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Abs t rac t  

The Scheme papers demonstrated that lisp could be made simpler 

and more expressive by elevating functions to the level of first class 

objects. Oaklisp shows that a message based language can derive 

similar benefits from having first class types. 

In t roduc t ion  

Oaklisp is a message based, multiple inheritence dialect of lisp. 

Programs are written using lisp syntax, and traditional lisp data types 

coexist with a Smalltalk style class hierarchy. This paper assumes that 

the reader is familiar with one of the many object-oriented lisp dialects 

of  this sort. and will therefore concentrate on the unique aspects of  

Oaklisp which are mostly due to the influence of Scheme. 

Oaklisp is based on Scheme in two ways. Scheme was used as the 

model for syntactic details whenever possible in order to minimize our 

contribution to the continual proliferation of  incompatible varieties of  

lisp, More significantly. Oaklisp is based on the Scheme philosophy. 

which states that the primitive forms of a language should be simple. 

powerful, and meaningful from several points of view. The careful 

design of Oaklisp permits its object-oriented and procedural sides to'be 

more closely integrated than in a language which just hangs a separate 

message facility on the side of an existing lisp. Although Oaklisp is 

object-oriented from the core. all of its features behave in such a way 

that pure Scheme emerges as an alternate programming style. 

Because Oaklisp is so closely related to Scheme. it is worth taking • 

look at the main ideas of  Scheme before proceeding. The conceptual 

foundation of  the language is that functions are objects just like 

everything else. which means they can be returned from calls, passed 

around, stored in data structures, and so forth. This principle has 
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several implications that are not immediately obvious. Because • 

function can be applied at a point distant in time and space from ilz 

point of origin, it must be able to remember the bindings of  any 

variables that were visible when it was made. This additional 

complexity is offset by the ability to write many previously primitive 

control structures at the user level and by the fact that the special 

mechanisms that lisp ordinarily uses for defining and applying 

functions can be dispensed with. 

In lisp, the car position of a function call is treated as the name of a 

function which is looked up in a special table and then applied to the 

values obtained by evaluating the arguments of  the call. In Scheme, the 

car of  a call is an evaluated position. Although any expression can 

occur in the car, it is common for the expression to be a variable, in 

which case a call looks exactly like it would in lisp even though 

something completely different is 80ing on. For example, the Scheme 

form (PLus ! 2) is evaluated by looking up the binding of the variable 

PLUS and applying the resulting funcdon to the values t and z. Because 

functions arc manipulated using the same mechanisms as other forms of  

data. they arefirst class. Because functions arc never found by looking 

up their name, they are ononymous. It is worth pointing out that when 

a function is commonly bound to a particular variable (such as PLus), it 

is convenient to speak as if the variable's name were the function's 

name. This practice should not be allowed to obscure the fact that the 

function is really an anonymous object which happens to be accessible 

through a standard variable binding. 

The Oaklisp version of a function call is an amplified version of 

what we have just seen in Scheme, with identical syntax and closely 

related semantic~ The first step in the evaluation of a call is the same, 

namely the recursive evaluation of  the subelements of  the form. The 

message based semantics of OaIlisp only becomes manifest in the 

application step of  evaluation, where the car value is taken to be an 

operation and the second value is taken to be an object whose type 

determines the method which is invoked to perform the operation. The 

remaining arlpaments are passed along to the method, but play no role 

in its selection. It should be clear that this message passing paradigm is 

basically the same as in Smalltalk. The inheritance and shadowing of 

methods occurs in the usual way. The only major difference between 

Oaklisp and Smalltalk messages is that Oaklisp operations are not 
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symbols; they are anonymous objects that may be passed around and 

compared. The anonymity of operations is necessary so that Oaklisp 

will have the correct Scheme semantics when a functional programming 

style is adopted. However, an operation is not a function by itself, since 

it is not directly associated with any code. An operation is just a thing 

with a unique identity that in conjunction with a type specifies a 

method which can actually be executed. 

1"o make all of  this a bit more concrete, consider the evaluation of  

the call (PLUS Z 3). "lhe first subform is a variable which is 

dercferenced, yielding an operation. The other two subfi)rms are 

constants, so they evaluate to themselves. The type of the distinguished 

first arg,mcnt is retrieved, and then the method tables of the integer 

type and its supcrtypes are searched using the anonymous operation as 

a key. If the tables have been set up correctly, the search leads to the 

selection of a method that knows how to add things to an integer. 

