Oaklisp: an Object-Oricnted Scheme with First Class Types

Kevin J. Lang and Barak A. Pearlmutter

Dcepartment of Computer Science

Carncgic-Mcllon University
Pittsburgh, PA 15213

Abstract

‘The Scheme papers demonstrated that lisp could be made simpler
and more cxpressive by clevating functions to the level of first class
objects. Oaklisp shows that a message based language can derive

similar benefits from having first class types.

Introduction

Oaklisp is a message based, multiple inheritence dialect of lisp.
Programs arc written using lisp syntax. and traditional lisp data types
coexist with a Smalltalk style class hicrarchy. This paper assumes that
the rcader is familiar with onc of the many object-oriented lisp dialects
of this sor, and will thercfore concentrate on the unique aspects of
Oaklisp which are mostly due to the influence of Scheme,

Qaklisp is based on Scheme in two ways. Scheme was used as the
model for syntactic details whenever possible in order to minimize our
contribution to the continual prolifcration of incompatible varieties of
lisp. More significantly, Oaklisp is based on the Scheme philosophy,
which states that the primitive forms of a language should be simple,
powerful, and meaningful from several points of view, The careful
design of Oaklisp permits its object-oriented and procedural sides to‘be
more closely integrated than in a language which just ;angs a separate
message facility on the side of an existing lisp. Although Oaklisp is
object-oriented from the core, all of its features behave in such a way
that pure Scheme emerges as an alternate programming style.

Because Oaklisp is so closely related to Scheme, it is worth taking a
look at the main ideas of Scheme before proceeding. The conceptual
foundation of the language is that functions are objects just like
everything else, which mcans they can be returned from calls, passed

around, stored in data structures, and so forth. This principle has

]'nnis work was supporied by grants fiom DARPA and the System Development
J-oundation Barak Pcarimuticr is a Hertz Fellow.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-204-7/86/0900-0030 75¢

30 OOPSLA '86 Proceedings

several implications that are not immediately obvious. Because a
function can be applied at a point distant in time and space from its
point of origin, it must be able to remember the bindings of any
variables that were visible when it was made. This additional
complexity is offset by the ability to write many previously primitive
control structures at the user level, and by the fact that the special
mechanisms that lisp ordinarily uses for defining and applying
functions can be dispensed with.

In lisp, the car position of a function call is treated as the name of a
function which is lookced up in a special table and then applied to the
values obtained by evaluating the arguments of the call. In Scheme, the
car of a call is an cvaluated position. Although any expression can
occur in the car, it is common for the expression to be a variable, in
which case a call looks cxactly like it would in lisp even though
something completely different is going on. For example, the Scheme
form (PLUS 1 2) is cvaluated by looking up the binding of the variable
pLus and applying the resulting function to the values 1 and 2. Because
functions are manipulated using the same mechanisms as other forms of
data, they are first class. Because functions are never found by looking
up their name, they are anonymous, It is worth pointing out that when
a function is commonly bound to a particular variable (such as PLus), it
is convenient to speak as if the variable’s name were the function's
name. This practice should not be allowed to obscure the fact that the
function is really an anonymous object which happens to be accessible
through a standard variable binding.

The Oaklisp version of a function call is an amplified version of
what we have just seen in Scheme, with identical syntax and closely
related semantics. The first step in the evaluation of a call is the same,
namely the recursive evaluation of the subelements of the form. The
message based semantics of Oaklisp only becomes manifest in the
application step of evaluation, where the car value is taken to be an
operation and the second value is taken to be an object whose type
determincs the method which is invoked to perform the operation. The
remaining arguments are passed along to the method, but play no role
in its selection. It should be clear that this message passing paradigm is
basically the same as in Smalltalk. The inheritance and shadowing of
methods occurs in the usual way. The only major difference between

Oaklisp and Smalltalk messages is that Oaklisp operations are not

Septomber 1986

symbols; they are anonymous objccts that may be passed around and
compared. The anonymity of operations is necessary so that Oaklisp
will have the correct Scheme semantics when a functional programming
style is adopted. Howcver, an operation is not a function by itself, since
it is not directly associated with any code. An operation is just a thing
with a unique identity that in conjunction with a type specifics a
method which can actually be exccuted.

