Lisp and Symbolic Computation, 1, 39-51 (1988)
© 1988 Kluwer Academic Publishers—Manufactured in The Netherlands

Oaklisp: An Object-Oriented Dialect of Scheme

KEVIN J. LANG AND BARAK A. PEARLMUTTER
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

Abstract

This paper contains a description of Oaklisp. a dialect of Lisp incorporating lexical scoping, multiple
inheritance, and first-class types. This description is followed by a revisionist history of the Oaklisp
design, in which a crude map of the space of object-oriented Lisps is drawn and some advantages of
first-class types are explored. Scoping issues are discussed, with a particular emphasis on instance
variables and top-level namespaces. The question of which should come first, the lambda or the object,
is addressed, with Oaklisp providing support for the latter approach.

1. Introduction

Scheme has always been object-oriented in several senses. Like any dialect of Lisp,
Scheme has the sort of interactive computational model that the Xerox PARC
people have so eloquently and tirelessly promoted. Unlike earlier dialects of Lisp,
Scheme has lexical closures that can encapsulate code with little pieces of private
state. As Lambda: The Ultimate Declaritive [12] pointed out, viewing lambdas as ob-
jects makes it possible to write Scheme programs that have classical message-
sending semantics. Unfortunately, programs written in this style are rather con-
torted, since the method selection process must be made manifest in every
lambda.

The designers of T [10] decided that they could better support an object-oriented
programming style by adding a special mechanism that implicitly looks up
methods according to a mapping that is associated with each lambda. This facility
was great for writing print methods and for defining generic operations on abstract
types such as tables. However, T programmers who adopted an object-oriented
point of view soon wanted an inheritance mechanism, so features were added that
allowed a limited form of inheritance. The T object-oriented programming facility
could not be improved further, since the original idea of viewing lambdas as ob-
jects was more of an intellectual exercise than a serious suggestion for a language
design. The biggest shortcoming of T is that method tables cannot be incremen-
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tally modified,; it is impossible to add a method to an existing type when there is no
way to refer to a type. In fact, types don’t even exist at the language level.!

To arrive at a full-blown object-oriented language that is still Scheme, a dif-
ferent approach is necessary. Instead of building objects out of lambdas, Oaklisp
builds lambdas and other Lisp data types on top of a simple object-oriented ker-
nel. Because types are represented by first-class, anonymous objects, real object-
oriented programming can be supported without a large number of special
linguistic mechanisms.

2. Overview of the language

As in T and later languages such as CommonLoops, Oaklisp uses function call
syntax for message sending. When (car x) is evaluated, a message containing the
car operation is sent to the object x, and a method is then selected to run based on
the type of x. Oaklisp types are arranged in the usual sort of multiple inheritance
hierarchy, so each type needs to supply only those methods that are needed to dis-
tinguish the type from its supertypes.

"ol is-a link
M\ subtype link

Fig 1. The root of the Oaklisp type hierarchy.

2.1 Fundamental types

The Oaklisp type system is structured by the relations is-a and subtype. An object is
related to its type by is-a, and a type is related to its supertypes by subtype. Each of
these relations defines a directed graph that includes all of the objects in the
system.

The fundamental types in the system are type and object (Fig. 1). They are dis-
tinguished by their position at the top of the is-a and subtype hierarchies, and by
their circular definitions.

In T, types do exist at an invisible implementation level; those who know the right magic functions to
call can define methods incrementally.



OAKLISP 41

type Type
This type is the root of the is-a hierarchy. It is the type of types, so new types are
created by instantiating it.

object Type
This type is the root of the subtype hierarchy. Every type is a subtype of object,
so default methods for operations such as print are defined for object.

2.2 Operations on objects

The following predicates are defined on all objects:

(eq? objectl object2) Operation
Defines object identity.

(is-a? object type) Operation

Determines whether object is an instance of type or one of its supertypes. Or-

dinary Lisp type predicates such as pair? and number? can easily be implemented
in terms of this.

2.3 Operations on types

A predicate for testing the subtype relation on types is also available. The cir-
cularity at the top of the type system may be expressed by the assertions (is-a? ob-
ject type) and (subtype? type object).

(subtype? typel type2) Operation
Determines whether rypel is a subtype of type2.

Types are distinguished from other objects by the fact that they handle the nake
operation, which is the mechanism for generating new objects.