Finally. the method is invoked with the arguments z and a. 

We have seen how the cvalualion of calls is moderated by the type 

system, and in particular by the method tables of  types. The ability to 

configure these tables is provided by the ADO-MEVHO0 special form. For 

example, by evaluating the following expression we can define a PLUS 

method foreonscelissuch that (PLus (cous 2 3)) ~ 8. 

(ADD-METHOD (PLUS (PAIR) SELF) 
(rIMES (CAR SELF) (CDR SELF))) 

This form tells the system to associate the method specified by the body 

with the operation PLUS in the method table of  the type PAIR. It is a 

special form rather than a call because of(be keyword ADD-METIIOO and 

because the body and argument list (SELF) are not evaluated. 

However, the operation and type positions are evaluated, which means 

that PLUS is just a variable which is bound to the same operation which 

will later be used as a method selector during a call. 

We have repeatedly said that operations are things that can be 

passed around and stored in variables. The reader may wonder where 

operations come from in the first place. Since they are objects just like 

everything else. they are obtained the same way as any other object, 

namely by ins(an(taring a type. An instance of a type is generated by 

sending the type a MARE message. For example, the system PLUS 

operation is defined by evaluating 

(sErl PLUS (MA~E OPERATION)). 

Now according to the Oaklisp evaluation rules for calls, OPERATION is 

not the name of a type but is a variable bound to a type objecL Since 

types are anonymous things just like operations, they are obtained in an 

analogous manner, by instantiating the type TYPE. For example, we 

could create a frog type with the following expression. 

(SET! FROG (MAKE TYPE (LIST 'AGE 'COLOR) (LIST OBJECT))) 

In this case the NAg[ m~..'ssagc hakes extra arguments which specify the 

new type's instance variables, and supeRypes. Ik'caL,se the MAKE 

expre.~sio,~ is a call and not a special Ibnn. all of its subcxpressions are 

evaluated. Observe that the first argument expression has been written 

in a manner that evaluates to a list of  symbols, and that the second 

yields a list of type objects. 

The lypc specified as the supertype of PaOG is OBJECt, which is the 

distingtsished type [.hat lives al the lop of the inheritance graph. 

llecause every type is a subtype of  OBJ[Cr, a nlctht~ which has been 

installed in OBJiCl will work on any object whatsoever and can be used 

as the default method for an operation. This ability m define default 

meth(gls suggests the following strategy fiw setting up a type predicate. 

(S i l l  FROG? (Max[ OPIRA|ION)) 

(ADD-METHOD (FnOG? (OBJECt) SELF) 
mlL) 

(ADD-METHOD (FROG? (FROG) SELF) 
T) 

(SETI FREO (MARE FROG)) 

(FROG7 FREO) ~ IITRUE 

(FROG? FROG) "-~ ()  

The last two expressions illusU'ate the fact that while FRED is a frog, FROG 

is a type. F~EU and fROG are also objects, because FROG and TYPE are 

subtypes of the type OUJECT. Tbese and other amazing facts can be seen 

in figure 1. which shows the primordial type hierarchy together with the 

frog example. It is important m understand the difference between the 

is-a and subo,pe-ofrelafions. Whereas every object is the bottom of  an 

is-a link. types are the only participants in subo,pe-oflinks. 

key: 

is-a relation 

...IW immediate subtype 

C ~  ty~ object 
• non-type object 

Figure I: "l'hc Primordial Types 

Although the primordial types oeJrce. TYPE, and OPERATIOB may 

seem to be magic, they are just like any other types and could be 

defined at the user level. 2 The general hick of magic in the type system 

permits a degree ofopenness and extensibility beyond that of Smalltalk 

and Zelal.isp, both of which have lots of special machinery laying 

around. The later .~tions of this paper present several niRy features 

that can be defined in Oaklisp at the user level. 

But first, there are a couple of  details that need to be addressed in 

the frog cxample. The FROG Iype pnSSCSSES instance variables which 

should he initialized when a frog is made, Since this is a common 

requiremenL the MAKI method for types sends new instances an 

2Aclually. some po/nler tweaking is needed because of IJ~ circulamies in Uteir 
definiliOn¢ 
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INITIALIZE message before returning them. The default INITIALIZE 

method is a no-op. By specifying an INIriALIZE method for frogs, we 

can shadow out this default method and cause something useful to 

happen. 