To make all of this a bit more concrete, consider the cvaluation of
the call (pLus 2 3). ‘The first subform is a variable which is
dercferenced, yiclding an operation. ‘The other two subforms are
constants, so they cvaluate to themselves. ‘The type of the distinguished
first argument is retricved, and then the method tables of the integer
type and its supertypes are scarched using the anonymous operation as
a key. If the tables have been sct up correctly, the scarch leads to the
selection of a method that knows how to add things to an integer.
Finally, the method is invoked with the arguments 2 and 3.

We have scen how the cvaluation of calls is modcerated by the type
system, and in particular by the method tables of types. ‘The ability to
configure thesc tables is provided by the apo-me tHoo special form. For
example, by evaluating the following expression we can define a PLuS
method for cons cells such that (PLus (CONS 2 3)) — 8.

(ADD-METHOD (PLUS (PAIR) SELF)
(TIMES (CAR SELF) (CDR SELF)))

This form tells the system to associate the method specified by the body
with the operation pLus in the method table of the type PAIR, Itis a
special form rather than a call because of the keyword abp-MeTioD and
becausc the body and argument list (setr) are not evaluated.
However, the opcration and type positions are evaluated, which means
that pLus is just a variable which is bound to the same opcration which
will later be used as a method selector during a call.

We have repeatedly said that operations are things that can be
passed around and stored in variables. The reader may wonder where
operations come from in the first place. Since they arc objects just like
everything else, they arc obtained the same way as any other object,
namcly by instantiating a type. An instance of a type is gencerated by
sending the type a MAke message. For cxample, the system pLus
operation is defined by evaluating

(SET! PLUS (MAKE OPERATION)).

Now according to the Oaklisp evaluation rules for calls, OPERATION is
not the name of a type but is a variable bound to a type object. Since
types are anonymous things just like operations, they are obtained in an
analogous manncr, by instantiating the type Tvpe. For example, we
could create a frog type with the following expression.

(SET! FROG (MAKE TYPE (LIST °"AGE ‘COLOR) (LIST OBJECT)))

In this case the Maxe message takes extra arguments which specify the

new type's instance variables and supertypes. Because the MAKe

September 1986

expression is a call and not a special form, all of its subexpressions are
evaluated. Obscrve that the first argument expression has been written
in 2 manncr that evaluates 1o a list of symbols, and that the second
yiclds a list of type objects,

‘The type specificd as the supertype of Fr0G is 0BJECT, which is the
distinguished type that lives at the top of the inheritance graph.
Because cvery type is a subtype of osJect, a method which has been
installed in o8Jec1 will work on any ubject whatsoever and can be used
as the default method for an operation. This ability to define default
methods suggests the following strategy for setting up a type prcdic.%lc.

(SET! FROG? (MAKE OPCRATION))

(ADD-METHOD {FROG? (OBJECT) SELF)
NIL)

(ADD-METHOD (FROG? (FROG) SELF)
T) .

(SETI FRED (MAKE FROG))
(FROG? FRED) —+ #1TRUE

(FROG? FROG) — ()

The last two expressions illustrate the fact that while FRep is a frog, FROG
is a type. FReD and #RoG are also objects, because FrRoe and TYPE are
subtypcs of the type 08JecT. These and other amavzing facts can be seen
in figure 1, which shows the primordial type hicrarchy together with the
frog cxample. It is important to understand the difference between the
is-a and subtype-of relations. Whercas cevery object is the bottom of an
is-a link, types are the only participants in sublype-of links.

key:

~ is-arelation
~7 immediate subtype

O type object

® non-type object

operation

» @
frog? nake

Figure I: 'The Primordial Types

Although the primordial types 08J€CT, TYPE, and OPERATION may
scem to be magic. they are just like any other types and could be
defined at the user fevel.2 The general lack of magic in the type system
permits a degree of openncess and extensibility beyond that of Smalitalk
and Zewl isp, both of which have lots of special machinery laying
around. ‘The later sections of this paper present several nifty features
that can be defined in Oaklisp at the user level,

But first, there are a couple of details that nced to be addressed in
the frog cxample. The Fro6 type possesses instance variables which
should be initialized when a frog is made. Since this is a common
requirement. the make method for types sends new instances an

2Acumlly. some poinicr tweaking i nceded because of the circularities in their

definitions.