(make type . args) Operation
Returns a new instance of rype . make creates objects by allocating them and
then sending them an initialize message. When nake receives extra arguments,

it includes them in the call to initialize.

(initialize object . args) Operation
Returns object. When a type requires special initialization, it shadows the
default initialize method, which is a no-op.
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2.4 Making new types

Since types are objects, new ones are created by sending a nake message to the ap-
propriate type object, which in this case is type.

(make type ivars supertypes) Operation
Returns a new type-object with the supertypes and instance variables
specified by the argument lists. The order of the types in supertypes is significant
because it influences run-time method selection. The method which is invoked
for an operation on an object of a given type is the first one that would be en-
countered on a left-to-right depth-first traversal of the supertype tree starting at
that type. Instances of the type contain all of the instance variables named in
ivars, plus a block of instance variables for each ancestor type, with duplicate
types removed.

2.5 Methods

The mechanism for manipulating the mapping from operations and types to
methods is the following special form:

(add-method (operation (type . ivar-list) . arg-list) . body) SpecialForm
Returns operation after adding a method for operation to the method table of
type.’ Operation and type are evaluated positions. The body of the form is sur-
rounded by an implicit block. The arguments to the method are specified by
arg-list, and instance variables that are to be referenced are declared in ivar-list.
Methods are closed over free variable references when the form is evaluated.

2.6 Functional syntax

Sometimes it is convenient to adopt a more conventional Lisp viewpoint when
writing programs. This viewpoint considers functions to be the primary abstrac-
tion, with objects downgraded to the status of data which are passed around be-
tween functions. The key to this programming style is the ability to write functions
that can accept arguments of any type.

Oaklisp readily accommodates a functional programming style, since methods
can be defined for object, which lies at root of the subtype hierarchy. To give the
language a familiar appearance when this programming style is used, the follow-
ing macros are provided:

2Conceptually but not necessarily implementationally.
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(lambda arg-list . body) Macro
=> (add-method ((make operation) (object) . arg-list) . body)
(define (variable . arg-list) . body) Macro

=> (set variable (lambda arg-list . body))

2.7 An example

A cursory reading of the preceding language description could leave the false im-
pression that Oaklisp is similar to Smalltalk or Flavors. The following code frag-
ment is intended to emphasize the Scheme-like nature of even the object-oriented
portion of Oaklisp. This function is used in the kernel of our implementation to
give objects a crude but informative way of printing themselves, namely by print-
ing a name for the type of the object followed by a weak pointer that could be used
to generate a reference to the object as long as it exists.

(define (add-simple-print-methods types names)
(map (lambda (the-type the-name)
(add-method (print (the-type) instance stream)
(format stream "#<~A ~A>"
the-name (get-weak-pointer instance))))
types names))

A call to this function would look like (add-simple-print-methods (1ist type opera-
tion locale) '("Type" "0p" "Loc")). It is worth pointing out that types are given
names only in the user interface; types themselves are just anonymous objects,
which is why it is easy to pass a list of them around. This example also shows than
an add-method form can be nested inside of arbitrary code, even inside a loop.
Because the type and operation slots of add-method are evaluated, we are able to
provide the same method for a number of different types. Each instantiation of
this method does the right thing because it is closed in its own environment with
an appropriate binding for the-name.

2.8 Other features of Oaklisp
All of the usual Scheme functions and special forms are available. When a

functional programming style is adopted, Oaklisp is essentially Revised §3 Scheme
with generic versions of predefined functions such as length.

3. Variables

Like every dialect of Scheme, Oaklisp is lexically scoped, with all variable refer-
ences resolved at compile time. Lexical scoping allows upward funargs to work
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correctly, and makes it possible to compile the language efficiently. Because
variables live in a well-defined textual scope, programs are both more readable
and more resistant to remotely induced bugs.

The lexical scoping rules for Oaklisp instance variables are designed to preserve
these properties. Instance variables are introduced into the naming environment
in exactly the same way that ordinary parameters are: by declaring them in the
header of an add-method form. Although it sounds restrictive to insist that instance
variables be declared before they can be used, the alternative would be to have
names invisibly inserted into the lexical environment when an add-method bound-
ary is crossed. This would not only make programs harder to read, it would allow
the addition of a new variable to a far away type definition to suddenly shadow out
a variable from a let around an add-method, or even a global variable.?