(ADD-METHOD (INITIALIZE (FROG AGE COLOR) 
SELF INITIAL-COLOR) 

(SET! AGE O) 
(SET! COLOR INITIAL-COLOR)) 

(SETI FRANK (MAKE FROG "OLIVE-DRAB)) 

Notice that when an instance variable is used in the body ot" a method, 

it must be declared at the top of the method. "l'his helps to 

disambiguate variable references for both the compiler and the 

programmer. 

A particularly important aspect of the ADO-METHOD form is that the 

method is dosed in its lexical environment when the form is evaluated. 

Together with the ('act that AOO-MErH0O returns its operation argument. 

this rule allows the L~BDA special form of Scheme to be defined with 

the following macro. 

( CAMBria arM.list, body) E 
( ADD-ME THO0 ( (MAKE OPERAT tON) (OBJECT). nrl-I/st ) . l ~ v )  

When a LAMBDA form iS evaluated, it generates a new anonymous 

operation and supplies a default method for [he operation. Since the 

same piece of" code is invoked every time the operation is sent in a 

message, the operation behaves exactly like a function. Using the 

LAMBOA form. Oaklisp programs can be written in a functional style that 

is indistinguishable from Scheme. In practice, progrnms tend to be 

written in a mixture of the functional and object-oriented styles. It is 

easy to combine the two styles in a harmonious manner because the 

Scheme component of  the language is just the natural result of  having 

anonymous operations and a icxicaily seeped ADO-ME raoD fOrm. 

T h e  Oak l i sp  Cons  t l i e r a r c h y  

In the Oaklisp kernel, censer are defined in Oaklisp itself in a way 

open to extension by ordinary users. The cons hierarchy (see figure 2) 

is rather detailed, allowing each method and subtype to be defined at 

the right level of abstraction. " 

Figure 2: The Cons Hierarchy 

(SfTI LIST-TYPE (MAKE TYPE ' ( )  " ( ) ) )  

(SETi NULL-TYPE (MAKE TYPE ' ( )  (LEST LEST-TYPE OBJECT))) 

(SET! PAER (MAKE TYPE ' ( )  (LIST LIST-TYPE))) 

(SETI CONS-PAER (MAKE TYPE '(THE-CAR THE-COH) (LEST PAER OBJECT))) 

(AOO-MEFHO0 (CAR (CONS-PAIR THE-CAR) SELF) 
THE-CAR) 

The PAER type is never instantiated; it is an abstract type for "things 

that behave like lisp cerises." Methods for printing and mapping are 

defined at the PAIR level and are shared by all of PAER'S subtypes, while 

the subtypes themselves are responsible for handling CAK and cot 

messages. Ordinary cons cells are instances of the type CONS-PAER, but 

other useful subtypes of PAER can be defined as well. For example, the 

following program fragment sets up a type of lazy pair that only 

computes its car and cdr when they are actually needed. 

(SETI LAZY-PAER 
(MARE TYPE '(CAR-TRUNK CAR-FLAG CDR-TMUMK CDR-FLAG) 

(LIS1 PAIR DBJECT))) 

(AOO-METHO0 (CAR (lAZY-PAIR CAR-THUNR CAR-FlAG) SELF) 
(COMO (CAR-FLAG CAR-TRUNK) 

(ELSE (SETJ CAR-THUNK (CAR-TRUNK "IGNORE)) 
(SET! CAR-FLAG T) 
CAR- FHUNR))) 

(AOO-MFFHOD (IK|T|ALIZF (lAZY-PAIR CAR-THUNK CAR-FLAG 
Cr)R- THUNK CDR-FLAG) 

SFIF ORIGIMAL-CAR-THUNK ORIGINAI-COR-THUMK) 
(SETI CAR-FLAG NIL) 
($F1 ! CAR-THUNK ORIGINAL-CAR-THUMK) 
(SFTI CDR-FIAG Nit) 
(SF11 CDR-IHUMK ORIGINAl -CDR-THUNK)) 