OOPSLA '86 Proceedings 3

INITIALIZE message before returning them. The default isiTiaLize
method is a no-op. By specifying an in1tiaLize method for frogs, we
can shadow out this default method and cause something uscful to
happen.
(ADD-METHOD (INITIALIZE (FROG AGE COLOR)
SELF IMITIAL-COLOR)

(SET! AGE 0)
(SET! COLOR INITIAL-COLOR))

(SET! FRANK (MAKE FROG ‘OLIVE-DRAB))
Notice that when an instance variable is used in the body of a method,
it must be declared at the top of the method. ‘This helps to
disambiguate variable refcrences for both the compiler and the
programmer.

A particularly important aspect of the Apo-MeTHOD form is that the
method is closed in its lexical environment when the form is evaluated.
Together with the fact that Abp-METHOD returns its operation argument,
this rule allows the Lam8DA special form of Scheme 0 be defined with
the following macro.

(LAMBDA arg-list. body) =
(ADD-METHOD ((MAKE OPERATION) (OBJECY).arg-lisr). body)

When a LavBoa form is evalualed, it gencrates a new anonymous
operation and supplics a default method for the operation. Since the
same piece of code is invoked every time the operation is sent in a
message, the opcration behaves cxactly like a function. Using the
Lamoa form, Oaklisp programs can be written in a functional style that
is indistinguishable from Scheme. In practice, programs tend to be
written in a mixturc of the functional and object-oricnted styles. It is
casy to combine the two styles in a harmonious manner because the
Scheme component of the language is just the natural result of having

anonymous operations and a lexically scoped Aop-e thon form.

The Oaklisp Cons Hierarchy

In the Oaklisp kernel, conses are defined in Qaklisp itself in a way
open to extension by ordinary uscrs. The cons hicrarchy (see figure 2)
is rather detailed, allowing cach method and subtype to be defincd at
the right level of abstraction. -

list-type

.
G Gornd

(a . b 014916 ...)

Figure 2: The Cons Hierarchy

32 OOPSLA '86 Proceedings

(SET! LIST-TYPE (MAKE TYPE *() *()))

(SET! NULL-TYPE (MAKE TYPE () (LIST LIST-TYPE OBJECT)))

(SET1 PAIR (MAKE TYPE *() (LIST LIST-TYPE)))

(SET! CONS-PAIR (MAKE TYPE °(THE-CAR THE-COR) (LIST PAIR OBJECT)))

(ADD-METHOD (CAR (CONS-PAIR THE-CAR) SELF)
THE-CAR)

The parr type is never instantiated; it is an abstract type for “things
that behave like lisp conses.” Methods for printing and mapping are
defincd at the parr level and are shared by all of sa1a's subtypes, while
the subtypes themselves are responsible for handling can and con
messages. Ordinary cons cells arc instances of the type cows-ratr, but
other useful subtypes of #a1r can be defined as well. For example, the
following program fragment sets up a type of lazy pair that only
computes its car and cdr when they are actually nceded.

(SET! LAZY-PAIR
{MAKE TYPE °'(CAR-THUNK CAR-FLAG CDR-THUNK COR-FLAG)
(LIST PAIR OBJECT)))

(ADD-METHOD (CAR (LAZY-PAIR CAR-THUNK CAR-FLAG) SELF)
(COND (CAR-FLAG CAR-THUNK)
(ELSE (SET{ CAR-THUNK (CAR-THUNK °IGNORE))
(SET! CAR-FLAG T)
CAR-THURK)))
(ADD-METHOD (INITIALIZE (LAZY-PATR CAR-THUNK CAR-FLAG
COR- THUNK CDR-FLAG)
SFLF ORTGINAL-CAR-THUNK ORIGINAIL-COR-THUNK)
(SET) CAR-FLAG NIL)
(SFY1 CAR-THUNK ORTGINAL-CAR-THUNK)
(SFT1 CDR-FIAG NIL)
(SFT1 CDR-THUNK ORTGINAI -CDR-THUNK))

When we make a lazy-pair, we give it “thunks” for the car and edr
valucs. The pair then uscs a call by necd strategy, in which a thunk is
used to compute the car or cdr on first request, and the computed value
is stored and returned immediately on future requests. The case with
which we can crcate thunks is a consequence of the Scheme scoping
rules, which allow us to close a function in the cnvironment of its
creation and to use the function even after the environment in which it
was crcated has been cxited. When we want to make a thunk for a
computation, we just close a function to compute the needed value in
the appropriate environment. For instance, to create an infinite list of
squares we can write