Modern dialects of Lisp are supposedly distinguished by their rationalized
scoping systems. Unfortunately, the scoping class of variables may not be visually
apparent. In Common Lisp [14], the expression (1et ((foo 3)) (bar foo0)) could have
counterintuitive semantics if the name foo had been declared special somewhere
in the compilation environment* To avoid the debugging difficulties inherent in
this kind of system, programmers have adopted naming conventions such as put-
ting stars around variables that are dynamically scoped. Oaklisp eliminates the
problem by making it impossible to have fluid variables that look like lexical
variables. As suggested in The art of the interpreter [13], fluid variables are refer-
enced through a special form, so references to the fluid variable foo look like (fluid
foo). Since parameters and instance variables are strictly lexically scoped and
fluid variables have a visually distinguishable form, every mystery variable in a
piece of Oaklisp code is not really mysterious at all; it has to be an ordinary global
variable that lives in the top-level namespace, which is structured using the
mechanism discussed in the next section.

4. Locales

Multiple namespaces were one of the first modularity tools to be invented, and are
a feature of almost every modern programming language. In C, for example, every
file lives in a private namespace that inherits from the global namespace. Iden-
tifiers are exported to the global namespace with the extern form.

Many dialects of Scheme incorporate a more flexible facility based on first-class
namespace objects, or locales [9]. This approach decouples files from namespaces
and permits more elaborate patterns of identifier sharing. An Oaklisp locale
specifies partial mappings from symbols to storage locations and from symbols to

30Object-oriented Lisps are susceptable to modularity problems of this sort if they are not carefully
designed. For a detailed exploration of these issues. see [11].
“If foo has been declared special. the let introduces a binding with pervasive scope, and any reference
to a global variable foo in the function bar is shadowed out.
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macro expanders. The gross structure of Oaklisp’s top-level namespace (Fig. 2) is
provided by a mechanism that allows one locale to inherit the bindings of others.
Finer control may be achieved by sending messages to locales, instructing them to
alter their mappings. Because many compiler optimizations are legal only if it can
be determined that the value of a given global variable will never be modified,
locales record which variables the user has promised never to change. An
autoloading facility is provided by a subtype of locale that lazily loads its bindings
from a file.

It is worth pointing out that locales are not analogous to Common Lisp pack-
ages. In Common Lisp, there is only one top-level namespace; naming conflicts
are prevented® by providing each symbol with an implicit prefix. This approach
was necessary in the dynamically scoped ancestors of Common Lisp, since in a
dynamically scoped Lisp there is a one-to-one correspondence between symbols
and variables.

5. Uniform temporal semantics

Aside from syntactic and environmental issues, the difference between Pascal and
Scheme lies in the uniformity of their temporal semantics. In Pascal, some things
(e.g., creating a procedure) can be done only at compile time, while in Scheme,
everything that can be done at compile time can be done at run time as well.
Historically, object-oriented features have destroyed the uniform temporal
semantics of Lisp dialects into which they were incorporated. For example, in

Fig. 2. The Oaklisp namespace configuration.

SAlthough packages solve the problem of conflicting global variable names, they interact poorly with
the overloading of symbols in Lisp. For example, when a program imports a macro that uses noise
words as part of its syntax. as does the MIT loop macro. the noise symbols must be imported along with
the macro. These symbols might have bindings as variables or functions completely divorced from
their role in the macro. and if the importing program is using these symbols for its own functions or
variables, a conflict will result.
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Flavors [6, 15] it is possible to define a new flavor or add a method to an existing
flavor only at compile time; it would be unthinkable to put a defmethod form inside
a loop. To retain Lisp’s uniform temporal semantics while fully supporting the
object-oriented paradigm, first-class types are necessary.®

(map plus (list 57)
(list 14 19))

(map mix (list rear-scrolling-mixin neon-borders-mixin)
(list geometry-window coke-monitor-window))

In Oaklisp, just as the plus operation can be mapped across two lists of numbers
yielding a list of their sums, the mix operation can be mapped across two lists of
types yielding a list of new types. Because types are first-class objects, the full
power of the language is available for manipulating them. Special purpose, tem-
porally inconsistent mechanisms (such as Flavors’ defflavor) are unnecessary.