When we make a lazy-pair, we give it "thunks" for the car and cdr 

values. "]'he pair then uses a call by need strategy, in which a thunk is 

used to compute the car or edr on first request, and the computed value 

is stored and returned immediately on future requests. The ease with 

which we can create thunks is a consequence of the Scheme seeping 

rules, which allow us to close a function in the environment of its 

creation and to use the function even after the environment in which it 

was created has been exited. V~en we want to make a thunk fur a 

computation, we just close a function to compute the needed value in 

the appropriate environment For instance, to create an infinite List ot" 

squares we can write 

(SETI MAKE-(~qEGA- S~RES -FROM 
{LANROA IN) 

(MAKE LAZY-PAIR (LAMBOA (IGNORED) (e M M)) 
(t AMBOA (IGNORED) 

(MAKE-OMEGA-SQUARES-FROM (÷ g I ) ) ) )  

(SFTI INFINITE-SQUARE[ EST (MAKE-OMEGA-SOUARES-FROR 0)). 

The syntax here is somewhat awkward 3 but syntax is not the point of  

the example. We have created an infinite list which is computed on 

demand. Since we've built on the absu'act PAIn type, the list can be 

printed and manipulated like any other list; our lazy pairs deal with CAM 

and con a little ideosyncraticaily, but that's invisible from outside the 

type. For instance, if we were to now print EMFINITE-SQOARELIST, "(0 I 4 

ele E6 36 4H ... )" would appear on our screen. It is interesting to no~ 

3Expos1 lisp programmers will ~'cosize [he opportunity to define • lazy-cross macro. 
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that the printer normally abreviates long lists, printing " . "  after a 

certain number of elements have been printed out. This feature is 

inherited by all subtypes of  pair, so we don't have to do anything 

special to make lazy pairs print reasonably. This illustrates the 

usefulness of abstract types and the importance of separating them from 

particular implementations. It also shows the usefulness of defining 

very general methods at high levels of abstraction, as such a policy leads 

to greater code sharing. 

It is equally easy to make a list that is overlayed onto a fractal.set of  

points on the serccn or a string that is the mapped image of a file. 

These examples illustrate the synergy between the dual lingui.~c 

paradigms embodied in Oaklisp. The object orientation of Oaklisp 

allows us to write modular definitions that can be hooked right into the 

type hierarchy, providing the user with a palette of types having 

uniform behavior but varying implementations. The Schcm¢ semantics 

of Oaklisp allows these implcmentations to play 8ames with higher 

order functions, using deviant Conniver-style control structures of the 

sort that provided the original motivation for developing Scheme and 

Prolog. 

Coercab le  Types  

In this section we define a new metatype. COERCAIILE-TYPE, whose 

instances are types that possess coercion operations. In order to coerce 

an object to one of. these types, we send a message to the type asking it 

to return its coercion operation, and then we apply the resulting 

operation to the object For example, we might want to define a new 

kind of table that associates keys and values like a hash table but is 

implemented using a self-adjusting binary tree. By evaluating the 

expression 

(SET! SL EATOR-TAIIL[ 
(NAA£ CO|RCAIILE'TYIIE "(IIOOT SIZE) (LIST TABLE OBJECT))) 

we can create the type and have a coercion operaUon generated 

automatically. To define methods for this operation, we can get our 

hands on it by sending the sleator-table type a COERCCli message. Then, 

if too is bound to a table of some other sort, we can coerce it to a 

sleator-table by evaluating 

((COEIICEII SLEATOII-TABLE) roB). 

Now that we have seen how eoercable types should behave, we can 

actually define them. Observe how the anonymity of" operations and 

types permits us to use type objects to govern access to coercion 

operations. First we create the new metatype with 

(S£TI COERCABL£-TYPE (RAKE TYPE "(CO[IICIOM-OP) (LIST TYPE))). 

This new metatype is just like the original metatype TYPE except for a 

new instance variable COERCtOli-Oli. Next we define the interface to 

coercable types: the COERCEII operation. 

(serf COEIICEII (RAKE OPtliArlOIIJ) 

(AI)D-MfTHOD (COFRCER (COEIICARI | - IYPI COERCIOK-OP) SELF) 
COl liCI OII-OP) 

It remains to define an |a|T~A~ WZE meth~KI fi)r cocrcable types so that 

when one is created it will make itself a coercing operation and stash it 

in its COFRCIOU-OP instance vanable. 