{SET) MAKE-OMEGA-SQUARES-FROM
(LAMBDA (N)
(MAKE LAZY-PATR (LAMBDA (TGNORED) (* N W))

(LAMBDA (IGNORED)
{MAKE -OMEGA-SQUARES-FRON (+ W 1))))

(SET! INFINITE-SQUARELTST (MAKE-OMEGA-SQUARES-FRON 0)).
The syntax here is somewhat awkward® but syntax is not the point of
the example, We have created an infinite list which is computed on
demand. Since we've built on the abstract rair type, the list can be
printed and manipulated like any other list; our lazy pairs deal with car
and cor a little ideosyncratically, but that's invisible from outside the
type. For instance, if we were to now print INFINITE-SQUARELIST, “(0 1 4
9 18 26 36 49 ...)" would appear on our screen. It is interesting to note

3Expent lisp progs will recogize the opportunity 1o define 8 azy-¢ons macto,

September 1986

that the printer normally abreviates long lists, printing “...” after a
certain number of elements have been printed out. This feature is
inherited by all subtypes of pair, so we don't have to do anything
special to make lazy pairs print reasonably. This illustrates the
usefulness of abstract types and the importance of separating them from
particular implementations. It also shows the usefulness of defining
very general methods at high levels of abstraction, as such a policy leads
to greater code sharing,

It is equally easy to make a list that is overlayed onto a fractal set of
points on the screen or a string that is the mapped image of a file,
These examples illustrate the synergy between the dual linguistic
paradigms cmbodicd in Oaklisp. ‘The object oricntation of Oaklisp
allows us to write modular definitions that can be hooked right into the
type hicrarchy, providing thc user with a palctte of types having
uniforn behavior but varying implementations. The Scheme semantics
of Qaklisp allows these implcmentations to play games with higher
order functions, using deviant Conniver-style control structures of the
sort that provided the original motivation for developing Scheme and
Prolog.

Coercable Types

In this section we define a new metatype, coercasie-Tvee, whose
instances are types that possess cocrcion operations. In order to coerce
an object to onc of these types, we send a message to the type asking it
to return its coercion operation, and then we apply the resulling
operation (o the object. For example, we might want to define a new
kind of table that associates keys and values like a hash table but is
implemented using a self-adjusting binary trec. By evaluating the
expression

(SET! SLEATOR-TABLE
(MAKE COERCABLE-TYPE *(ROOT SIZE) (LIST TABLE OBJECT)))

we can create the type and have a coercion operation gencrated
automatically. To define methods for this operation, we can get our
hands on it by sending the sleator-table type a coercer message. Then,
if roo is bound to a table of some other sort, we can coerce it to a
sleator-table by evaluating

({COERCER SLEATOR-TABLE) FOO0).

Now that we have seen how coercable types should behave, we can
actually define them. Obsecrve how the anonymity of operations and
types permits us to use type objects to govern access to coercion
operations. First we create the new metatype with

(SET! COERCABLE-TYPE (MAKE TYPE '(COERCION-OP) (LIST TYPE))).
This new metatype is just like the original metatype tvee except for a
new instance variable coercton-or. Next we define the interface to
coercable types: the coercer operation.

{SET! COERCER (MAKE OPERATION))

September 1986

{(ADD-MFTHOD (COFRCFR (COFRCABIE-TYPF COERCION-OP) SELF)
COEtRCION-0P)

It remains to define an witia 126 method for coercable types so that
when onc is created it will make itself a cocrcing operation and stash it
in its corncion-or instance variable.
(ADD-MFTHOD (INTTIAITIF (COFRCABIf-TYPF COFRCION-OP)
SEIF IVARS SUPFRIYPES)
(CONTINUE SE{F TVARS SUPFRTYPES) :Do inkeried imnializations
(SFT1 COFRCION-OP (MAKF OPFRATION)) .Aluke the cocrcion operation

(ADU-MFTHOU (COFRCTON-OP (SELF) INSTANCE-OF -SELF)
INSTANCF -0F -SELF)) :How to cocrce instances of ourself.

The cxpression (SET! COfRCION-0P (MAKE OPERATION)) IS
straightforward, but the other two forms in the initialization code
require some cxplanation. ‘The first form, (conrinve .), runs handlers
for the inrr1ar12¢ operation that lic above the current point in the type
hicrarchy. The code following the (cowtiaue ...) is executed after these
handlers, much like a Zcwalisp :afven method. The expression
(ADD-MFTHOD (COERCER (SELF) ...) ...) adds a handler to the type that is
being created. The handler is for the type's coercion operation, so this
form 1ells instances of the type how to be cocrced to that type. Since
they are alrcady of the right type, all they need do is return themselves.