In addition to making the language simpler and more consistent, first-class
types make it easy to extend the typing system in useful ways. For example, the
Oaklisp coercion facility is based on coercible types, which are instances of a user
defined subtype of type. A coercible type differs from other types in that it
possesses an operation for coercing things to itself which it returns when sent a
coercer message. Assuming that an appropriate coercion method has been
defined, an object x can be coerced to type vector by Writing ((coercer vector) x).
For an example of a coercion method, consider the following code for coercing
any sequence to a string:

(add-method ((coercer string) (sequence) self)
(let* ((1 (length self))
(s (make string 1)))
(dotimes (i 1)
(set (nths i) (nth self i)))
s))

This coercion mechanism is both extensible and defined at the user level; there is
no magic involved in either the definition of coercible-type or the definition of
particular coercion methods. It works because types are first class.

Another advantage of making types first class is that they are anonymous, which
makes it possible to have an automatic facility that manages the creation and
tracking of a pool of composite types. For example, to find a type consisting of
generic-window, flashing-borders-mixin, and active-margins-mixin, one could

$The designers of T were able to avoid breaking the clean semantics of Scheme by adding only one of
the features normally associated with object-oriented programming: generic procedures. Because types
were completely implicit, inheritance and textually dispersed method definitions could not be sup-
ported: T is not object-oriented in the same sense that Smalltalk is.
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simply type (mix-types window-type-manager (list generic-window flashing-borders-
mixin active-margins-mixin)), which eliminates the burden of remembering
whether this type has already been defined and what it might be called.

6. Operations

An operation can be thought of as a generic function. When an operation is ap-
plied to an object, the type of the object is used to select a method that can perform
the abstract computation specified by the operation. When exactly one universally
applicable method has been defined for an operation, the operation is func-
tionally equivalent to a lambda. Thus we see that lambdas are a special case of
operations. Because Oaklisp operations are just objects that fit into the regular
type system, it is possible to create new types of operations that respond to
messages and that contain useful structure.

T was the first language to exploit this possibility by defining settable opera-
tions, which can be used to access and side-effect generalized locations. The
operation for changing the value of a location is obtained by sending a setter
message to the corresponding accessor operation. The advantage of settable
operations is that only half as many operations need to be kept around and given
names; it is easier to remember (setter car) than rplaca. This facility is used in
conjunction with a macro that expands a set form whose location slot is a list into
the appropriate call using setter. For instance, (set (car x) y) macro expands to
((setter car) x y), which sends the car operation a setter message and applies the
returned operation to x and y.’

This theme can be developed further. In Oaklisp, the make-locative form is used
to create locatives to variables, but (make-locative x) where x is a list expands to a
call to a locater operation. For instance, (make-locative (car x)) expands to
((locater car) x). Locatable operations are settable as a matter of course, since the
accessor operation on locatives is contents, which is settable. This fact is reflected
in the Oaklisp operation type hierarchy, where locatable operations are a subtype
of settable operations. Moreover, the preceding argument is put to use in the in-
itialization code for locatable operations, which automatically provides accessor
and setter methods in terms of the (as yet nonexistent) locater method. These
methods simply invoke the locater operation and then use the resulting locative to

"Readers familiar with Common Lisp or ZetaLisp will note the similarity of this facility to setf.
However. because setter deals with anonymous operations while setf deals with symbols, setf fails in
situations such as

(defun set-positions (func 1 z)
"Set the FUNC of successive members of L to Z+1, Z+2,
(dolist (x 1)
(setf (funcall func x)
(setq z (+z 1))))).
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perform the appropriate side effect or access. Thus, when a locatable operation is
created, it requires a method to be defined only for the operation’s locater opera-
tion; the rest of the functionality defaults properly.

The Oaklisp compiler open codes some operations, such as plus and (setter
car), and constant folds others. To support these optimizations, a number of mix-
ins are available for combining with the other operation types. The open-coded-
mixin type adds information on how an operation should be open coded, while the
foldable-mixin type allows its instances to be constant folded.

7. Lisp types and inheritance

Until recently, most object-oriented versions of Lisp were created by adding
a separate message facility to an existing language. Languages of this sort had
two problems: object-oriented code had to be written in a sort of pidgin Lisp
that lacked expressive power, and all of the traditional Lisp data types were im-
plemented in an ad hoc manner outside of the object-oriented type system.
The resulting dichotomy between the two sides of the language compromised
the traditions of openness and extensibility long enjoyed by both Lisp and
Smalltalk.