(AOO-NETHOO (/Il l  t'lAI l ie (COEKCAIIl r-TYPE COFIICIOR-OP) 
SII F |VAR$ SUPFRIYPfS) 

(COMTIMUF $IIF IVARS SUP|RfYPIS) :Doinherll~Jmtl~hz~tions 
(SFTI COfRCIOM-OP (MARE OPFRA/IOK)) .~[~kelheeoe~ionopemliOlL 
(A~b-NFTHO0 (COfKCiON-OP (SIIF) IN$1ANC[-OF-SELF) 

1RSTANCf-Of-SEI F)) ://owtoeoerceinstonce$ofou~. 

The expression (SET~ COERC|O,-OR (,AKt OPEIIATtO,)) is 

straightfLirward, but the other two forms in the initialization code 

require some explanation. The first form. tco, rlmu( . ). runs handlers 

filr the I.II,A~ izr operation that lie above the current point in the type 

hierarchy. The code following the (CO,TI,UF ... ) iS executed after these 

handlers, much like a ZetaLisp :ArTrli method. The expression 

(AOO-NFTHOO (CO[IICER (SELF) . , . )  . , )  adds a handler to the type that is 

being created. The handler is for the type's coercioo operation, so this 

form tclls instances of the type how to be coerced to that type. Since 

they are already of the right type, all they need do is return themselves. 

To give a concrete examplo of. how this facility is used, imagine that 

we want to add complex numbers to our language, and that we want 

our complex numbers to have two different representations, cartesian 

and polar. We'd also like to be able to switch between representations 

conveniendy. Our implementation will use an abstract type CoNlitEx and 

two concrete subtypes. 

(SFTI CO~qlPtfll (RAKE TYPE ' ( )  (lIST U l i t l ) ) )  

(SFTI OIITHO-COMPLEX (MARE COfRCAIIlE-TYP£ '(RFAL-COIKPOIIEIIT 
INAG -CONliOdiE lie ) 

(LIST CONPLER Oe.)ECT))) 

(SETI POLAII-CONPLEX (NAg| COERCABLF-TYPE '(ANGLE LEIIGrN) 
(LIST COMPLEX 0(IJECT))) 

Now that we have some new types of numbers, we have to make 

them do all the things numbers are supposed to: addition. 

exponcntiation, printing themselves, eL. The details are tedious; for 

expository purposes, a few examples suffice. 

:: Absolute value: ez~slve in one represeatotior¢ 
(AOO-METH00 (ALES (ORTHO-CONPLFX IIEAL-CONPOilEIIT INAG-CONPONENE) 

SELF) 
(SORT (~" (£xPf IIEAL-CONPOIIiIT It) (EXPT 1NAG-CONPONEIIT Z))))  

:: but cheap kl the other. 
(AOO-NFTHOO (ABS (POLAR-COMPL|X tfliGTH) SELF) 

LENGTH) 

:: Getting the ImaStonry c*om, ean~£" 
(SfTI INAGPAIII (MAKE OPFRATIOli)) 

:: ( ' l iMp m o~le rtprctcntotiot¢ 
(ADD N! fllOO (|NAt;PAIIT (ORIHO-CONPl t l  |NAG-CONPOIfflIT) SF| F) 

]NAG-CONPONE liT) 

:: but rxprn.~ive in the odltr. 
(AI~)-NITIIO~ (|NAGPART (POIAR-(;OMP|EI AIIGtF l El|GIN) S|LF) 

(" t.FMG|H (COS ANGLE))) 

.; and trtviul for  non-combeR n u m ~  
(ADO-Nir#oo (INAGPARF (IIUMOFR) SELF) 

o) 

:: Raisin8 to O powtr. 
(A~ND-NITflOO (FXPT (POIAK-COI4PI [X ANGle LENGTH) SELF POWEII) 

(NAKE POIAR-CONPIIX (* ANGle POWER) (FXPT IFIIGTN POWER))) 
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:: We define equably at on abstract h,vel so that both represrntions ~11 
:: inherit how to t'ompo~ fnr eqlmlity. 
(ADD NITHOD (" (COMPIFX) X Y) 

(ANI~ (" (R~AtPART X) (HFAIPART Y)) 
(" (IMAGPART X) (]HAGPART Y)))) 

Now we get to use our powerful coercion operations, i-~ch kind of 

complex number automatically knows how to coerce to itself; we just 

have to tell each kind how to be coerced to the other. 