To give a concrete example of how this facility is used, imagine that
we want to add complex numbers to our language, and that we want
our complex numbers to have two different representations, cartesian
and polar. We'd also like to be able to switch between representations
conveniently. Our implementation will use an abstract type conpiex and
two concrete subtypes.

(SET) COMPLEX (NAKE TYPF *() (1IST MUMBER)))

(SET1 ORTHO-COMPLEX (MAKE COFRCABLE-TYPE °(RFAL-COMPONENT
IMAG-COMPONENT)
(LIST COMPLEX OBJECT)))

(SET! POLAR-COMPLEX (MAKE COERCABLE-TYPE '(ANGLE LEWGTH)
(LIST COMPLEX OBJECT)))

Now that we have some new types of numbers, we have to make
them do all the things numbers are supposed to: addition,
exponcntiation, printing themselves, ctc. The details are tedious; for
expository purposes, a few cxamples suffice.

:: Absolute value: expensive in one rep

(ADD-METHOD (ABS (ORTHO-COMPLEX REAL-COMPONENT TMAG-COMPONENT)
SELF)

(SORT (+ (EXPT REAL-COMPONENT 2) (EXPT IMAG-COMPONENT 2})))

»: but cheap in the other.
(ADD-METHOD (ABS (POLAR-COMPLEX LENGTH) SELF)
LENGTH)

:: Getting the imaginary component;
{SEY1 IMAGPART (MAKE OPERATION))

+: Cheap in one representation,
(ADD METHOD (IMAGPART (ORTHO-COMPLFX IMAG-COMPONENT) SEIF)
IMAG-COMPONENT)

:: but expensive in the other.
(ADD-METHOD (IMAGPART (POt AR-COMPLEX ANGLF LENGTM) SELF)
(* LENGTH (COS ANGLE)))

;: and trivial for non-complex numbers.
{ADD-METHOD (IMAGPART (NUMOBFR) SELF)
0)

:: Raising to a power.
(ADD-METHOD (FXPT (POLAR-COMPIEX ANGLF LENGTN) SELF POWER)
(MAKE POt AR-COMPLEX (° ANGIF POWER) (FXPT LENGTH POWER)))

OOPSLA '86 Proceedings 33

;; We define equality ar an abstract level so that both representions will
2 inherit how to compare for equality.
(ADD METHOD (- (COMPLFX) X Y}
(AND (= (REAIPART X) (RFAIPART Y))
(= (IMAGPART X) (IMAGPART Y¥))))

Now we get to usc our powerful coercion operations. Each kind of
complex number automatically knows how to coerce to itsclf: we just
have to tell each kind how to be coerced to the other.

:: What a polar does when it receives an ortho coercion message:

(ADD-METHOD ((COFRCER ORTHO-CUMPIEX) (POLAR-COMPLEX) SELF)
(MAKE ORTHO-COMPIEX (REAIPART SELF) (IMAGPART SELF)))

:: What an ortho does when it receives a polar coercion message:
(ADD-MFTHOD ({COFRCFR POLAR-COMPIFX) (ORTHO-COMPLEX) SELF)
(WAKE POLAR-COMPLEX (PHASE SEIF) (ABS SELF)))

With everything defined, we're ready to demonstrate. Iets create a
complex number represented in cartesian terms and coerce it into one
represented in polar terms.

5. First we create sqry- 1), representing it in cartesian terms,

(SET! T-ORTHO (MAKF ORTHO-COMPLEX 0.0 1.0))
— #C0(0.0 1.0)

:: We can verify that it works,

(* 1-ORTHO 1-ORTHO)
- -1.0

:: Now we coerce it (o another representation.