CommonLoops [3] demonstrates that with enough effort and machinery it is
possible to do a good job of making an existing Lisp uniformly object-oriented. An
easier way of ensuring that a Lisp dialect is completely object-oriented is to define
an object-oriented kernel with the right semantics® and then use its extension
facilities to build all of the necessary Lisp data types. Because inheritance provides
an underlying structure for the types, it it possible to regularize the system and in-
troduce abstract types at appropriate points in the hierarchy. The usual Lisp pred-
icates and functions can then be defined generically at just the right level of
abstraction, leaving the system open to the creation of generalized versions of
traditional types. For example, the types and functions necessary for list process-
ing are defined in the portion of the Oaklisp type hierarchy diagrammed in
Figure 3.

Pair is an abstract type that is never directly instantianted. Methods for printing
and mapping are defined for pair and are shared by all of its subtypes, while the
subtypes themselves are responsible for handling car and cdr messages. Ordinary
cons cells are instances of the type cons-pair, but other useful subtypes of pair can
be defined as well. For example, the following program fragment sets up a type of
lazy pair that only computes its car and cdr when they are actually needed.

(set lazy-pair (make type ‘(car-thunk car-flag
cdr-thunk cdr-flag)
(list pair object)))

8Smalltalk would not be appropriate because it does not support upward funargs.
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Fig. 3. The Oaklisp cons hierarchy.

(add-method (initialize (lazy-pair car-thunk car-flag
cdr-thunk cdr-flag)
self thunkl thunk2)
(set car-flag nil)
(set cdr-flag nil)
(set car-thunk thunkl)
(set cdr-thunk thunk2)
self)

(add-method (car (lazy-pair car-thunk car-flag) self)
(cond (car-flag car-thunk)
(else (set car-thunk (car-thunk))
(set car-flag t)
car-thunk)))

Lazy-pair uses a call by need strategy, in which thunks are used to represent the
potential values of the car and cdr until they are needed. For example, to create an
infinite list of squares we can write

(define (make-omega-squares-from n)
(make lazy-pair (lambda () (* nn))
(lambda () (make-omega-squares-from
(+n D))
(set infinite-squarelist (make-omega-squares-from 0))
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If we were to now print infinite-squarelist, "(014916253649 . . . )" would ap-
pear on the screen, since lazy-pair has inherited the print method defined for pair,
which already knows how to abbreviate long lists using the “...” syntax.

8. Implementation and future work

The current implementation of Oaklisp is based on a bytecode machine for port-
ability. References are 32 bits long, with the 2 low bits devoted to tags. Our com-
piler differs from those written for purely instructional dialects of Scheme by em-
phasizing runtime efficiency rather than hooks for the debugger. For instance,
appropriate labels forms are compiled as tight loops that do not generate lambdas.
This orientation also led us to provide for low-level access to native machine re-
sources. Our implementation runs under Unix™ and on the Apple Macintosh.™

Although we currently dispatch only on the type of the first argument, we are
modifying the language to allow dispatching on the types of multiple arguments.
The syntax of add-method has been extended to (add-method (operation [ [(type. ivar-
list)] arg]*) . body), and the appropriate modifications to the implementation
should be in place before this paper appears.

In addition to this minor linguistic enhancement, our colleague Bruce Horn is
planning a number of technological upgrades, including a fancy user interface.
Our vision is closer to the Smalltalk user interface than to that of current Lisp
machines. By using a model-view-controller [4] paradigm we hope to integrate the
functionality normally associated with debuggers and inspectors by giving con-
tinuations appropriate viewers and controllers.

We are also considering the addition of futures |2, 5] to the language, one of the
motivations being the possibility of using them as tokens for swapped out objects
in an object based virtual memory system. This facility would allow the Macintosh
implementation to swap to disk, and give users fine control over paging policies.

9. Conclusion

Scheme demonstrated that Lisp could be made both simpler and more powerful
by rationalizing its scoping rules and making procedures truly first class. How-
ever, Lisp still suffers from its ad hoc type system, and attempts to enhance the
language with object-oriented features usually compound the problem. Oaklisp
shows that Lisp can benefit from having a clean type system designed with
Scheme aesthetics in mind.
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