:: What a polar doer when if receh,es on ortha coercion message: 
(ADO-HFTHOO ((COERCER ORTHO-COMPltX) (POLAR-COMPI.EI) SELF) 

(HAKE ORTHO-COMPIFX (RFAIPAR) $ILF) (IMAGPART SELF))) 

:: What an ortho does when it receives a polar coercion mexmge: 
(Ar)D-MFTHOO ((COTRCFR POlAR-COMPlEX) (ORTHO-COMPLEX) SELF) 

(HAK£ PO(AR-COMPIEX (PHASE SElf) (ARS SELF))) 

With everything defined, we're ready to demonstrate, l.ets create a 

complex number represented in cartesian terms and coerce it into one 

represented in polar terms. 

:: First we create Sqr#- I). representing it in cartes/on Ferret 
(SET! 1-OgTHO (MAKE ORTFlO-COMPIIV 0.0 1,0)) 

"-* ICO(O.O ).0) 

:: We con ~r~y that i t  wo rk t  
(" t-ORTHO I-ORTHO) 

-'~ -1.0 

:: Now we coerce it tO another reprexentaltoIt 
(SFT! t-POLAR ((COERCFR POLAR-COHPtEX) t-ORTHO)) 

--t /CP(I.O 3. 570796326Tg4g) 

:: And wrify that the allemale tepresentotion funct~n$ t'oveec~i.~. 
(" I'POLAR I'POLAR) 

--* "1.0 

( '  I-ORTHO I'POLAR) 
-4 -I  .0 

:: Note thai  the two represottotions ore d(~t~rn! ob~tg . .  
(EQ? t-OR?HO t-POLAR) 

-~ () 

; :  but are numerimlly e~tmL 
(. I-ORTHO 1-POLAR) 

--4 IH TRUE 

An interesting consequence of  this coercable type mechanism is that 

we can try to coerce one thing to the type of something else without 

knowing what that second type is. For example, suppose FO0 is a hash 

table and sAP is some kind of table that seems very fast and efficient, 

and we'd like to coerce FO0 into a table of the same sort. We get eAR'S 

type. ask it for its coercion operation, and apply that operation to run, as 

follows: 

((COERCER (GET-TYPE eAR1) FOe). 

The contrast between our cocrcable type construction and Srnalltaik 

class variables is also interestin 8. In Smalltaik, there are .special 

variables which are global to an entire type. The COFHCtON-OP instance 

variable of each cotrcable type is morally equivalent to a clags variable, 

since any instance of a coercable type could get to the coercable 

operation by running up its is-a link. By defining an interface at the 

type level allowing the variable to be accessed and some macros to 

sugar the syntax, we could use this sort of definition to make things that 

look almost exactly like class variables. All of this activity can lake 

place at user level--no modification or knowledge of  system internals is 

necessary. 4 

Mixin  M a n a g e r s  

Frequently, type hierarchies become so rich that they threaten to 

overwhelm uset~ with a plethora of possible combinations of mixim. 

The combinatorial explosion of the number of possible concocted types 

seems intrinsic to the style of  programming involving multiple 

functionally orthogonal mixins. Above a certain level of complexity, 

finding a type with certain known characteristics can become difficult. 

Programmers are Eel1 wondering "Has a type based on/bo with bar. baz 

and zonk mixed in been created, if so what's its name, and if not what 

should I name it and where should I define itT' 

In Oaklisp, it is easy to define mixin managers that take care of this 

problem. When programmers need "the type based on fun with bar. 

baz and zonk mixed in," they ask a mixin manager for it. lfsuch a type 

has already been created, it is returned: if not, the mixin manager 

creates an appropriate new type, caches it, and returns it. This relieves 

programmers of the burden of remembering which types have been 

concocted and what thcy are named. 

It is enlightening to examine the :H]X FU,F defflavor option added to 

the flavors system iu Symbolics Zetal.isp Release 5. Although :HlXTUAE 

provides functionality vaguely similar to that of an Oaklisp mixin 

manager, the i,nplementation of :HIXTURE required major additions to 

the deeply internal definitions of nrrfz AVON and other portions of the 

flavor system, and was far from being a user level extension. The 

reason :HIXTURt was ~ difficult to define is that ZetaLisp flavors are not 

first class. In Oaklisp. on the other hand, mixin managers are defined at 

user level. 