(SET! I-POLAR ({COERCER POLAR-COMPLEX) 1-ORTHO))
— #CP(1.0 1.5707963267949)

:: And verify that the alternate representation functions correctly.
(* I-POLAR I-POLAR)
- -0

(* I-ORTHO 1-POLAR)
- -1.0

;: Note that the two representations are different objects..
(EQ? 1-ORTHO 1-POLAR)

- 0
;: but are numerically equal

(* 1-ORTHO T-POLAR)
-+ #1TRUE

An interesting consequence of this coercable type mechanism is that
we can try to cocrce one thing to the type of something clse without
knowing what that second type is. For example, suppose roo is a hash
table and ear is some kind of table that scems very fast and cfficient,
and we'd like to cocrce foo into a table of the same sort. We get ear's
type, ask it for its coercion operation, and apply that operation to roo, as
follows:

((COFRCER (GET-TYPE BAR)) FOO).

The contrast between our coercable type construction and Smalltalk
class variables is also intcresting. In Smalltalk, there are special
variables which arc global to an entire type. The corrcion-op instance
variable of cach coercable type is morally equivalent to a class variable,
since any instance of a cocrcable type could get to the coercable
operation by running up its is-a link. By dcfining an interface at the
type level allowing the variable to be accessed and sume macros to
sugar the syntax, we could use this sort of definition to make things that
look almost exactly like class variables. All of this activity can take
place at user level—no modification or knowledge of system internals is

necessary.*

34 OOPSLA '86 Proceedings

Mixin Managers

Frequently, type hicrarchics become so rich that they threaten to
overwhelm users with a plethora of possible combinations of mixins.
The combinatorial explosion of the number of possible concocted types
seems intrinsic to the style of programming involving multiple
functionally orthogonal mixins. Above a certain level of complexity,
finding a type with certain known characteristics can become difficult.
Programmers are left wondering “Has a type based on foo with bar, baz
and zonk mixcd in been created, if so what's its name, and if not what
should I name it and where should I define it?”

In Oaklisp, it is casy to define mixin managers that take care of this
problem. When programmers nced “the type based on foo with bar,
baz and zonk mixed in,” they ask a mixin manager for it. If such a type
has already been created, it is returned; if not, the mixin manager
creates an appropriate new type, caches it, and returns it. This relieves
programmers of the burden of remembering which types have been
concocted and what they are named.

It is enlightening to examine the :muixrure defflavor option added to
the flavors system in Symbolics Zetal.isp Release 5. Although :mixture
provides functionality vaguely similar to that of an Qaklisp mixin
manager, the implementation of :mixwure required major additions to
the deceply internal definitions of ofrriavor and other portions of the
flavor system, and was far from being a user level exicnsion. The
reason :uixtyre was so difficult to define is that ZetaLisp flavors are not
first class. In Oaklisp, on the other hand, mixin managers are defined at
user level,

(SFTI MIXIN-MANAGER (MAKE TYPE *(CACHE) (LIST O0BJECT)))

(SET!I MIX (MAKE OPERATION))

(ADD-METHOD (MIX (MIXTN-MANAGER CACHE) SELF TYPE-LIST)
(LET ((X (ASS FQUAL? TYPE-LIST CACHE)))
(COND (X (COR X)) found iype in cache
(ELSE
+:Not found: create a new type and stash It.
(VET ((NEW-TYPF (MAKE TYPE () TYPE-LIST)))
(SET! CACHE (CONS (CONS TYPE-LIST MEW-TYPE)
CACHE))
NEW-TYPE}))))

When an instance of the uix1s-uanacen type receives a u1x message it gets
onc argument: a list of types to be mixed together. The mixin manager
checks its cache, creating and caching the requested type if necessary.
To demonstrate a mixin manager in action, consider the Qaklisp
operation hierarchy, which is quite elaborate. Some of the types and
OPEN-CODABLE ~OPERATION,

mixins involved are OPERATION,

SETTABLE-OPERATION, LOCATAGLE-OPERATION, TAGTRAPASLE-MIXIN, and
consTANT-FoLDasLE-MIxIN, Their precise functionality isn't relevent; what
is of note is that when we make a new opcration which should be a

combination of a number of these types, we can use a mixin manager to

‘me Sch f of Oaklisp provide another way 1o allow a number of methods to
share a variable of their own, even if the methods are for different types. but this works
only if the method definitions share a single lexical scope.

September 1986

help us. We proceed by first making a mixin manager and then using it

to get a complex combination of types.

