-cons-pair}{car-thunk cdr-thunk}
\mc{lcons}{car-form cdr-form}
\doc{\macdef{}{(make lazy-cons-pair (lambda () \emph{car-form}) (lambda
() \emph{cdr-form}))}}
\section{List Accessors}
\lo{car}{pair}
\lo{cdr}{pair}
\lo{c$[$ad$]^{*}$r}{pair}
\doc{Actually these are only provided for up to four \texttt{a}'s and
\texttt{d}'s. If you think you need more, you should probably be
defining accessor functions or using \df{nth} or perhaps
\df{destructure}.}
\lo{last-pair}{pair}
\doc{Takes successive \df{cdr}'s of \emph{pair} until it finds a pair
whose \df{cdr} is not a pair, which it returns. \evto{(last-pair '(a
b c))}{(c)}. \evto{(last-pair '(a b c . d))}{(c . d)}.}
\mc{destructure}{template structure \dt body}
\doc{This is for destructuring lists, and is sort of the inverse of
backquote. \emph{Template} is a possibly nested list of variables.
These variables are bound to the corresponding values of
\emph{structure} while \emph{body} is evaluated. For instance,
\macdef{(destructure (a (b) . c) x (foo a b c))}{(let ((a (car x))(b
(caadr x))(c (cddr x))) (foo a b c))}. It is guaranteed that
\emph{structure} will be evaluated only once. We note that \df{destructure}
typically generates more efficient code than the corresponding code
one might typically write.
If there is a position in \emph{template} that should be ignored, one
can place a \df{\#t} there. For convenience and compatiblity with
\df{destructure*}, positions in \emph{template} containing \df{()},
\df{\#f} and \texttt{(quote \emph{x})} are also ignored.}
\mc{destructure*}{template structure \dt body}
\doc{This is just like \df{destructure} except that an error is
signaled if \emph{structure} doesn't precisely match \emph{template}.
Positions containing \df{\#f} and \df{()} are required to match
literally. Positions containing \texttt{(quote \emph{x})} are required to
match \emph{x} literally, where \emph{x} is not evaluated. As with
\df{destructure}, positions containing \df{\#t} are ignored.
\df{destructure*} is particularly useful in macro expanders where it
can do much of the syntax checking automatically.}
\mc{destructure**}{structure \lpar{}template \dt body\rpar ...
[\lpar{}\texttt{otherwise} \dt nomatch-body\rpar]}
\doc{This is just like \df{destructure*} except that, when one
template does not match, the next in line is considered. If none
match than the OTHERWISE one does; if no otherwise clause is present,
an error is signaled.}
\section{Lists as Sets}
\op{mem}{predicate object list}
\doc{Returns the first tail of \emph{list} whose \df{car} equals
\emph{object} according to \emph{predicate}.}
\op{memq}{object list}
\op{del}{predicate object list}
\op{delq}{object list}
\op{del\protect\bang}{predicate object list}
\op{delq\protect\bang}{object list}
\section{Lists as Associations}
\op{ass}{predicate object list}
\op{assq}{object list}
\so{cdr-ass}{predicate object list}
\so{cdr-assq}{object list}
\section{Lists as Stacks}
\mc{push}{location object}
\mc{pop}{location}
|