(SrTI NIX)H-MANAGES (MAKE TYPE '(CACHE) (LIST OR3ECT))) 

(S(TI NIX (HAKE OPERATION)) 

(ADI)-MFTHOO (MIX (M)XTN-MANAGER CACHE) SELF TYPE-LIST) 
(kEY ((X (ASS FOUAL? TYPE-LIST CACHE))) 

(CONO (X (COS X)) J'oundo,pebfmfllt 
(eLSE 

::Not found: create o new ~ andstash It. 
( l i t  ((NFH-TYPF (HAKE TYPE ' ( )  TYPE-LIST))) 

(SFTf CACHe (CONS (CONS TYPE*LIST HEW-TYPE) 
CACHE )) 

NEW-TYPE))))) 

When an instance &the  HIXIN'MAIIAGER type receives a HIX message it gets 

one argument: a list of types to be mixed together. The mixin manager 

checks its cache, creating and caching the requested type if necessary. 

To demonstrate a mixin manager in action, consider the Oaklisp 

operation hierarchy, which is quite elaborate. Some of  the types and 

mixins involved are OPERATION. OPEN-CODARLE -OPERATIOa, 

SETTAgLE-OP[RATION, LOCATASLE-OPERATION, TAGTRAPABLE-NlXt N. a n d  

CONSTANT-FOLOAgI.E-MIXIN. Their precise functionality isn't relevent; what 

is of note is that when we make a new operation which should be a 

combination of a number of these types, we can use a mixin manager to 

4"~e ,¢~t erne features of OaHisp provide another way to allow • number of methods to 
share a variable of their own. even if the methods sue for different types, but this works 
only if the method definitions .,,'hare a single lexical scope. 
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help us. We proceed by first making a mixin manager and then usin8 it 

to get a complex combination of types. 

(SET! OP[RATION-MIXIN-NAMAGER (NAg[ NIXlN-NABAGEB)) 

(SETI * (NAKE (NiX OPERATION-NIXIN-NAUAGEB 
(t IST TAGTRAPABLE-M|XIB 

OP[ B-CODABLE-N|XIB 
CONSTANT-FOLDABLE-NIX|II 
OPERATION)) 

Z I '((PLUS-Z-STACB)))) 

This definition of * is actually drawn from the Oaklisp kernel, and iS 

just like the definition of a regular operation, except for some extra 

mixins and initializadon arguments. The mixins tell the compiler and 

runtime system special things about the operation, such as how to open 

code it in compiled code and what to do if the cnrresponding primitive 

instruction encounters a tag trap. The localization of all information 

about various aspects of addition in the addition operation itself is a 

great boon to modularity. Contrast this with the approach that is 

necessary in most systems, where information about addition is 

distributed between the operator itself, the compiler internals, and the 

rundme system. The clean interface to the runtime system and 

compiler in Oaklisp is made possible by the anonymity of the objects 

and the general type hierarchy. 

Semantic Foundations 

Types represent sets of objects. This relationship may be specified 

by a mapping m which sends a type to the set of objects that it 

represents. In Oaklisp, types are themselves objects, so m is actually a 

partial mapping from objects to sets of objects. Figure 3 is a Venn 

diagram that depicts the mapping m and its interaction with the subtype 

predicate defined by the type system and the actual subset relation 

among sets of objects. The right hand side of the figure illustrates 

multiple inheritance, and the COERCAeLE-TVer stuff shows how new 

metatypes fit into the system. 

~HQak¢ 

type 

The mapping m may defined more fi~rmally as fi)llows, l.ct 0 be 

the set of all objects, and T the set of all type objects, Let 

m : T C O ~  2 ° be defined by x¢m(a) i f  and only if (IS-AT X O). 

Interestingly, T=m(Tvp[) and hence rYpr era(tYPE) since (IS-*T type 

TYPE). Such near circularities raise a concern: when dealing with a 

system some of whc~.c elcmcnL~ are members of  sets represented by 

other elements, Russell's paradox may resulL 

In order to allay concerns of this sort, it is necessary to prove [hat 

the type beirarchy in Oaklisp cannot give rise to contradictions. Such a 

proof requires an axiomatic formalization..~) that tools of logical 

analysis may be brought to bear. A beneficial side cffect of such a 

formalization is that i( serves as a succinct an(~ precise way to express 

the semantics of  [he type heirarchy. A bit {of the formalization is 

therefore presented here. We assume that the user will not redefine [he 

primitives used. We let o and b range over types while x ranges over all 

objects. The notation a < b is used for (sus~vp[ ~ a b). 

xc m(o,.,Ecr). 