(SET! OPERATION-MIXIN-MANAGER (MAKE MIXIN-MANAGER))

{SET! + (MAKE (WIX OPERATION-MTXIN-MANAGER
(LTST TAGTRAPABLE-MIXIN
OPEN-CODABLE-MIXIN
CONSTANT-FOLDABLE-MIXIN
OPERATION))
2 1 *((PLUS-2-STACK))))

This definition of « is actually drawn from the Oaklisp kernel, and is
just like the definition of a regular operation, except for some cxtra
mixins and initialization arguments. The mixins tefl the compiler and
runtime system special things about the operation, such as how to open
code it in compiled code and what to do if the corresponding primitive
instruction cncounters a tag trap. The localization of all information
about various aspects of addition in the addition operation itsclf is a
great boon to modularity. Contrast this with the approach that is
nccessary in most systems, where information about addition is
distributed between the opcerator itself, the compiler internals, and the
runtime system. The clean interface to the runtime system and
compiler in Oaklisp is made possible by the anonymity of the objects
and the gencral type hierarchy.

Semantic Foundations

Types represent sets of objects. This relationship may be specified
by a mapping m which sends a type to the set of objects that it
represents. In Oaklisp, types arc themsclves objects, so m is actually a
partial mapping from objects to sets of objects. Figure 3 is a Venn
diagram that depicts the mapping m and its interaction with the subtype
predicate defined by the type system and the actual subset relation

The mapping m may defined more formally as follows. Let O be
the set of all objects. and T the sct of all type objects. Let
m:TCO— 29 be defined by xem(a) if and only if (1s-a2 x a).
Interestingly, T=m(1vee) and hence rvee e m(rvee) since (1s-a7 Tvpe
1ee). Such ncar circularitics raisc a concern: when dealing with a
system some of whose clements arc members of scts represented by
other clements, Russcll's paradox may result,

In order to allay concerns of this sort, it is necessary to prove that
the type heirarchy in Oaklisp cannot give rise to contradictions. Such a
proof requires an axiomatic formalization, so that tools of logical
analysis may be brought to bear. A beneficial side cffect of such a
formalization is that it serves as a succinct an? precisc way 0 express
the semantics of the type heirarchy. A bitlof the formalization is
therefore presented here. We assume that the user will not redefine the
primitives used. We let @ and & range over types while x ranges over all

objects. ‘The notation a < b is used for (sustveer a by,

x€m(osaEcT).

‘Ihe relation < is a partial ordering of T.
If a< b then m(a)C m(b).

6er-Tvee x)€ 7.

If xem(a) then (seT-1vee x)<a

(WMKE @ ...)€a

a = (GET-TYPE (MAKE 4 ...)).

If ais an clement of the list / then (uaxe vvee | ...)Sa
among scts of objects. The right hand side of the figure illustrates
multiple inheritance, and the cosrcaste-Tvee stuff shows how new
metatypes fit into the system.
objects key:
types ' m
Foation ¥ immediate subtype
@ Oaklisp object
object
coercable
types
sleator .’ G
table
sleator-tables
{ J
Figure 3: Types can be regarded as sets
September 1986 QOPSLA ‘86 Proceedings 35

It is noteworthy that the cev-1vee function can be formalized in this
way. The implementation of cev-rvee returns the contents of the type
field of an object. Formally, eev-tver retuns the smallest type
containing the object it is applied to. The guarantee that such a smallest
nontrivial type exists for every object in the system is one way in which
the theory of the Qaklisp type heirarchy differs from usual set theory,
and was necessary for our proof of consistency.

Comparison to Otirer Work

Oaklisp dcrives its message scnding syntax from T, a highly
developed dialect of Scheme. However, T is not object-oriented in the
usual sense since types are not visible to the user, there is no inheritance
hicrarchy, and it is impossiblc to add new methods to existing objects.

Object Lisp, Common Loops, and New Flavors also use the T
syntax for messages. Oaklisp differs from these languages in that its
type hicrarchy lics at the hcart of the language, climinating the
distinction between “regular lisp stuff” and “object-oricnted extension
stuff.” More importantly, Oaklisp's types are first class and can be
meaningfully manipulated by user code.

Conclusion

We stated at the beginning of the paper that the unique features of
Oaklisp are mostly due to the influence of the Scheme philosophy. For
example, the tight coupling between the object-oriented and functional
sides of Oaklisp is motivated by the principle of not creating two
primitive mechanisms when one will suffice. Scheme also supplied the
idea of first class functions, whose power can be exploited even when
the message based aspects of the language are being to used to maintain
a conservative module discipline. The usefulness of first class functions
inspired the first class types of Qaklisp, which turn out to have similar
benefits, making it easy to define meta tools which deal with the
semantic substrate of the language itself. In some ways, Oaklisp’s
ability to manipulate its own type structure is analogous to the ability of
3-lisp to reflect upon its own control structure.