The relation < is a partial ordering of T. 

If •< b then m(a)<~-m(b). 

(GET-TYPE .g) ( T, 

If zero(a) then (SET-EVPE x)'=e. 

(XAXE a . . . ) ( n  

Q : (GET-TYPE (NAK| G . .  • )) .  

I f  a is an element o f the  list I then (,AGE TYPE ~ . . . } ~ 0 .  

key: 

. .~ r=  

immediate subtylx: 

• Oaklisp object 

slcator-tables 
f 

type 

Figure 3: Typ~  can be regarded as sets 
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It is noteworthy that the G[V-~W~ function can be formalized in this 

way. The implementation of Coy-typE returns the contents of the type 

field of an object. Formally. ~v-vwE returns the smallest type 

containing the object it is applied to. The guarantee that such a smallest 

nontrivial type exists for every object in the system is one way in which 

the theory of the Oaklisp type heirarchy differs from usual set theory, 

and was necessary for our proof of consistency. 

C o m p a r i s o n  to O t h e r  W o r k  

Oaklisp derives its menage sending syntax from T, a highly 

developed dialect of Scheme. However, T is not object-orientee in the 

usual sense since types are not visible to the user, there is no inheritance 

hierarchy, and it is impossible to add new methods to existing objects. 

Object ],isp, Common Loops. and New Flavors also use the T 

syntax for messages. Oaklisp differs from these languages in that its 

type hierarchy lies at the heart of the language, eliminating the 

distinction between "'regular lisp stuff" and "object-oriented extension 

stuff." More importantly. Oaklisp's types are first class and can be 

meaningfully manipulated by user code. 

Conc lus ion  

We stated at the beginning of the paper that the unique features of 

Oaklisp are mostly due to the influence of the Scheme philosophy. For 

example, the tight coupling between the object-oriented and functional 

sides of Oaklisp is motivated by the principle of not creating two 

primitive mechanisms when one will suffice. Scheme also supplied the 

idea of first class functions, whose power can bo exploited even when 

the message based aspects of the language are being to used to maintain 

a conservative module discipline. The usefulness of first class functiom 

inspired the first class types of Oaklisp, which turn out to have similar 

benefits, making it easy to define meta tools which deal with the 

semantic substrate of the language itself. In some ways, O~lisp 's  

ability to manipulate its own type structure is analogous to the ability of 

3-lisp to reflect upon its own control sW, cture. 

Appendix:  C u r r e n t  I m p l e m e n t a t i o n  

The implementation of Oaklisp is heavily influenced by 1", which 

was designed as a systems programming language. In particular, the 

Oaklisp compiler differs from those written for instructional dialects of  

Scheme by emphasizing run-time efficiency rather than hooks for the 

debugger. For instance, appropriate CMOEtS forms are compiled as tight 

loops that do not generate lambdas. This orientation also lee us to 

provide for low-level access to native machine resources. Finally, T 

provided the inspiration for Oaklisp's lattice structured top level 

namespace, which is implemented with a collection ofloeale object.  

Oaklisp currently runs on the Macintosh TM personal computer 5. it 

was cross-developed on a lisp machine, where a kernel interpreter was 

written in Common i.isp and the rest of the language was defined in 

terms of the kernel. A compiler was written in Oaklisp, targetting to a 

stack-oriented bytecodc for which an emulator was written on the 

Macintosh. The current memory format uses two low tag bits, thus 

allowing 30-bit fixnums, pointers, and Incatives that can address any 

word in the logical address space of the 68000. Characters, weak 

pointers, and Macintosh handles are represented by 24-bit immediate 

objcct¢ There are facilities for so-callee lightweight processes, and 

hooks into the window system and Macintosh toolbox, all written in 

Oaklisp. The current implementation effort has been driven by 

considerations of simplicity rather than speed. An Oaklbp 

implementation with efficiency as a primary goal could use all the usual 

tricks for speeding up lisps. For instance, making coms-P~la primitive 

would speed up list manipulation. 
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