36 OOPSLA '86 Proceedings

Appendix: Current Implementation

The implementation of Oaklisp is heavily influenced by T, which
was designed as a systems programming language. In particular, the
Oaklisp compiler differs from those written for instructional dialects of
Scheme by emphasizing run-time efficiency rather than hooks for the
debugger. For instance, appropriate taseus forms arc compiled as tight
loops that do not generate lambdas. This oricntation also led us to
provide for Jow-level access to native machine resources. Finally, T
provided the inspiration for Oaklisp's lattice structured top level
namespace, which is implemented with a collection of locale objects.

Oaklisp currently runs on the Macintosh™ personal compulers. It
was cross-developed on a lisp machine, where a kernel interpreter was
written in Common Lisp and the rest of the language was defined in
terms of the kernel. A compiler was written in Oaklisp, targetting to a
stack-oricnted bytecode for which an cmulator was writicn on the
Macintosh. ‘The current memory format uses two low tag bits, thus
allowing 30-bit fixnums, pointers, and locatives that can address any
word in the logical address space of the 68000. Characters, weak
pointers, and Macintosh handles arce represented by 24-bit immediate
objects. There arc facilities for so-called lightweight processes, and
hooks into the window system and Macintosh toolbox, all written in
Oaklisp. The current implementation effort has been driven by
considerations of simplicity rather than speed. An Oaklisp
implementation with efficiency as a primary goal could use all the usual
tricks for speeding up lisps. For instance, making cous-pa1r primitive
would specd up list manipulation,

Bibliography

Harold Abelson et al.
The Revised Revised Report on Scheme
Al Memo 848, MIT Artificial Intelligence Laboratory, 1985,

D. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, F. Zdybel,
"CommonLoops: Merging Common Lisp and Object-Oriented
Programming”

9th International Joint Conference on Artificial Intelligence, 1985

W. Clocksin and C. Mellish.
Programming in Prolog
Springer-Verlag, 1981.

A. Goldberg and D. Robson,
Smalltalk-80: The Language and its Implementation
Addison-Wesley, 1983,

SThanks to Bruce 1o for his help.

September 1986

Sonya E. Keene and David A. Moon.
"Flavors: Object-oricnted Programming on Symbolics Computers”
Common Lisp Conference, December 1985.

Glenn Krasner, Ed.
Smallialk-80: Bits of History, Words of Advice
Addison-Wesley, 1983,

Kevin J. Lang and Barak A. Pearimutter.
The Oaklisp Language Manual and The Oaklisp Implementation Guide
Unpublished, CMU Computer Science Department, 1985,

D. Moon and D. Weinreb.
The Lisp Machine Manual
Symbolics Inc.

Jonathan A. Rees and Norman 1. Adams IV,

*“T: adialect of Lisp or, Lambda: the ultimate software tool”
Proceedings of the 1982 ACM Symposium on Lisp and Functional
Programming, August 1982,

Jonathan A. Rees, Norman 1. Adams IV, and James R. Mcehan.
The T Manual
Fourth edition, Yalc University Computer Science Department, 1984,

D. Sleator and R. Tarjan.
"Self-adjusting Binary Search Trees”
Proceedings of 15th Symposium on Theory of Computing,1983.

Brian Cantwell Smith.
Reflection and Semantics in Lisp
CSLI-84-8, Center for the Study of Language and Information, 1984,

Guy Lcwis Stecle, Jr.
Lambda, the Ultiinate Declarative
Al Mcmo 379, MIT Artificial Intclligence Laboratory, 1976,

Guy Lewis Stecle, Jr. and Gerald Jay Sussman.
Lambda, the Ultimate Imperative
Al Memo 353, MIT Artificial Intelligence Laboratory, 1976.

Guy Lewis Steele, Jr. and Gerald Jay Sussman.
The Art of the Interpreter
Al Memo 453, MIT Artificial Intelligence Laboratory, 1978,

G. Sussman, and D. McDermott.

"From PLANNER to CONNIVER - A Genetic Approach”
Proccedings of the Fall Joint Computer Conference, 1972.
AFIPS Press.

September 1986

OOPSLA '86 Proceedings

37

